

Please cite as follows

Kiefer, P., Matyas, S. (2005). The Geogames Tool: Balancing spatio-temporal design parameters in
location-based games, In: Mehdi, Q., Gough, N. (eds.): Proceedings of the 7th International
Conference on Computer Games: Artificial Intelligence, Animation, Mobile, Educational and Serious
Games (CGAMES 2005), Nov.28-30, 2005, Angoulême, France, Univ. of Wolverhampton, School of
Comp. and Inf. Techn., pp. 216-222

THE GEOGAMES TOOL: BALANCING SPATIO-TEMPORAL DESIGN
PARAMETERS IN LOCATION-BASED GAMES

Peter Kiefer and Sebastian Matyas

 Laboratory for Semantic Information Processing
Otto-Friedrich-University Bamberg

96045 Bamberg, Germany
{peter.kiefer, sebastian.matyas}@wiai.uni-bamberg.de

KEYWORDS
Mobile gaming, game design tool, game balancing, spatio-
temporal MinMax algorithm, location-based games

ABSTRACT

Taking advantage of the full potential of mobile gaming,
location-based games let the player totally immerge in the
game experience through physical movement of the whole
body (locomotion) in an outdoor environment. Although this
offers a variety of new possibilities to the game designer, the
task of balancing a location-based game to be fair and
challenging is nearly unsolvable with traditional methods
from video game design: The real world setting neglects play
testing and leaves only “offline” methods from game theory
as a possible solution. The real-time aspect of concurrent
moves and the spatial aspect of a real-world game board pose
new problems for a game theoretical analysis. We propose a
spatio-temporal MinMax algorithm as a solution for these
problems. Our algorithm is embedded in a tool for balancing
the spatio-temporal parameterization of a certain subclass of
location-based games called “geogames”, allowing a game
designer to evaluate value ranges for a challenging location-
based game.

INTRODUCTION

Although mobile gaming promises to the game designer a
whole new world to play with (Aarseth, 2003), most of
today’s games for mobile devices are still mainly adoptions
of single-player computer games. These games, even though
restricted in computational power, graphics and I/O, are good
for killing one’s time while waiting for the train or standing
in line. But while these standard mobile games disregard
main features of mobility, location-based games make use of
localization technology like GPS and build the player’s
current position and motion path into the game. Moving and
acting in an outdoor environment involves the player through
physical movement of the whole body (locomotion) and lets
him or her totally immerge into the gaming experience;
prominent examples are Can You See Me Now in Flintham et
al. (2003) or Botfighters in Sotamaa (2002).

One major problem in the design of location-based games
consists in balancing the various parameters influencing the
course of the game. In general, a balanced game design
involves two aspects: On the one hand, a game should be fair
and favor none of the players by default. On the other hand, a
fair game that always ends in draw is fair but boring, so the
second demand is to make the game challenging. Both of
these aspects will be addressed in our paper.

Traditionally, a balanced design of video games is achieved
through repeatedly play testing the game with test users in
parallel runs until no more unfair conditions are detected.
Obviously, this process is not practicable for location-based
games because parallel test runs in the real world turn out to
be difficult (or even impossible) given the size of the game
area. For most location-based games the game area is not
smaller than the area of a town; see CityPoker in Kiefer et al.
(2005) for an example. To solve this problem, we suggest
game balancing to be addressed “offline” before playing on
the streets. For classic board games, game theory provides
the right tools to analyze the entire game state for fairness.
However, location-based games pose two problems for a
game theoretical analysis. First, algorithms like the
widespread MinMax algorithm (see Russell and Norvig,
2003) are well suited for turn-based games but are not able to
handle concurrent move decisions in real-time games.
Second, game theory neglects the spatial dimensions of the
game board, because in board-games every possible move
costs the same amount of time and physical effort. In
location-based games, however, a player should deliberate
thoroughly whether to invest the time and effort of moving to
a very far location. Accordingly, a game theoretical analysis
for location-based games should integrate the spatial
dimension of the game board.

