
Hierarchical Scheduling for State-based Services

Jens Bruhn, Sven Kaffille*, Guido Wirtz
Distributed and Mobile Systems Group

Otto Friedrich Universität Bamberg
Feldkirchenstrasse 21, 96052 Bamberg, GERMANY

email: {jens.bruhn|sven.kaffille|guido.wirtz}@wiai.uni-bamberg.de

Abstract—Service descriptions based on type hier-
achies and abstract service states ruling the availability
of operations permit more secure service combinations
in distributed systems design than traditional signa-
tures. The advantages of these additional information
about services can also be utilized to make service
scheduling more robust and efficient. A framework for
scheduling such services is introduced and the cen-
tral techniques used to provide a portable Java-based
scheduling framework are discussed.

Keywords

state-based modelling, distributed services, scheduling

I. Introduction

Developing distributed service structures is a complex
task and requires a well-founded methodology ruling the
design and implementation process. Service descriptions
based on hierarchical type structures and abstract service
states permit more secure service combinations in this
context than traditional interfaces based more or less
on syntactical signatures. The OCoN approach (Object
Coordination Nets), developed over the last seven years
[WGG97], combines standard OOA/OOD design tech-
niques as, for example, provided by the Unified Modeling
Language (UML) [Obj03] with concepts like interface hier-
archies to publish services, state-based resource modeling
and a complete language to describe, (partly) analyze and
test the correctness of distributed systems via simulation
on the design level. For an overview of these aspects of the
OCoN approach, refer to [GW01].
In specifying the point where service users and service
providers interact, service interfaces are in the very center
of the approach. OCoN interfaces are an extended version
of standard interfaces as used in, e.g., Java [Gos00], CORBA
[Obj02] or the UML [Obj03]. Additionally to the well-known
signature, they use so-called protocol nets (PN), i.e., state
machine–like Petri-Nets to reflect possible state changes
of service providers iff they cannot be hidden from service
users by an implementation. The states (places) of a PN
abstract from all internal states of a service provider
to those states that may be of interest for the service
user (see section II for an example). If, for example, a
specific interface operation is only available in a specific
state, it is important for the user to know about that
fact, because a call to such an operation may block the
caller until the service enters a state where the operation

becomes available again. Based on such information, a user
may decide to wait, to search for a service provider in a
more convenient state or to abandon calling the service.
Hence, state-based interfaces are a really useful concept to
describe services and to check whether a service provider
uses implicit assumptions or non-robust implementations
which may harm a calling user.
On the other hand, enhanced service descriptions are also
useful on the provider side because they offer additional
abstract knowledge about the interdependencies of ser-
vices, their effects on provider states and so on. In the
case of a service broker that offers lots of different services
this knowledge may be used to enhance scheduling deci-
sions. This paper describes a framework that provides the
mechanisms for scheduling with respect to service types,
attributes and service states. The framework is Java-based
and uses Jini technology [SM03a].
Matching of requests to available services in the scheduling
facility is done by using so-called interface templates for
service descriptions. The mechanism supports interface
hierarchies in a manner that user requests for an interface
may be served by an exactly matching or a more specific
interface still matching the request’s template. Moreover,
requests to interfaces in specific states are handled as well
as state-specific priority strategies in order to fulfill as
much requests as possible.
The rest of the paper is organized as follows. Section II
presents a simple example for a state-based service that
explains the OCoN protocol net concepts and is used
later on as a running example. Section III describes the
architecture of the scheduling system, section IV discusses
the main implementation concepts used and section V
sketches the usage of the entire system. The paper closes
with some remarks on future work.

II. Example Service Interface

As an example, we use a WarehouseSection which
represents an area of a warehouse inside a warehouse-
management-system. The section can be dynamically re-
served for a particular type of item. Figure 1 (see next
page) shows the correspondending protocol net for this
interface. There are three possible states (represented by
hexagons) for a WarehouseSection:

1) The state [empty] indicates that there are no parts
available inside the section.

