
Security Focused Code Audit of
Java Applications and Middleware
Security Focused Code Audit of
Java Applications and Middleware

Marc Schönefeld, University of Bamberg
www.illegalaccess.org

Marc Schönefeld, University of Bamberg
www.illegalaccess.org

illegalaccess.org

Hello !

illegalaccess.org

The speaker

• Marc Schönefeld, Diplom-Wirtschaftsinformatiker
– For Science: External doctoral student @ Lehrstuhl für praktische

Informatik at University of Bamberg, Bavaria, Germany

• Thesis project:
REFACTORING OF SECURITY ANTIPATTERNS IN
DISTRIBUTED JAVA COMPONENTS

– For Living: Department for Operational Security Management
@ GAD eG, Münster/Germany,

• Java, J2EE, CORBA [CSMR 2002]

design and development
Security Hardening (code audit)

illegalaccess.org

The situation

• Java (we cover J2SE here, some aspects also apply to J2EE)
– is designed as a programming language with inherent security features

[Gong, Oaks]

• JVM-Level: Type Safety, Bytecode integrity checks

• API-Level: SecurityManager, ClassLoader, CertPath, JAAS

• Crypto-Support: JCA/JCE, JSSE

– So what‘s the problem ?

illegalaccess.org

Selected Java Security Alerts in 2003/2004:

– Java Runtime Environment May Allow Untrusted Applets to
Escalate Privileges

– A Vulnerability in JRE May Allow an Untrusted Applet to Escalate
Privileges

– ...Java Virtual Machine (JVM) May Crash Due to Vulnerability in
the Java Media Framework (JMF)...

– …Java Runtime Environment Remote Denial-of-Service (DoS)
Vulnerability …

Despite of the precautions of the Java Security Architecture, a lot of
attack potential …

what’s the cause?

illegalaccess.org

The problem

• A platform (like the Java runtime environment) can only support the
programmer’s intent

• What is programmer’s intent ? Reflects different perspectives …
– Functionality [application programmer]

• Java has a large API with lots of predefined functions (sockets, files, …)

– Quality and ReUse [middleware programmer]

• Java provides communication and marshalling on different semantic levels
(Sockets, RMI, CORBA, Raw-Serialisation, XML-Serialisation, …)

– Safety [security architect]

• Java provides Isolation Support, Crypto-Objects and Secure Sockets out of the box

– Malicious Intent [adversary]

• Undermine security by finding the weak spots

• Java VM and core libraries have (lots of?) vulnerabilities

illegalaccess.org

Classloaders and Protection Domains

illegalaccess.org

Why search for security bugs in java code ?

• Component based software development
– 3rd party middleware components (web servers, graphics libraries, PDF

renderer, …) are all over the place

– We REUSE many of them in trusted places (bootclassloader)

– But can we really trust them ?

• Questions:
– Does my super duper 3rd-party graphics library include vulnerable

object implementation that can be triggered by an attacker ?

– Is the JDK secure in isolating my confidential XML data from other
malicious applets loaded into the same VM ?

– Object serialisation is safe, isn’t it ?

illegalaccess.org

J2EE multi-tier application types

illegalaccess.org

J2EE multi-tier attack types

Evil Twin
Attack

Data-Injection (SQL, legacy format)

Denial-Of-Service,
Malicious serialized data

illegalaccess.org

Java Security Patterns

– Sun’s Security Code Guidelines (last update Feb 2, 2000!) :
1. Careful usage of privileged code
2. Careful handling of Static fields
3. Reduced scope
4. Careful selected public methods and fields
5. Appropriate package protection
6. If possible Use immutable objects
7. Never return a reference to an internal array that contains

sensitive data
8. Never store user-supplied arrays directly
9. Careful Serialization
10. Careful use native methods
11. Clear sensitive informationhttp://java.sun.com/security/seccodeguide.html

illegalaccess.org

Java Security Antipatterns

– Security unaware coding create vulnerability by ignoring the security
patterns

– Typical Java Secure Coding Antipatterns:

• Ignoring Language Characteristics (like Integer Overflow)

• Careless Serialisation , careless use of privileged code

• Inappropriate Field and Method Visibility

• Covert Channels in non-final Static Fields

– They hide in your own code and the libraries you use

– Due to academic interest we audited parts of the Sun JDK 1.4.x and
present the findings on the following slides:

illegalaccess.org

How to search for security bugs in java code ?