The contribution of this paper consists in a tool for balancing
a class of location-based games, called geogames, first
introduced in Schlieder et al. (2005), which enables a game
designer to balance his game “offline”. This tool uses an
extended MinMax algorithm to handle the spatio-temporal
parameters involved in the design of geogames. To illustrate
the design process, we use GeoTicTacToe, also introduced in
Schlieder et al. (2005), as our running example. We will

evaluate two scenarios and the corresponding design
parameter values for challenging game design settings.

The structure of this paper is as follows: In section 2 we
summarize Schlieder et al. (2005) with the definition of
geogames and use the example of GeoTicTacToe to explain
the problems arising when creating location-based games
from classic board-games. Section 3 introduces the spatio-
temporal MinMax algorithm and gives a description of the
geogame tool architecture. With this tool, two scenarios of
GeoTicTacToe are analyzed in section 4 to illustrate how a
game designer can balance the spatio-temporal parameters of
a geogame. In the last section we conclude with a discussion
of related work and an outlook on future research.
GEOGAMES FRAMEWORK

Designing fair and challenging location-based games is not a
trivial task. In Schlieder et al. (2005) a location-based game
is considered challenging, if it equally demands the players’
acting and reasoning skills to win the game. Consequently,
neither a pure chase game nor a live version of chess would
fulfill this definition.

A transition of classic board games into location-based
games, named spatialization, provides a rich pool of
challenging games, if one major problem is being solved. In
the line of Nicklas et al. (2001), “lifting turn-based
restrictions can make a game unfair“, consider a location-
based variant of TicTacToe displayed in Figure 1. Like in the
classic board game two players, X and O, are trying to place
three marks, X or O, in a row, a column or one of the two
diagonals to win the game. Note that in the location-based
variant, GeoTicTacToe, the game board is split on separate
geographic locations not necessarily maintaining the
appearance of the classic game board, see Figure 5.
Furthermore, we determine for Figure 1 that player X moves
significantly faster than player O.

Without turn-based restrictions this leads to a simple winning
strategy for player X and lets the game deteriorate to a non-
challenging race: Player X can simply run from location 1
over 4 to 7 without player O having any chance to hinder
him from winning the game.

A surprisingly simple solution is proposed. To design a
challenging geogame a game designer must include a
synchronization time interval (syncTime) in his rule set.
Players now must wait at a location until the syncTime is
over before they can move again. This syncTime parameter
must be chosen individually for each geogame to keep it
challenging. SyncTime does not necessarily have to be
implemented directly as idle wait time, but can also be
integrated indirectly through other game elements. Think, for
example, of solving mini games before moving on or
searching for elements hidden on the real-world game board,
e.g. for playing cards in CityPoker (Kiefer et al., 2005).

Figure 1: Spatial version of TicTacToe

Geogames are a special class of location-based games with
common game elements, defined in the following way: A
fixed number of players move between a fixed number of
locations taking up and putting down resources when they
reach a new location. A resource can be anything that the
players can pick up and dispose at another location,
including virtual resources, like the X and O-marks in
GeoTicTacToe. However, resources cannot move around
without any involvement of a player, which is one basic
constraint for geogames (spatial coherence). The state of a
game is defined by the players’ locations and the distribution
of resources over players and locations. Actions describe the
transitions between game states. A second constraint
(temporal coherence) asserts that performing an action needs
time at least as long as the synchronization interval. For a
formal definition see Schlieder et al. (2005).

From the spatial and temporal coherence two design
parameters for geogames can be derived. Spatial coherence
assures that the players actually move through the game area.
As shown in the example of Figure 1, the difference in
physical ability, measurable as speed, can alter the challenge
of the game dramatically. This phenomenon can be observed
on town or football sized game boards as well as backyard
sized ones and is not a problem of different arrangements of
locations and starting points. Therefore the players’ speed
will be one important parameter for a game designer. We
measure the players’ speed by the time they need to move
from one location to another. Temporal coherence includes
the syncTime parameter, which addresses the real-time
aspect of geogames. It is the second important design
parameter for a game designer, as we already have seen in
the example of Figure 1. For different constellations of these
two parameters a location-based game is considered to fall
into one of three categories: either a race game, in which
being faster is the only strategy for winning, a board-game
with strictly alternating move behavior and exclusive
emphasis on reasoning, or a challenging geogame, where
winning demands both, a good strategy and good physical
abilities. Parameter values defining a challenging geogame
are of most interest for a game designer. An example of a
challenging game play style of GeoTicTacToe will be
demonstrated at the end of section 4.

