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Abstract 

Within the seminal cobweb model of Brock and Hommes, firms adapt their price expectations 

by a profit-based switching behavior between free naïve expectations and costly rational 

expectations. Brock and Hommes demonstrate that fixed-point dynamics may turn into 

increasingly complex dynamics as the firms’ intensity of choice increases. We show that 

policy-makers are able to manage rational routes to randomness by adjusting profit taxes. As 

suggested by our analytical and numerical analysis, policy-makers should increase (decrease) 

profit taxes if destabilizing expectations generate higher (lower) profits than stabilizing 

expectations to alter the composition of applied expectation rules and thereby to promote 

market stability. Our results are not restricted to cobweb models: a huge body of literature 

demonstrates that rational routes to randomness may emerge in many different markets. 
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1 Introduction 

International stock and foreign exchange markets are highly volatile and regularly produce 

severe bubbles and crashes. In this respect, the dot-com bubble and the stark up-and-down 

movements of the euro-dollar exchange rate are just two notorious examples of many. Real 

estate and commodity markets may also be subject to dramatic fluctuations. Between 2000 

and 2005, for instance, housing prices in the United States almost doubled. Similarly, the 

prices of oil, gold and various agricultural goods occasionally display alarming boom and bust 

dynamics. Sometimes even the real economy undergoes major changes, after which we 

observe pronounced variations of central macroeconomic variables such as inflation and 

national income. While we have repeatedly encountered difficult economic periods in the past 

– detailed historical accounts can be found in Kindleberger (2000), Shiller (2005) and 

Reinhart and Rogoff (2009) – the recent global financial and economic crisis urgently reminds 

us just how vulnerable modern economies can be.  

Models with heterogeneous interacting agents undoubtedly help us to gain a better 

understanding of the intricate behavior of many different markets. The key characteristics of 

these models are that agents are boundedly rational, display a rule-governed behavior and 

interact with each other. General surveys of this line of research are provided by Chiarella et 

al. (2009), Hommes and Wagener (2009) and Lux (2009). A seminal contribution in this area 

is the cobweb model by Brock and Hommes (1997). Note that cobweb models are important 

benchmark models in economic dynamics; they describe price dynamics in a competitive 

market for a non-storable good that takes one time period to produce. Due to the production 

lag, firms must form price expectations one time period ahead. An important feature of the 

cobweb model by Brock and Hommes (1997) is that firms endogenously switch between 

different expectation rules. In particular, firms can either use a free naïve or a costly rational 

expectation rule and update their (boundedly) rational choices according to the relative past 

performance of the respective rules. 
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A central insight generated by this model is that an increase in the firms’ intensity of 

choice may turn fixed-point dynamics into increasingly complex and volatile dynamics. This 

bifurcation structure, which Brock and Hommes (1997) call a rational route to randomness, 

may be understood as follows. Suppose that the demand and supply conditions are such that 

the model’s unique steady state is stable if half of the firms use naïve expectations while it is 

unstable if all firms rely on naïve expectations. Moreover, note that prediction errors of naïve 

expectations are rather low as the price approaches its steady-state value. Close to the steady 

state, naïve expectations generate higher profits than costly rational expectations since they 

are free. Now, the intensity of choice indicates how sensitively firms react to profit 

differences between their expectation rules. Let us contrast two extreme scenarios. First, if the 

intensity of choice is low, firms react only weakly to profit differences of their expectation 

rules. The use of (destabilizing) naïve and (stabilizing) rational expectations is then roughly 

balanced, and the steady state is stable. Second, if the intensity of choice is high, naïve 

expectations will be more popular, and the steady state will be unstable. However, this doesn’t 

necessarily imply that the dynamics explodes. Far from the steady state, naïve expectations 

are less precise and, despite being costly, firms eventually prefer rational expectations. As the 

price reverts to its steady state, prediction errors of naïve expectations decline. Firms return to 

naïve expectations, and the price starts to deviate from its steady state again. Due to the 

nonlinear interplay between a centrifugal force close to the steady state and a centripetal force 

far from the steady state, these price patterns may repeat themselves in an intricate manner. 