• Test if program needs specific
permissions
Useful to reverse engineer

protection domains

jChains

(http://jchains.de
v.java.net)

Policy
evaluation
tools

Bytecode detectors (visitor pattern):

• predefined (software quality)

• Self-written (for security audit)

Findbugs (bases
on Apache
BCEL)

Bytecode
audit
analyzers

Time consuming analysis,
needs experience

JAD (!),
JODEDecompilers

useful only if source code is
available and complete [in most of
the cases it isn’t]

PMD ,
Checkstyle

Source Code
Detectors

illegalaccess.org

Bytecode analyzers

• The following discussion bases on JVM bytecode analysis

• Findbugs (http://findbugs.sourceforge.net)
– Statical Detector for bug patterns in java code

– Developed by the University of Maryland (Puth and Hovemeyer)

– Open Source

• based on the BCEL (Apache Bytecode Engineering Library)

• Visitor-pattern analysis of
class structure and inheritance
control and data flow

• GUI/command line

• And: Extensible, allows to write own detectors

illegalaccess.org

Java Security Antipatterns

– Antipatterns (bugs, flaws) in trusted code (like rt.jar) cause
Vulnerabilities

• Availability:
AP1: Integer, the Unknown Type(java.util.zip.*)
AP2: Serialisation side effects (java.io.*)

• Integrity:
AP3: Privileged code side effects (Luring attacks break sandbox)
AP4: Inappropriate Scope (Access control violation)
AP5: Non-Final Static Variables (Covert channels between applets)

• Secrecy:
AP6: Insecure Component Reuse (org.apache.* , Sniff private
XML data between applets)

– Goal: Define a binary audit toolset to detect the antipatterns in your own and
the 3rd-party components to be able to fix the vulnerabilities

illegalaccess.org

Java Antipattern 1: Integer overflow

– According to blexim (Phrack #60) ,
integer overflows are a serious
problem in C/C++, so they are in
Java:

• All Java integers are bounded
in the [-231,+231-1] range

• In Java this is true: -231=231+1

• Silent Overflow is a problem:
Sign changes are not reported
to the user, no JVM flag set

– Code of JDK 1.4.1_01 was based
on the false assumption that java
integers are unbounded, which led
to a range of problems in the
java.util.zip package

illegalaccess.org

Java Antipattern 1: Integer overflow

The crash is caused by a parameter tuple
(new byte [0],x,Integer.MAX_VALUE-y), where x>y x,y≥0

silent overflow in the trusted JDK routines by fooling the parameter
checks, so the overflow is neither detected by the core libraries nor the
JVM.

The native call updateBytes to access a byte array leads to an
illegal memory access. Consequently the JVM crashes.

D:\ > java CRCCrash
An unexpected exception has been detected in native code outside the VM.
Unexpected Signal : EXCEPTION_ACCESS_VIOLATION occurred at PC=0 x6D3220A4
Function= Java_java_util_zip_ZipEntry_initFields+0x288
Library=c:\java\1.4.1\01\jre\bin\zip.dll
Current Java thread :
at java.util.zip.CRC32.updateBytes(Native Method)
at java.util.zip.CRC32.update(CRC32.java:53)
at CRCCrash.main(CRCCrash.java :3)
Dynamic libraries:
0x00400000 - 0x00406000 c:\java\1.4.1\01\jre\bin\java.exe

illegalaccess.org

Java Antipattern 1: Integer overflow

The CRC32 class allows to calculate a checksum over a buffer:

If you have a byte buffer (1,2,3,4) and want to calculate the checksum
over it you need to call:

CRC32 c = new java.util.zip.CRC32 ();

c.update (new byte []{1,2,3} ,0 ,3);

But if you do the following:

c.update (new byte [0] ,4 ,Integer. MAX_VALUE -3);

You will crash the JVM of JDK 1.4.1_01 and some
versions of JDK 1.3.1

illegalaccess.org

Java Antipattern 1: Integer overflow,
Risk and extent

Risk:
If the attacker manages to exploit this function in an environment were
multiple users share a single JVM (like a Lotus Domino server or a Tomcat
HTTP server) he may cause a denial-of-service condition.