GEOGAMES TOOL

The geogames tool helps the game designer in tuning his
location-based game to a challenging location-based game.
Any location-based game that is an instance of the geogames
class can be analyzed with the following steps: 1) Map the
location-based game to the geogames framework. 2)
Determine the main parameters that are decisive for the
excitement of the game (like syncTime). 3) Explore the
parameter space by running the geogames tool for different
parameter combinations and finally: 4) Choose a parameter
combination that is likely to make up a challenging game.

In the remainder of this section we show how to map a
location-based game to the geogames framework, explain the
spatio-temporal MinMax algorithm, which is the central
component of the geogames tool, and shortly describe the
architecture of the geogames tool.

Mapping of a location-based game to the geogames
framework

In the following we illustrate the ten steps necessary for
mapping a location-based game to the geogames framework
with our example GeoTicTacToe and the game board
displayed in Figure 1.

a) Define the players P. In our case: P = {Px, Po} In
general the geogames framework and tool allow more
than two players.

b) Define the locations L. For GeoTicTacToe we have 9
locations representing the game board and the two
starting locations for the players: L = {L1… L9, LX,
LO}.

c) Define the resources R. Each mark that a player can
set in GeoTicTacToe is one resource. At least after
his sixth mark a player will have three in a row,
column or diagonal, so each player may set a
maximum of six marks: R = {X1,…, X6, O1,…, O6}.

d) Define the movingtimes: L × L × P IR+, i.e. the
time players need for moving from one location to
another. Note that this may vary for each player to
model fast and slow players. Furthermore, this does
neither need to be proportional to the Euclidean
distances, nor symmetrical (e.g. moving up or down a
hill). For our example of GeoTicTacToe, we assume
symmetrical movingtimes and the Euclidean
distances from Figure 1 as time units, e.g.
movingtimes(L1, L2, PX) = 2.

e) Define the starting state, i.e. the starting resource
distribution and the starting location for each player:
location(Px) = LX, location(Po) = LO,
resource_pos(Xi) = PX , resource_pos(Oi) = Po

f) Define the final condition. If a game state is reached
that fulfills the final condition, the game ends. In our
case: All nine locations L1 - L9 contain one resource
or three resources of the same type (X/O) are in one
column, row or diagonal.

g) Define the state evaluation: Each player must have
an individual evaluation function for comparing the
final states. For GeoTicTacToe each player prefers a

winning situation to a draw and a draw to a loss.
Furthermore, players strive to win preferably early
(with setting only few marks) and to lose preferably
late. We call the number of marks that has been set
when the game ends depth of the game. The final
state of Figure 1, for example, has a depth of 5.
Obviously, depth may vary between 3 (one player
wins before the other could set a mark) and 9 (all
locations have been marked).

h) Define the possible change actions, i.e. how players
may drop and take resources at the locations. In our
case marks may not be removed, so that players may
never pick up any resources. They are allowed to
drop exactly one resource at any location Li
(i∈{1..9}), but only if that location is empty. LX and
LO are only starting locations where no actions are
allowed.

The two main parameters of the game we will vary with the
geogames tool are:

a) The above-mentioned syncTime, i.e. the time a player
is forced to wait after changing resources. For small
syncTime we expect a non-challenging race style of
game, for high syncTime the game should deteriorate
into a non-challenging board-game style, according
to the definition of challenge for geogames in section
2.

b) The personal speed-factor describing the difference
in speed between the players. In our case we model
Po as a slower player by assuming movingtimes(ly, lz,
Po) to be movingtimes(ly, lz, PX) multiplied by speed-
factor (for any locations ly and lz).