Fig. 1. ResetableWareHouseSection Protocol Net

2) The state [partlyUsed] indicates that there are
parts available inside the section but that there is
still free space for additional ones.

3) In the state [full] all space of the section is occu-
pied by items.

Note that the states presented above apply to warehouse
sections with capacities greater or equal to two items of
the particular type. For the rest of this paper we assume
this to be given.
A WarehouseSection supports two service operations:
+void supply(item i) adds an item to the section. The
method is only usable if there is still space available, i.e.
in the states [empty] and [partlyUsed].
+Item consume() removes an item from the section. Note,
that the section has to be either in the state [partlyUsed]
or [full] for applying this method.
State-sensitive methods are indicated by arcs starting at
states and ending at the transition boxes, e.g., a consume–
transition is reachable from the hexagons representing
[partlyUsed] and [full]. Alternative (non-deterministic
from the users perspective) resulting states of a particular
method are visualized by transitions with alternative out-
put arcs.
Consequently, the different operations are not available
from all of the possible states. Moreover, the type of the
correspondent items represents a marking for the partic-
ular WarehouseSection which indicates that the section
service is only usable in combination with special items.
For the users of such a service – e.g. a supplier which
delivers items or a warehouse worker that fetches items –
the instance of a section is not of interest. They just seek
a section which is marked according to their needs and is
in one of the states from which the desired operation is
executable.
A ResetableWarehouseSection is an extension of a Ware-
houseSection by adding the new method
+ item[] consumeAll().

Using this method, a consumer may retrieve all available
parts from the WarehouseSection. This method is avail-
able in the states [partlyUsed] and [full] and leads
always to the state [empty].

III. Architecture

The architecture of the framework distinguishes three
different perspectives, the so called views (see figure 2).
The Service view includes all parts of the framework which
are necessary for the interaction of a service with internal
components and clients. The Client view represents the
correspondent parts of the framework for the client side.
Within the Internal view all components for the execution
of the infrastructure of the system and the interaction with
services and clients reside.
Orthogonal to the views, the framework architecture is
organized into three layers. At the bottom of the layer
hierarchy resides the Communiction layer which is respon-
sible for the delivery of messages between the different
participants of the system. It also provides a mechanism
to discover an entry point via a so called Lookup. This
layer provides interfaces which abstract from the concrete
middleware to the higher layers. This kind of encapsulation
supports the migration to other communication infrastruc-
tures without any changes on higher framework layers.
Above the Communication layer the Framework layer is
located. It contains all parts of the system which are not
directly touched by developers of services or clients. It
provides the Starter, Creator and Scheduler components
which are started within a network to take over different
administration tasks and the scheduling itself.
The starters act as platforms upon which the other com-
ponents can be dynamically started during runtime. The
creators are responsible for the administration of the
system. At any time there is only one specific creator
allowed to administrate the system. It triggers the instanti-
ation and/or deactivation of creators and schedulers upon
starters. All other creators act as replicas to keep track of
the system state and to take over administration in case
of a crash or shutdown of the main creator.
Schedulers are the core components of the framework
which deliver the scheduling facility for services and
clients. They are arranged hierarchically according to the
hierarchy of the scheduled interfaces and are – similar to
the creators – replicated. There is always one scheduler re-
sponsible for a particular interface and the correspondent
services and clients.
On top of the layer hierarchy resides the Application
layer which includes interfaces for the interaction with
the system for developers of services and clients. It mas-
querades all steps of interaction with the components of
the framework and permits to interact directly with the
desired services and clients. The communication between
components can be distinguished into three groups. The
first group includes every interaction which deals with
the discovery of other components of a running system

Fig. 2. System architecture

(dotted connections in figure 2). Every component which
wants to find other ones uses the lookup to discover the
main creator. The responsible creator keeps track of all
components of the internal view in the network and can
be asked for references to them.
Every interaction which deals directly with the schedul-
ing and usage of services is summarized in the second
group which includes the communication between services,
clients and schedulers as well as among the scheduler
hierarchy (continuous lines in figure 2). The third group
of interactions summarizes communication for internal
administration purposes (dashed lines in figure 2). It sub-
sumes the communication between creators and starters,
creators and schedulers and vice versa.