Extent:
More trusted functions were found vulnerable:
• java.util.zip.Adler32().update();
• java.util.zip.Deflater().setDictionary();
• java.util.zip.CRC32 ().update();
• java.util.zip.Deflater().deflate();
• java.util.zip.CheckedOutputStream().write();
• java.util.zip.CheckedInputStream().read();
• java.text.Bidi.<init >;

– http://developer.java.sun.com/developer/bugParade/bugs/4811913.html
• also bugnr = {4811913, 4812181, 4812006 , 4811927 , 4811917,

4982415, 4944300, 4827312,4823885}

illegalaccess.org

Java Antipattern 1: Integer overflow,
the Refactoring

public void update(byte[] b, int off, int len) {
if (b == null) { throw new NullPointerException(); }

if (off < 0 || len < 0 || off > b.length - len) {
throw new ArrayIndexOutOfBoundsException();

}
crc = updateBytes(crc, b, off, len);

}

After

JDK
1.4.1
02

public void update(byte[] b, int off, int len) {
if (b == null) { throw new NullPointerException(); }

if (off < 0 || len < 0 || off + len > b.length) {
throw new ArrayIndexOutOfBoundsException();

}
crc = updateBytes(crc, b, off, len);

}

Before

JDK
1.4.1
01

illegalaccess.org

Java Antipattern 1: Integer overflow,
the Refactoring (bytecode)

12: iload_2

13: iflt 28

16: iload_3

17: iflt 28

20: iload_2

21: aload_1

22: arraylength

23: iload_3

24: isub

25: if_icmple 36

After (1.4.1_02)
12: iload_2

13: iflt 28

16: iload_3

17: iflt 28

20: iload_2

21: iload_3

22: iadd

23: aload_1

24: arraylength

25: if_icmple 36

Before (1.4.1_01)

Integer
Overflow
Bytecode
Pattern

Bytecode of
Refactoring

illegalaccess.org

Java Antipattern 1: Harmful integer overflow,
How to find during auditing ?

1. find candidate methods by detecting iadd opcodes

2. Does the iadd use user-supplied data (does it use data from the
stack supplied by iload ?) to perform a range check

3. Is a native method called afterwards (invokevirtual,
invokestatic), that takes the same data

This process can be implemented by a Findbugs bytecode detector

illegalaccess.org

AP1: Conclusion and Suggestions

• The JVM does not provide an overflow flag like a normal x86
processor (designed in 1978), so there is no way to detect those
conditions during runtime. The JVM in Java 1.5 (aka 5.0 aka Tiger)
27 years later does not improve this shortcoming

• Suggestions for JDK 6.0:
– To avoid burdening the (security unaware) programmer, a bounded

primitive integers (like in Ada) is helpful
subtype Month_Type is Integer range 1..12;

– If this is all too complex for the java compiler to handle, it could at least
list a potential overflow as compiler warning
(maybe in Java 6.0?)

illegalaccess.org

Antipattern 2: Serialisation side effects

– The normal way to create a java object is to use the new instruction,
which calls the constructor of a class

– But: The Java serialisation API (part of java.io package) allows to
bypass constructors and create new instances of an object type by
simply sending them to an java.io.ObjectInputStream (OIS),
which is bound to a socket, a file or a byte array

– OIS objects are commonly used by remote communications such as
RMI or persistency frameworks to import pre-built objects into the JVM

– When an object is read from an OIS the most derived readObject
method of the class is called

illegalaccess.org

AP 2: Risk and Extent

• Risk
– Reading serialized objects may force the JVM to branch into complex or

vulnerable code regions that are called in the readObject method
– readObject methods may linger in in your own code, the JDK classes and

any 3rd party library you use
– Attacker may prepare special handcrafted data packets with serialized data

• Extent

Causes JVM crash on Win32 java.awt.font.ICC_Profile
Triggers an unexpected OutOfMemoryError which
may kill the current listening thread and disable the
service (as an error it bypasses most try/catch checks)

java.util.HashMap

Triggers complex computation,

„JVM may become unresponsive“ [Sun Alert 57707]

java.util.regex.Pattern

illegalaccess.org

AP 2: Risk and Extent
http://classic.sunsolve.sun.com

/pub-cgi/retrieve.pl?doc=fsalert%2F57707
http://classic.sunsolve.sun.com

/pub-cgi/retrieve.pl?doc=fsalert%2F57707

illegalaccess.org

AP2: Serialisation side effects, a refactoring

private void readObject(java.io.ObjectInputStream s)throws… {
s.defaultReadObject(); // Initialize counts
groupCount = 1; // if length > 0,
localCount = 0; // the Pattern is lazily compiled
compiled = false;
if (pattern.length() == 0) {

root = new Start(lastAccept);
matchRoot = lastAccept;
compiled = true;

}
}

After

JDK
1.4.2
06

private void readObject(java.io.ObjectInputStream s)throws… {
s.defaultReadObject(); // Initialize counts
groupCount = 1;
localCount = 0; // Recompile object tree
if (pattern.length() > 0)

compile();// so we compile for the next 1600 years
else

root = new Start(lastAccept);
}

Before

JDK
1.4.2
05

illegalaccess.org

AP2: How to find during code audit ?