Note that syncTime is given by the rules and therefore the
parameter with which the game designer can influence the
game flow. On the other hand, speed-factor is not induced by
the rules but underlies the estimations of the game designer,
e.g. “the difference of speed between the players in my game
will not be higher than p%”. Certainly, any estimation on
speed-factor is some kind of simplification, because the
difference in speed is usually not constant for the entire
game. Speed-factor rather expresses a medium difference in
speed. The geogames tool will help in finding rules like “if
one player is p% slower than the other player, a syncTime of
s should be chosen to keep the game challenging” or “for a
given syncTime s, a player needs to be at least p% faster to
win the game”. Given these rule sets, the game designer can
determine a region in the spatio-temporal parameter space
where his geogame will probably remain challenging for a
predefined syncTime, although he is lacking knowledge
about the exact speed-factors.

Spatio-temporal MinMax algorithm

The central component of our tool is a variant of the standard
MinMax algorithm. Standard MinMax (see Russell and
Norvig 2003) explores the game state of a deterministic full-
information two-person game with two players MIN and
MAX who always move alternately. As mentioned above,
avoiding strict alternation distinguishes a challenging
geogame from a board-game style location-based game.
More precisely, the spatio-temporal parameterization of a

geogame decides about the alternation behavior, leading to
the necessity to integrate spatio-temporal parameters into
standard MinMax, an algorithm we call spatio-temporal
MinMax.

This algorithm builds on the following assumptions: Players
always take the shortest path between locations. They do not
change destination before arriving at a location and do not
wait longer than syncTime at any location. The players
always have full-information on the current game state and
move optimal in any case. Consequently, players in a
geogame behave in the following way (Figure 2). They first
decide which location to move next (several possibilities),
then they move towards that location and arrive after some
time. Now they select which resources to change, before they
finally have to wait syncTime and afterwards move on to the
next location.

With these assumptions we implement a MinMax analysis
like illustrated in Figure 3. Each node in the tree is one state
of the game and each state is described by the distribution of
resources and the players’ position. A position is a 3-tuple
consisting of the player’s state (waiting or moving), the
location where he is waiting (or in state moving the location
he is heading for) and the time units until end of waiting (or
until arrival respectively). The player to decide about the
next action does not alternate like in standard MinMax, but is
determined by the time units, which introduces the temporal
aspect into the algorithm. The following rules are applied: If
no player has time units 0 in his position (everybody is
waiting or moving), subtract from all positions the minimum
time units, so that at least one player now has time units 0. If
exactly one player has time units 0, he is the one to decide. If
more than one player has time units 0 and they are in state
moving and heading for the same location – in other words:
if more than one player arrives at the same location at the
same time – a dice node is inserted (randomized MinMax
algorithm, see Kovarsky and Buro (2005)). If more than one
player has time units 0, but they are at different locations or
not all in state moving, it does not matter who will decide
first, so one is selected by chance.

Figure 2: Behavior sequence of players in geogames

Px

Po

wait, L , 0x

wait, L , 0O

decide Px

Px

Po

move, L , 41

wait, L , 0O

Px

Po

move, L , 14.429

wait, L , 0O

decide PO

Px

Po

move, L , 41

move, L , 9.835

decide PO

Px

Po

move, L , 01

move, L , 5.835

decide Px

Px

Po

wait, L , 21

move, L , 5.835

Px

Po

wait, L , 01

move, L , 3.835

decide Px

synctime=2

speed-factor=1.1

t = 0

t = 4

t = 6

Figure 3: Example game state tree

Our use case holds some simplifying properties: The speed-
factor of 1.1 with the Euclidean distances prevents two
players from arriving at the same location at the same time,
so we do not have any dice nodes, in the pictured example of
Figure 3. Furthermore, when players change resources they
do not have more than one possibility, namely drop a
resource (see Figure 3 at t=4), which reduces the branching
factor. Bottom-up evaluation with depth-first search of
standard MinMax is applied, whereas the evaluation function
takes the depth of the game into account (see section 3.1).
The small state space of TicTacToe allows us to prune
without a heuristics. Nevertheless, for games with more
complex state space, the sophisticated pruning strategies that
have already been developed for board games should be
applied.