IV. Concepts

This section discusses the concepts used to organize and
implement the scheduling framework.

Initialization and System Administration
The first components of a scheduling system which are
initialized are the lookup and at least one starter upon
which the main creator is started. If further starters are
created they use the lookup to find the main creator
with which they register. The main creator keeps track
of all starters in the system and uses them to initiate the
instantiation of new creators and schedulers. Schedulers
for new interfaces and the correspondent hierarchy are cre-
ated on requests of services only (see below). For creators
and schedulers there exists a lower bound which indicates
how many replications of each creator and scheduler are

desired within the system. In regular intervals, the state
of the system is checked by the responsible creator in
five steps. First the creator analyzes if there is another
responsible creator available in the system. If this is the
case the detecting creator decides, based on the identifica-
tion numbers, which creator has to be deactivated. The
shutdown of this creator is then initiated immediately.
The situation of two responsible creators coexisting in a
system is only possible in exceptional cases e.g. when two
system partitions are brought together. In a second step
the creator connects to all starters, creators and schedulers
to check if they are still available and no crashes have
occured since the previous check. If a component is not
available the reference is removed from the creator. If the
number of still available creators falls below the lower
bound, the creator selects a number of starters upon which
new replica should be instantiated. Each starter which has
not reached it’s limit of componenents to start and which
has not yet started a creator is a possible candidate for
the instantiation. Upon these candidates new creators are
started up to an upper bound of replicas – which represents
the maximal desired number of creators in the system – or
the point when there are no candidates left. The third step
includes the same procedure for the schedulers. During
this proceeding it is ensured that there does exist only
one scheduler for a particular interface upon each starter.
The fourth step deals with the possibility of two or more
schedulers being responsible for a particular interface. If
such a situation is identified, all except one responsible
scheduler are deactivated. Similar to the possible existence
of two responsible creators this situation may only occur

in exceptional cases. The last step includes the search for
and the deactivation of idle schedulers. A scheduler is idle
if there are no services of lower schedulers associated with
it any more. In this situation the scheduler is not able to
assign client requests to services and consequently is of no
use for the system. First, candidates for deactivation are
identified and, after a certain amount of time to give them
a second chance, rechecked. If they are still ilde, they are
– including all replica – shut down.
Informations about not yet available or new components
are replicated to all creators at once. All replicated cre-
ators try to reach the main creator at regular intervals.
If they cannot reach it they elect a new leader among
themselves. This proceeding guarantees a high degree of
reliability and the possibility of loss of information is
minimized.
Moreover, possible conflicts regarding two or more re-
sponsible creators and/or schedulers coexisting in one
system are solved and no intervention by an administrator
is necessary. There are only three situations conceivable
when this is required:

• If all lookup facilities in the system have crashed, at
least one new instance has to be started.

• If all creators (responsible and replicas) have crashed,
a new creator must be started.

• If there is no capacity left upon starters and new
schedulers should be instantiated, an administrator
has to extend the capacities of the existing starters
or launch new starters into the system.

This leads to a high degree of fault tolerance in
combination with a minimized need for manual
administration during runtime of a system.

Basic State-based Scheduling
Protocol nets are mapped to (Java) interfaces that are
implemented by services. All services implementing the
same protocol net are registered with the same scheduler.
In our warehouse example all warehouse sections (in-
stances of type WarehouseSection) register with one and
the same scheduler. When a warehouse section (service)
starts up it gets – via the lookup – a reference to the
main creator from which it requests a reference to the
scheduler responsible for the WarehouseSection interface
the service implements. If no such scheduler exists the
creator starts one at a node in the network and a reference
to this newly created scheduler is given to the service.
Schedulers for interfaces (if any) that are super types of the
interface for that the scheduler is currently requested are
also created if not yet existing and the scheduler hierarchy
is built up. Schedulers for sub interfaces are created later
if services for sub interfaces arrive and are also attached to
the scheduler hierarchy. By this proceeding schedulers are
instantiated on demand and schedulers for new interfaces
can be integrated easily into runnning systems. The service
registers with the scheduler and from that time the service

