Distributed Storage of Tor Hidden Service Descriptors

Karsten Loesing

University of Bamberg, Germany
Project objectives

- **3 directory nodes** store and serve all hidden service descriptors
- Distribute among large subset of all onion routers (≈ 1000)
Improve security

- Directories learn about service activity and usage
 - Store descriptors under frequently and unpredictably changing IDs
 - PhD thesis: what if services represented people, not machines?
- Directories learn about location of introduction points
 - Encrypt introduction points for clients using cookie (remaining descriptor content stays unencrypted for verification purpose)

Rendezvous Service Descriptor (V2?)

| onion-address = h(public-key) + cookie |
| descriptor-id = h(h(public-key) + h(date + cookie)) |
| descriptor-content = { |
 | public-key, |
 | h(date + cookie), |
 | timestamp, |
 | { introduction-points } encrypted with cookie |
| } signed with private-key |
Current load:
- Average of 1000 descriptors at a time
- Average of 360 publish and 30 fetch requests per 15 minutes
- Assumed to increase when hidden-service performance gets better

Apply DHT-like structure
- Equally distribute load from 3 directory nodes to \(\approx 1000 \) onion routers
- Routing table based on existing Tor router list (avoids maintenance messages)

Use replication
- Limit server-initiated replication to fixed number, e.g. 4, independent from possibly growing number of directory nodes
- Replicate on consecutive nodes to resist node failures, and
- Replicate on non-consecutive nodes to avoid attacks, e.g. black hole
Distributed Storage of Tor Hidden Service Descriptors

Questions...