Architecture

The geogame tool has a flexible architecture with the layers
illustrated in Figure 4.

Figure 4: Architecture of the geogame tool

(Heuristic) search mechanism: This layer is a generalization
of MinMax and can be used for all kinds of MinMax
problems. Like mentioned above, our implementation
includes the possibility of dice nodes to handle concurrent
resource change decisions. This problem does not bother us
in the use case we analyzed for this paper, so we do not go
any further into the problem of concurrent resource change
decisions here.

Geogames engine: This layer defines all concepts of the
geogame framework and combines them to data structures
that are taken as input for the underlying search mechanism
layer.

Concrete geogame: In this layer, we map the rules of a
concrete game to the geogame framework. Most of the
parameters of geogames are fixed, for example the number
of the locations L.

Parameterized concrete geogame: Finally, we are able to
define different variants of a concrete geogame like different
coordinates for the locations in GeoTicTacToe or different
starting card distributions for CityPoker.

RESULTS

The results we present in this section will clarify the benefit
of balancing a game with the geogames tool. Figure 5
displays two GeoTicTacToe game boards with different
geographic footprints.

Figure 5: Two spatial variants of GeoTicTacToe

Game board 1 (left) is similar to that of Figure 1 with a
standard TicTacToe board and two different starting
locations. Game board 2 (right) is a distorted version of the
standard board with the four locations 2, 4, 6 and 8 dragged
away from the center and a common starting location for
players X and O. We analyzed both game boards with a
parameterization of syncTime ranging from 0 to 12 in steps
of 0.5 and speed-factor between 1.01 and 1.20 in steps of
0.01 and obtained for each test run three results: First of all
the outcome of the game, X-wins or draw; player O was
never able to win because of his disadvantage in speed.
Second one optimal path through the MinMax-tree, i.e. the
course of the game if both players act optimally. Usually,
more than one optimal path exists. Third, the number of
marks that is set if both act optimally, i.e. the depth of the
game on the optimal path.

The depth of the game for game board 1 is shown in Figure 6
for all possible parameter settings. We detect three possible
depths: At depth 5 we have a course of the game like that of
Figure 1, so we call this area race game. Even though a
depth of 9 could either be a draw or a win for X, in our
scenarios a depth of 9 was always associated with a draw, so
we call the right area board-game, where the players move
strictly alternately. The challenging geogame we strive to
achieve can be found in the center at depth 7. Note that
speed-factor 1.0 (both players have same speed) is not
displayed. This would make the game end in a draw for
every value of syncTime, which indicates the fairness of
TicTacToe. Anyhow, in reality two players will never have
exactly the same speed and arrive exactly at the same
moment at a location.

The pictured results help the game designer in tuning his
game. He can start by making estimation on the physical
abilities of the players, “the difference in speed between
players in my game will never be more than 5%”, and
conclude on the necessary syncTime. In this example, he
would have to choose a syncTime of at least 3.5, because for
speed-factor 1.05 the race game ends at syncTime 3.0 and
the challenging geogame starts at 3.5. Possibly he might
make an additional demand like “the faster player needs to
be at least 3% faster to win, for smaller speed difference the
game should end up draw”. As we see in Figure 6, this
additional constraint would lead to a syncTime of exactly 9.

Figure 6: Results for game board 1

Figure 7: Results for game board 2

The results for game board 2 (see Figure 7) differ
significantly from those for game board 1: All depths
between 4 and 9 occur and challenging geogames can be
found for three different depths, offering a variety of possible
game flows. Figure 8 shows the optimal path for syncTime 5
and speed-factor 1.02 with depth 8 and illustrates the kind of
strategic elements paired with physical movement that make
a geogame challenging. At the beginning of this game it all
looks like a race-style game. Player X starts running through
the upper horizontal line, while player O occupies the middle
spot 5. But because of the syncTime interval, player X is
forced to wait and meanwhile player O can prevent a fast
win by taking location 1. Player X in return prohibits player
O the win by moving to location 9. This in turn forces player
O to move to location 6 so that player X is not able to get
three in a column. Finally, player X now can take advantage
of his speed and takes locations 8 and 7 before player O can
reach any of them.