has a so called service proxy associated with it to enable
the scheduler to communicate with the service and the
other way round. A client that wants to use a Warehous-
eSection searches for a creator to obtain a reference to the
scheduler responsible for the interface and – if available –
registers with that scheduler. Different to the proceeding
for services no new instances of schedulers are created
upon requests of clients. This is not done, because only
if services are available for a particular interface, client
requests can possibly be fulfilled. If a service exists this
service will initate the instantiation of a correspondent
scheduler. If a scheduler exists, also the client is associated
with a so called client proxy that is used by the client to
request a service and by the scheduler to notify the client
when its requests can be fulfilled. In order to be able to
use a service the client offers a request to the scheduler.
There are two possibilities for a client to request a service:

• request a particular method from a service type. In
our example perhaps a client wants to get an item
from a WarehouseSection by the method consume.

• or request a service in a particular state. In our ex-
ample the client may ask for the state [partlyUsed]
to consume an item.

If one instance of WarehouseSection is in the state that
matches the client’s request the service is marked as busy.
Then the client is notified via its client proxy that a service
is available. The client is assigned to the service instance
by the scheduler via its service proxy that creates a ticket
which is given to the client and to the service. The client
gets a reference to the service and the ticket so that he can
invoke the desired consume method. If it has requested the
service in a particular state, all methods permitted in that
state may be invoked and after that all methods permitted
from the service’s resulting state can also be executed by
the client and so on. Consequently by requesting a service
in a particular state (e.g. in our example [partlyUsed])
it is possible to make subsequent invocations according
to the service’s protocol net on that instance depending
on the resulting state. This requires the client to have
knowledge about the service’s protocol net and the client
has to test for the service’s state before it invokes the next
method. Note that our framework prevents invocations to
methods that are not permitted to be executed from a
service’s current state by throwing an exception to the
client that tries to make an illegal invocation.
The ticket is necessary to prevent clients from invoking
methods of services without requesting them via the ser-
vices’ scheduler. To prevent the service from starving if
the client does not use the ticket (e.g. it crashes) the
service waits for a certain time. After that time he notifies
its service proxy and the request is given back to the
scheduler and put back into the scheduler’s queue. If this
happens more than once to a request, the request is deleted
from the queue and the client is notified about it if still
alive. In the case (as in our example) that a method

has been requested and the method has been executed
the proceeding is as follows. After the client has finished
its invocation of consume the service involved invalidates
the ticket, propagates its new state (maybe [empty] or
[partlyUsed]) to the scheduler via its service proxy and
asks for a new request to fulfill. The latter can be omitted
if the service desires to stay idle or wants to shut down. If a
service has been requested in a particular state there is also
a certain time between subsequent method invocations
during that a client has to make its next invocation. After
this time has elapsed once, the service again asks for a new
request to fulfill. This also can be omitted if the service
desires to stay idle or wants to shut down.
The requests of clients are hold in a queue at the scheduler
and the first request that can be fulfilled by a service
instance is assigned to that service. As the scheduler
is responsible for all services of a particular type (here
WarehouseSection), a client does not request a specific
instance of a service but only the service type.
To facilitate requests for a service with more specific
properties, services are associated with so called service
templates. A template describes a service’s properties
and is held at the scheduler within the service proxy. If
a service changes its template this has to be propagated
to the service proxy immediately. Clients can request
services by specifying a template describing the desired
properties of the requested service. These templates are
compared to each other by the scheduler to assign a
service to a client. In our example, a WarehouseSection’s
template may contain the type of the stored items in
order to make it possible for clients to consume or supply
an item of a specific type. If a client does not specify a
template all services of a requested type can be assigned
to the client if in a matching state. If there is no service
available matching the template of the client’s request
the client is notified. This can happen immediately after
the request has been made or if the client’s request
has been in the scheduler’s queue for a while and all
services that could have fulfilled the request as of their
templates have been shutdown. The scheduler is able
to make simple computations to detect clients’ requests
that can successively be executed by a service instance
and assign such requests directly to this service instance.
The service and client proxies are responsible for the
detection of service/client crashes. If a proxy detects that
its associated service/client is not reachable it logs off
from the scheduler to enable the scheduler to clean up.