1. find candidate classes by detecting readObject definitions

2. For these classes determine if the control flow branch into harmful
code

I. Search for algorithmic complexity (does it compile a regex for
the next 800 years?)

II. Search for endless loops (bytecode backward branches)

III. Does to code call into vulnerable native code and propagates
the total or some part of the payload ?

This process can be implemented by a Findbugs bytecode detector

illegalaccess.org

AP2: Conclusion and Suggestions

• The readObject method is designed primarily for accepting and
checking Serializable data

• Nested readObject invocations occur for nested Serializable
classes, so the malicious payload does not have to be in the root
object

• Try to defer complex operations from the time of creation to the
time of first usage

• Similar considerations apply for the readExternal method which
implements the receiving part of the Externalizable interface

illegalaccess.org

AP3: Privileged Code Side Effects

– The Basic Java Access Algorithm:

• A request for access is granted if, and only if every protection
domain in the current execution context has been granted the said
permission, that is, if the code and principals specified by each
protection domain are granted the permission.

• A permission is only granted when all
protection domain Di contain the
permission p

⎭
⎬
⎫

⎩
⎨
⎧

∈
=

i

n

i

Dp I
1

illegalaccess.org

AP3: Privileged Code Side Effects

– Privileged code (doPrivileged) is used to break out of the stack
inspection algorithm

– Needed where the permissions on the application level (user
classes) do not match the needed permissions to perform
necessary operations on the middleware/system level (rt.jar)

illegalaccess.org

AP3: Privileged Code Side Effects: Risk and
Extent

• Risk
– An attacker may misuse this condition to escalate privileges and escape a

limited protection domain (such as the JNLP or applet sandbox)
• he knows the privileged code blocks in the JDK and the privileged

codesources of the application
• by a luring attack he tries to trick control into privileged code blocks and

force that block to use parts of his injected payload

• Extent

….…

transport temporary files (such as executables) to the
client’s machine, which can be launched later
(http://www.derkeiler.com/Mailing-Lists/Full-
Disclosure/2004-07/0462.html)

java.awt.Font (i)

fill up the remaining free space of file system of the
client machine with a large file containing zero bytes

Java.awt.Font(ii)

escape the applet sandbox and test existence of files
on the client’s machine

java.awt.font.ICC_Profile

illegalaccess.org

AP3: Privileged Code Side Effects: Risk and
Extent

illegalaccess.org

AP3: Refactorings

• No refactorings available

–The described bugs are still in the JDK , so unfortunately
no refactorings available

–Although Most of those were reported to Sun in Q2/2004 or
earlier

illegalaccess.org

AP3: Privileged Code Side Effects:
How to audit ?

1. find candidate classes by detecting doPrivileged calls

2. For these classes determine if user-supplied data is propagated to
the privileged code block that causes to

I. Pass access to protected resources

II. leak secret data

III. Perform unwanted modifications

to untrusted code

This process can be partially implemented by a Findbugs bytecode
detector

illegalaccess.org

AP3: Conclusion and Suggestions

• Conclusion
– doPrivileged is a powerful but dangerous construct to tweak protection

domains

• Suggestion
– To Sun:

• Please fix bugs in privileged code JDK blocks

– To Component Users:

• Check 3rd party libraries for vulnerable doPrivileged blocks before
usage, as they may break your security policy

– To Middleware Developers:

• Keep privileged code in own code as short as possible
[http://java.sun.com/security/seccodeguide.html]

• Detaint user-supplied data before propagating it to privileged code

illegalaccess.org

AP4: Inappropriate Scope

• As a rule, reduce the scope of methods and fields as much as

possible. Check whether package-private members could be made

private, whether protected members could be made package-

private/private, etc. [Sun Security Code Guidelines]