Figure 8: Game flow of a challenging geogame

RELATED WORK AND OUTLOOK

In this paper we presented the geogames tool for balancing
geogames “offline” to be challenging and fair. We extended
the standard MinMax algorithm to handle concurrent moves
frequently occurring in real-time games and took into
account the spatial dimension in which location-based games
take place. The syncTime parameter and the players’
physical abilities in form of the speed-factor are integrated
into our spatio-temporal MinMax algorithm. With the
resulting parameter space the game designer can decide how
to balance the game taking different physical abilities of
players into account.

Recently, adaptations of state space analysis have been
proposed for real-time settings. An example is the sampling-
based method using randomized alpha-beta trees proposed in
Kovarsky and Buro (2005). Such approaches address the
problem of planning an appropriate move at playing time.
However, they do not solve the issue at design time where
the designer wants to know how changes in the game’s rules
affect the game balance. AI techniques, like variants of
MinMax-search, have been applied to board games and are
constantly improved to create increasingly smart computer
opponents, e.g. for Othello (Buro 1999). Although these
results are interesting, they are out of the the focus of our
paper which is not concerned with the development of
optimal search algorithms or pruning strategies but with
adapting search algorithms to handle geogames.

Location-based real-time games abandon the idea of turn-
taking of classical board games and result in a
synchronization problem. Nicklas et al. (2001) propose a
solution which is inspired by methods for allocating machine
resources to concurrent processes. Similarly, Natkin and
Vega (2003) and Vega et al. (2004) show how to assist the
game designer in finding dead locks in the game flow using

Petri-nets to describe the game. This type of research focuses
on concurrency but does not address, let alone answer the
problem of synchronization that characterizes the difference
between race-style games, challenging geogames and
classical board games.

A line of research similar in spirit to our approach is the
study of game design patterns. Typically, a critical mass of
existing games is examined to find common game patterns
(Davidsson et al., 2004; Björk et al., 2003). Another
empirical approach consists in analyzing team design of
games (Björk and Åkesson, 2002). An even more holistic
approach is followed by Konzack (2002) who distinguishes
seven levels of game design: hardware, program code,
functionality, game play, meaning, referentiality and socio-
culture. Our analysis is clearly limited to the level of game
play leaving it to the game designer to decorate the geogame
once constructed with appropriate elements right up to the
level of socio-cultural embedding. However, different from
our emphasis, game pattern research seems to make little
effort to gain a deeper understanding of the design
parameters and their interaction.

As future work for the geogames analysis tool we plan to
implement more complex games, like CityPoker or variants
of chess like “progressive chess” or “double move chess”
(see e.g. http://www.chessvariants.org/), which already lift
turn-based restrictions to some degree. Although our
geogames tool is able to handle multi-player geogames, good
evaluation functions for concrete geogames have to be
implemented and evaluated.

Furthermore, we plan to build into our model a parameter for
the players’ cleverness. Imagine one player spending much
time on reasoning but moving slowly, while the other player
is moving fast but does not invest much effort in thinking.
Simulating games with this constellation could make up an
interesting case for testing the relationship between
reasoning time and acting time. By varying one player’s
search depth and the other’s speed, the balance of speed
against reasoning could be emulated.

REFERENCES

Aarseth, E. 2003. "A Genre Analysis of Mobile Entertainment",
Moore, K. & Rutter, J. (eds) Mobile Entertainment - Concepts and
Cultures, pp. 15-26

Björk, S., Lundgren, S. & Holopainen, J.: "Game Design Patterns".
Proceedings of Level Up - 1st international Digital Games
Research Conference 2003, 4-6 November 2003 University of
Utrecht, The Netherlands.

Björk, S., J.H. and Åkesson, K. 2002. "Designing Ubiquitous
Computing Games" A Report from a Workshop Exploring
Ubiquitous Computing Entertainment, Journal of Personal and
Ubiquitous Computing, Special issue on Ubiquitous Gaming, vol. 6.