Interface and Scheduler Hierarchies
Often, services are organized in a inheritance hierarchy
between some interfaces (resp. protocol nets). So the most
specific interfaces are also of the type of their direct and
indirect super types. For this reason a service may also
fulfill requests made for its direct and indirect super types.
Therefore schedulers for services that implement interfaces
of a particular hierarchy are organized hierarchically, too.

The hierarchy of schedulers is maintained by the creator.
To implement this hierarchy, the scheduler of an interface
at a lower level is registered like a service with the
scheduler of the direct super type of its interface. This
makes it transparent to the parent scheduler with regard
to the assignment of requests if there is any lower
scheduler. The lower scheduler can ask for requests at its
parent scheduler, e.g., when its services are idle and/or at
regular intervals. A scheduler is therefore also associated
with a proxy at a parent scheduler. This proxy acts
(from the view of the parent scheduler) like a service’s
proxy. Only the process of registration of a scheduler
with a parent scheduler is different from the registration
of services. Currently the framework only supports the
registration of a scheduler with one parent scheduler.
Therefore currently no multiple inheritance for protocol
nets is supported.
In our example, a ResetableWarehousSection offering
an additional consumeAll operation may also fulfill
requests from clients that are not aware of this feature.
If there is no service of type WarehouseSection that
is able to fulfill the request of a client to supply an
item, this request can be fulfilled by an implementation
of the interface ResetableWarehouseSection if the
template the client desires matches the template of any
ResetableWarehouseSection.

Scheduler Replication
As the crash of a scheduler would cause the failure of the
communication between services and clients, the sched-
ulers are replicated. Replicas are instantiated by the cre-
ator and register with the currently responsible scheduler.
In order to provide information for the replicas to identify
the proxies of the clients and services registered, proxies
have unique identifiers. The replicas are notified of the
following events, and the data in brackets are transmitted
to them:

1) Registration of a client (client’s proxy identifier,
reference to client) to enable a scheduler’s replica
to contact the client in the case it has to take over
control.

2) Registration of a service (service’s proxy identifier,
reference to service), to enable a scheduler’s replica
to contact the service in the case it has to take over
control.

3) Arrival, deletion and fulfillment of a client’s request
(request) to preserve the order of requests clients
have made.

More information is not necessary (e.g., services’ tem-
plates) as they are collected from the involved services and
clients at the time a replica of a scheduler becomes the re-
sponsible scheduler. If one component in the system (e.g.,
a service) recognizes that the responsible scheduler for an
interface has crashed it tries to obtain a new reference
from the creator. The creator declares a new responsible