• This should be especially true when you design trusted JDK extensions,

such as the Java Media Framework (JMF)

illegalaccess.org

AP4: Inappropriate Scope: Risk and Extent

• Risk

– An attacker can exploit the trusted protection domain “AllPermissions” of a

java extension in jre/lib/ext to escalate privileges. For example the JMF

• installs extra trusted classes to jre/lib/ext

• accesses system memory via native routines

• The public JMF class com.sun.media.NBA exposes a public pointer to

physical memory [long value data]

• So untrusted applets may read your system memory

illegalaccess.org

AP4: Inappropriate Scope: Risk and Extent

http://classic.sunsolve.sun.com
/pub-cgi/retrieve.pl?doc=fsalert%2F54760

http://classic.sunsolve.sun.com
/pub-cgi/retrieve.pl?doc=fsalert%2F54760

illegalaccess.org

AP4: Inappropriate Scope: Refactoring

1

2

3

public final class NBA {

protected final synchronized void finalize()
public synchronized Object getData()
public synchronized Object clone()
public synchronized void copyTo(NBA nba)
public synchronized void copyTo(byte

javadata[])
private long data;
private int size;
private Class type;

}

After (JMF 2.1.1e)
public class NBA {

public void finalize()
public Object getData()
public Object clone()
public void copyTo(NBA nba)
public void copyTo(byte javadata[])

public long data;
public int size;
public Class type;

}

Before (JMF 2.1.1c)

1) Creation of subclasses is forbidden, to prevent leaking of secret data by new methods
2) Scope of public finalize method degraded to protected, so no class can overwrite it
3) Data fields were moved to appropriate private (class local) scope

illegalaccess.org

AP4: Inappropriate Scope Side Effects:
How to audit ?

1. find candidate classes by detecting public classes

2. For these classes determine if

I. Data fields are declared as public

II. Methods are declared as public

III. Internal references to private, protected data are returned by a
public method

The candidate selection can be implemented by using the predefined
detectors of Findbugs

illegalaccess.org

AP4: Conclusion and Suggestions

• Conclusion
– Inappropriate Scope on fields and methods may allow to bypass

access control mechanisms

• Suggestion [http://java.sun.com/security/seccodeguide.html]
– Refrain from using public variables. Instead, let the interface to your

variables be through accessor methods. In this way it is possible to
add centralized security checks, if required.

– Make sure that any public method that has access to and/or
modifies any sensitive internal states includes a security check.

illegalaccess.org

AP5: Non-Final Static Fields

• „Refrain from using non-final public static variables
– To the extent possible, refrain from using non-final public static variables because there

is no way to check whether the code that changes such variables has appropriate
permissions.

– In general, be careful with any mutable static states that can cause unintended
interactions between supposedly independent subsystems“

[Sun Security Code Guidelines]

– According to Sun Microsystems [http://www.sun.com/software/security/glossary.html]
the term covert channel has the following definition:

• A communication channel that is not normally intended for data communication. It
allows a process to transfer information indirectly in a manner that violates the
intent of the security policy.

– We will show that the Antipattern careless use of Static Variables allows malicious
code to exploit covert channels between protection domains

illegalaccess.org

AP5: Non-Final Static Variables, Risk & Extent

• Risk
– Static Variables that are loaded by the boot classloader (like the ones in rt.jar)

or by the extension classloader are singleton objects in a JVM

– Non-final static String fields may transport serialized java objects to
protection domains that are not privileged to access them

Browser VM

Applet from site A Applet from site B

Protection Domain BProtection Domain A

Protection Domain
/lib/rt.jar „AllPermissions“

org.apache.xalan.processor.XSLProcessorVersion.LANGUAGE
org.apache.xalan.processor.XSLProcessorVersion.S_VERSION

javax.swing.JDesktopPane.LIVE_DRAG_MODE
...

Serial obj. Serial obj.

illegalaccess.org

AP5: Non-Final Static Variables, Risk & Extent

http://www.heise.de/newsticker/meldung/41308
Unsigned Java-Applets jump out of Sandbox

http://www.heise.de/newsticker/meldung/41308
Unsigned Java-Applets jump out of Sandbox

illegalaccess.org

AP5: Non-Final Static Variables: Refactoring

public class org.apache.xalan.processor.
XSLProcessorVersion {

public static final java.lang.String PRODUCT;

public static final java.lang.String LANGUAGE;

public static final int VERSION;

public static final int RELEASE;

public static final int MAINTENANCE;

public static final int DEVELOPMENT;

public static final java.lang.String S_VERSION;

}

After (JDK1.42_05)
public class org.apache.xalan.processor.
XSLProcessorVersion {

public static final java.lang.String PRODUCT;

public static java.lang.String LANGUAGE;

public static int VERSION;

public static int RELEASE;

public static int MAINTENANCE;

public static int DEVELOPMENT;

public static java.lang.String S_VERSION;

}

Before (JDK1.42_04)

The final modifier prohibits modification of a variable after initial value was set.
Initially they only used it to protect their product name ☺

illegalaccess.org

AP5: Non-Final Static Variables:
How to audit ?