Buro, M. 1999. "Experiments with Multi-ProbCut and a new high-
quality evaluation function for Othello". H. J. van den Herik and H.
Iida (Eds.): Games in AI Research

Davidsson, O., Peitz, J., Björk, S. 2004. "Game Design Patterns for
Mobile Games". Project report to Nokia Research Center, Finland,

Flintham, M., Anastasi, R., Benford, S. D., Hemmings, T.,
Crabtree, A., Greenhalgh, C. M., Rodden, T. A., Tandavanitj, N.,
Adams, M., and Row-Farr, J. 2003. "Where on-line meets on-the-
streets: experiences with mobile mixed reality games". Proceedings
of the CHI 2003 Conference on Human Factors in Computing
Systems, Ft. Lauderdale, FL, April,. ACM Press, New York.

Kiefer, P., Matyas, S., Schlieder, C.2005. "State space analysis as a
tool in the design of a smart opponent for a location-based game".
Proceedings of the Games Convention Developer Conference
“Computer Science and Magic”, Leipzig, Germany)

Kovarsky, A. and Buro, M., 2005 "Heuristic Search Applied to
Abstract Combat Games", Proceedings of the The Eighteenth
Canadian Conference on Artificial Intelligence, Victoria

Natkin, S. and Vega, L. 2003. "Petri net modeling for the analysis
of the ordering of actions in computer games". In Mehdi, Q. and
Gough, N., editors, GAME-ON, 2003, 4th International Conference
on Intelligent Games and Simulation, pp. 82-89.

Nicklas, D., Pfisterer, C., Mitschang, B. 2001. "Towards Location-
based Games". In: Loo Wai Sing, Alfred (ed.), Wan Hak Man (ed.),
Wong Wai (ed.), Tse Ning, Cyril (ed.): Proceedings of the
International Conference on Applications and Development of
Computer Games in the 21st Century: ADCOG 21; Hongkong
Special Administrative Region, China, November 22-23.

Russell, S. and Norvig, P. 2003. Artificial Intelligence A Modern
Approach, M. Pompili, Ed. Prentice Hall

Schlieder, C., Kiefer, P., Matyas, S. 2005. "Geogames: A
Conceptual Framework and Tool for the Design of Location-based
Games from Classic Board Games", Springer Lecture Notes in
Artificial Intelligence 3814 (INTETAIN conference, November 30-
December 2, 2005, Madonna di Campiglio, Italy)

Sotamaa, Olli 2002. “All The World's A Botfighters Stage: Notes
on Location-Based Multi-User Gaming”. In Frans Mäyrä (eds)
Computer Games and Digital Cultures: Conference Proceedings.
Tampere: Tampere University Press.

Vega, L., Grünvogel, S. M., Natkin, S.2004. "A new Methodology
for Spatiotemporal Game Design", Quasim Mehdi, Norman Gough
(Eds.), Proceedings of the CGAIDE'2004, Fifth Game-On
International Conference on Computer Games: Artificial
Intelligence, Design and Education, pp. 109-113

BIOGRAPHY

Peter Kiefer commenced his studies in business information
technology at the Otto-Friedrich-University of Bamberg in
2000. During his studies, he was a working student at
Siemens ICN, SBS and Deutsche Telekom AG. In the
autumn of 2003, he spent one semester abroad at the
Lappeenranta University of Technology, Finland. In April
2005, he received his diploma in business information
technology after nine semesters and immediately started his
work as a research assistant at the chair for computation in

the cultural science at the University of Bamberg. Striving
for a dissertation in computer science, his main area of
research is concerned with intention recognition from motion
patterns. In this context, location-based games are analyzed
as one use case for intention recognition.

Sebastian Matyas earned a diploma degree in Information
Systems from the University of Bamberg, Germany in 2004.
Currently, he works as a research assistant at the chair of
computing in the cultural sciences (Prof. Schlieder). His
Ph.D. research is concerned with semantic information
processing in the context of location-based technologies.
Furthermore, he is interested in the applications of location-
based technologies, especially the design of mixed reality
and geogames.

	
	
	Mapping of a location-based game to the geogames framework
	Spatio-temporal MinMax algorithm
	Architecture