scheduler and gives the reference to the component that
has detected the crash. That component announces the
identifier of its proxy to the new responsible scheduler to
reestablish the association to its proxy. The new respon-
sible scheduler contacts the clients and services involved
via their proxies so that they can update their references
to the responsible scheduler and the scheduler can match
its information about its state with the information of the
clients and services. For example the scheduler asks every
client it knows for its requests and if a client’s information
about requests differs from the scheduler’s the scheduler
adapts the new information. In this way the scheduler
can come back to a consistent state. If in the meantime
a service or client recognizes the crash, it acts like the
component that first detected the crash but is blocked
until the new responsible scheduler has taken over control.
After that it gets a reference to the new responsible sched-
uler. If the scheduler has reestablished all connections to
the services and clients it continues work. Reestablishing
the connections to clients and services comprises removal
from the scheduler of clients’ and services’ proxies and
clients’ requests to which the corresponding connections
could not be reestablished. This proceeding ensures that
no information about a scheduler’s state is lost or a
scheduler has information that is no longer valid. If, for
example, a replica that becomes responsible did not receive
information about a service that has connected with the
scheduler, that was responsible before, these information
is not lost, as the service itself reregisters with the sched-
uler at the time it detects that the formerly known one
has crashed. A scheduler’s connections in a scheduler
hierarchy in case of a crash are reestablished with help
of the creator. For connections to lower schedulers the
corresponding proxies are responsible if any registered. A
scheduler’s proxy maintains the connection to its scheduler
and, if it recognizes that the connection is broken down,
reestablishes the connection with help of the creator by
requesting the scheduler like a client does. If it gets no
new reference to its scheduler the proxy logs off from
the scheduler it is registered at. The communication layer
component of a scheduler is responsible for connecting to
a parent scheduler. If it recognizes that the connection is
broken, it requests a reference to its parent scheduler from
the creator like a service does.

V. Usage

The architecture and concepts described in this
paper have been implemented in a Java-based (version
1.3+)[Gos00] framework by applying the Jini network
technology (version 2.0)[SM03a][SM03b]. Jini can be
replaced by any other middleware by replacing parts of
the framework’s communication layer. These parts are
separated from the communication layer’s middleware
independent components. The communication layer’s
middleware independent components are for example
responsible for replication of schedulers.

Replication of schedulers and other framework internal
components are hidden from the clients and services as
the connections to these components are managed by
the framework’s communication layer. If, for example, a
scheduler crashes the communication layer’s middleware
independent components detect that and all calls to the
scheduler (from clients or schedulers) are transparently
blocked until a new scheduler has taken over control.
Clients and services do not recognize such a situation
except that calls to the scheduler may take longer while
the framework recovers from the crash.
The complete framework is published under the GNU
General Public License and can be obtained from [Dis04].

Service implementation
To implement a service a class named OCoNService has
to be extended. By extending this class the connection
to the framework is made available when the service is
created. In order to deploy a service, a definition of the
protocol net the service implements must be provided
in an XML file. This file is read by the service when it
is created. The service automatically registers with the
scheduler responsible for its type. The class OCoNService
also provides methods to manipulate the service’s
template. To provide the desired functionality the class
extending OCoNService has to implement the interface
that implements the protocol net for the service. For
our example possible interfaces are WarehouseSection
or ResetableWarehouseSection. These interfaces must
extend the framework interface ServiceInterface.
The XML file mentioned above provides the connection
between the service’s state and its methods. This
information is used by the framework to ensure that no
invocation to a service’s method is made while the service
is not in a state required for execution of that method.
The implementation of a service in every method has
to set the state the service is in after execution of the
method to enable the framework to correctly assign clients.

Client implementation
Clients can connect to the framework by instantiating the
class RequestManager. From that class clients can obtain
references to services (proxies) on which services’ methods
can be invoked as if the services were local objects. The
proxies transparently make requests for the corresponding
service type, so that a client does not have to care about
making requests. Requests can be associated with a
template so that the invocations made on a proxy are
only made to services that match the given template. The
desired template has to be given to the RequestManager
instance at the time a reference to a service is requested
from it. It simply calls a method on a local object. The
proxies can be synchronous or asynchronous. Synchronous
Proxies block a client until the request is fulfilled or
it becomes impossible to fulfill (e. g. the last service
matching the template of the client’s request shuts

down). Asynchronous proxies return immediately from
the called method and the result of the invocation can
later be obtained from the RequestManager. Clients
additionaly must implement an interface that provides a
single method that is used by a client’s RequestManager
instance to notify it that the connection to the framework
has broken down.