1. Via a built-in findbugs detector find candidate classes by searching
for public classes

2. For these classes find

I. Primitive Data fields and Strings are declared as public
static, non-final

II. Object Type Data fields, Arrays and Containers are declared as
public static

III. Methods that allow access on non-public instances of (I + II)

illegalaccess.org

AP5: Conclusion and Suggestions

• Conclusion
– Non-final static final fields allow to establish covert channels between

protection domains and bypass restrictions such as the applet
sandbox .

• Suggestion [http://java.sun.com/security/seccodeguide.html]
– To the extent possible, refrain from using non-final public static

variables because there is no way to check whether the code that
changes such variables has appropriate permissions.

– In general, be careful with any mutable static states that can cause
unintended interactions between supposedly independent
subsystems.

illegalaccess.org

Antipattern 6: Insecure component reuse

• „Distributed component-structured applications can consist of software
components which are supplied by different vendors. Therefore one has
to distinguish between application owners and software component
vendors and there is a needs for corresponding protection“: [Hermann,
Krumm]

• 3rd – party components might be built with a functionality based
programmer intend, whereas the control of the confined execution models
of the JDK require a security based programmer intend.

• JDK as a component-structured middleware application uses a lot of XML
functionality from the Apache foundation. Is there enough protection
against vulnerabilities of these 3rd-party components embedded in JDK ?

illegalaccess.org

AP6: Insecure component reuse, Risk & Extent

• Risk
– The XSLT parser embedded in JDK is directly taken from a previous apache

XALAN standalone version, downloadable from http://xml.apache.org
– It is highly configurable, especially it allows to customize the functions that

may be employed during XSLT (extensible stylesheet language
transformations)

– Non-final static arrays in trusted libraries may contain objects that are
allowed to process data throughout the entire JVM

– We will show that the Antipattern insecure component reuse allows
malicious code to exploit visibilities granted to trusted code by inserting
malicious callbacks

illegalaccess.org

AP5: Non-Final Static Variables, Risk & Extend

http://classic.sunsolve.sun.com
/pub-cgi/retrieve.pl?doc=fsalert%2F57613

http://classic.sunsolve.sun.com
/pub-cgi/retrieve.pl?doc=fsalert%2F57613

illegalaccess.org

AP6: Insecure component reuse: Refactoring

public class
org.apache.xpath.compiler.FunctionTable {

private static
org.apache.xpath.compiler.FuncLoader[]
m_functions;

[...]

}

After (JDK1.42_06)
public class
org.apache.xpath.compiler.FunctionTable {

public static
org.apache.xpath.compiler.FuncLoader[]
m_functions;

[...]

}

Before (JDK1.42_05)

This refactoring is adjusting the enhanced functionality of the component to
the level needed for running the component securely in confined
execution models. Technically the refactoring cures an antipattern 4 and an
antipattern 5.
The private modifier prohibits malicious code to modify the table consisting
the built-in functions of the XSLT parser.

illegalaccess.org

AP6: Insecure component reuse: How to audit ?

1. 3rd-party components may include all types of antipatterns, from our
experience check at least for the antipatterns presented here

1. Check for Integer Overflow

2. Check for proper Serialisation, watch for side effects

3. Check for defensive use of privileged code, especially when
using privileged or “AllPermission” protection domains

4. Adjust inappropriate scope to the level needed and add security
checks to public available fields and functionality

5. Close covert channels in static non-final fields and static mutable
container types (also indirect uses)

illegalaccess.org

AP6: Conclusion and Suggestions

• Conclusion
– Even if your own code is secure, 3rd – party components may ruin

your security concept

• Suggestion
– Ask the vendor of the components you reuse , whether they check

their components with findbugs or similar tools

– Ask for a findbugs report before buying, this may increase your trust
to component

– A lot of open source projects already include such a report,
but some closed source guys still have to learn

illegalaccess.org

finally{}

Download at
www.illegalaccess.org

Detectors
presented

Send me an eMail
marc@marc-schoenefeld.comContact