Running the system
In order to use the framework at least one Jini lookup
service has to be running and reachable. It is used by all
components of the framework to find the initial reference
to the responsible creator. To prepare the infrastructure
for the usage by services and clients at least one starter and
one creator have to be instantiated. A starter is created
by instantiation of the class OCoNStarterCompute. During
startup a reference to a configuration file must be handed
to the new starter. In a second step the starter must be
instructed to instantiate a new creator. This will declare it-
self as leader after a while. Afterwards, the infrastructure is
managed by the leader up to the point of it’s deactivation
or failure. For replication and load balancing purposes,
additional starters may be instantiated which will find
the responsible creator and register with it to act as
platform for new instances of creators and/or schedulers.
New starters can be added at any time because they will
continuously retry to find the responsible creator if they
have no reference to it or the referenced creator is not
available anymore.

VI. Conclusion and future work

With the framework presented, the basic functionality
for the scheduling of state-based services within a network
is provided and may be used by extending the pre-defined
Java interface and class plugins of the framework.
Due to the abstraction from service instances through the
schedulers and the concept of scheduler hierarchy load
balancing can be achieved easily. The abstraction with
help of the scheduler hierarchy makes it also possible that
a request for a service on a higher hierarchy level can
transparently be served even if no service of the requested
type, but subtypes of this service are available. Clients
can only obtain references to services that are in a correct
state regarding their requests. With these references they
can only invoke those methods they have requested. So
there is less possibility for a service to be crashed by a
faulty use of a client. Even in the case a client requests a
service in a particular state and by that can nearly freely
access the service by subsequent method invocations our
framework ensures that only invocations permitted in a

service’s current state can be performed.
If a client only requests methods it is not required that
the client has knowledge about the service’s protocol net.

Future development of the system is planned w.r.t two
directions. From the user’s point of view, adapting
the framework through a more flexible configuration is
desirable. The system will include the ability to exchange
the scheduling algorithm to give developers the freedom
to adjust the behavior of the system according to their
particular needs. It is also considered to provide a
facility for on-demand-creation of service instances upon
the starters which are not a priori bound to special
environments and to keep the state of a created service.
This permits the automated migration of services within
the network, leads to more flexible load balancing schemes
and opens the possibility to deal with shutdown of nodes
or to migrate from insecure nodes because of failures
within the network. The other main direction deals with
the monitoring of the system-state and it’s manipulation.
For administrators of a system there will be the possiblity
to gain information about the allocation of internal
components as well as of the workload of particular
nodes. It will also be possible to initiate the creation and
deactivation of components. This will lead to a much
better on-the-fly control of the running system.

References

[Dis04] Distributed and Mobile Systems Group, University
of Bamberg: OCoN-Framework version 1.0.
http://www.lspi.wiai.uni-bamberg.de/dmsg/software/,
2004.

[Gos00] Gosling, James et al.: The Java Language Specification.
http://java.sun.com/docs/books/jls/second edition/html/
j.title.doc.html, 2000.

[GW01] Giese, Holger and Guido Wirtz: The OCoN Approach
for Object-Oriented Distributed Software Systems Model-
ing. Computer Systems Science & Engineering, 16(3):157–
172, May 2001.

[Obj02] Object Management Group: OMG CORBA 3.0, Jan-
uary 2002. OMG doc formal/02-12-02.

[Obj03] Object Management Group: OMG UML 1.5, January
2003. OMG doc formal/2003-03-01.

[SM03a] Sun Microsystems, Inc.: Jini Architecture Specification.
http://wwws.sun.com/software/jini/specs/jini2 0.pdf,
2003.

[SM03b] Sun Microsystems, Inc.: Jini(TM) Technology
Starter Kit. http://wwws.sun.com/software/jini/specs
/newapi2 0.pdf, 2003.

[WGG97] Wirtz, Guido, Jörg Graf and Holger Giese: Ruling
the Behavior of Distributed Software Components. In
Arabnia, H. R. (editor): Proc. Int. Conf. on Parallel
and Distributed Processing Techniques and Applications
(PDPTA’97), Las Vegas, Nevada, July 1997.