Rational routes to randomness are a surprisingly robust bifurcation path: Goeree and 

Hommes (2000) generalize the Brock and Hommes (1997) model to the case of nonlinear 

demand and supply; in Lasselle et al. (2005) firms switch between rational and adaptive 

expectations; and Branch and McGough (2008) update the market shares of firms using naïve 

and rational expectations on the basis of replicator dynamics. Rational routes to randomness 

can also be observed in other model contexts. In the duopoly model by Droste et al. (2002), 
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complex dynamics occur if the evolutionary competition between firms’ rules is high. In 

another influential paper, Brock and Hommes (1998) detect rational routes to randomness in 

an asset-pricing model in which market participants have the choice between technical and 

fundamental predictors. Quite similar asset pricing dynamics is obtained in the models by 

Diks and van der Weide (2003) and Brock et al. (2005) in which speculators select between a 

large number of technical and fundamental predictors; in the models by Hommes et al. (2005) 

and Diks and van der Weide (2005) in which heterogeneous speculators asynchronously 

update their beliefs; in the model by Anuvrief and Panchenko (2009) in which different 

market designs ranging from market clearing setups to market maker scenarios are explored; 

and in the model by Chiarella et al. (2013) in which heterogeneous speculators can invest in 

multiple risky assets. Moreover, de Grauwe and Grimaldi (2006) discover complex 

endogenous dynamics in a foreign exchange market model with heterogeneous speculators. 

Dieci and Westerhoff (2014) notice boom and bust dynamics in a housing market model 

resulting from interactions between investors who follow heterogeneous rules to predict 

housing prices. Finally, we conclude this incomplete list of works by mentioning that Branch 

and McGough (2010), de Grauwe (2011), Lines and Westerhoff (2010) and Anufriev et al. 

(2013a) develop macroeconomic models in which agents’ switching between heterogeneous 

inflation and/or income expectations may lead to rational routes to randomness.  

 In recent years, models with heterogeneous interacting agents have received 

considerable empirical support. For instance, laboratory experiments, reviewed in Hommes 

(2011), reveal that human subjects rely on heterogeneous forecasting rules. Anufriev and 

Hommes (2012) manage to explain such experimental studies by models in which agents 

switch between different forecasting strategies. Evidence of heterogeneous expectations in 

agricultural markets is provided by Baak (1999) and Chavas (2000). The questionnaire 

evidence surveyed by Menkhoff and Taylor (2007) reveals that heterogeneous expectations 

are also a widespread phenomenon in financial markets. Moreover, Boswijk et al. (2007) and 
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Franke and Westerhoff (2012) conclude on the basis of estimated financial market models that 

stock market traders switch between different expectation rules. Similar evidence is provided 

by Dick and Menkhoff (2013) and Goldbaum and Zwinkels (2013) for the foreign exchange 

market; by ter Ellen and Zwinkels (2010) for the oil market; and by Kouwenberg and 

Zwinkels (2014) for the U.S. housing market. Branch (2004) shows that survey data on 

inflation expectations can be explained by a heterogeneous expectations and switching model.  

Since models with heterogeneous interacting agents are quite powerful and supported 

by empirical evidence, they are increasingly used as tools for conducting economic policy 

experiments. For instance, Westerhoff and Dieci (2006) explore the consequences of 

transaction taxes; Brock et al. (2009) show that additional hedging instruments may 

destabilize financial markets; Yeh and Yang (2010) discuss the effects of price limits; 

Anufriev and Tuinstra (2013) model short-selling constraints; Tuinstra et al. (2014) address 

the optimal size of trade barriers; and Branch and McGough (2010), de Grauwe (2011), Lines 

and Westerhoff (2010) and Anufriev et al. (2013) explore whether monetary policy rules may 

stabilize fluctuations in economic activity. What all of these papers have in common is that 

they study how certain policy measures influence market participants’ actions, in particular 

their expectation formation behavior. For a survey of this research approach, see Westerhoff 

and Franke (2014).   

The goal of our paper is to explore whether policy-makers can manage rational routes 

to randomness by adjusting profit taxes. Our reference point is the cobweb model by Brock 

and Hommes (1997). Since firms’ (boundedly) rational choices of their expectation rules 

depend on the profits realized in the past by these rules, policy-makers can principally alter 

the relative fitness of expectation rules by imposing profit taxes. Profit taxes may thus allow 

policy-makers to change the mix of expectation rules applied and thereby to stabilize the 

market’s dynamics. But how should policy-makers set profit tax rates? To address this 

problem, we extend the model by Brock and Hommes (1997) along three dimensions. First of 
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all, we allow policy-makers to raise profit taxes. For simplicity, we focus on the case in which 

policy-makers impose a proportional tax on positive profits. Second, we work with a slightly 

more general cost function than that in Brock and Hommes (1997) by additionally considering 

fixed costs. While fixed costs are irrelevant in their model, they may have nontrivial effects 

on the global dynamics of our model. Finally, we account for the fact that producers may have 

a behavioral bias towards using simple expectation rules. According to this assumption, the 

fitness of naïve and rational expectation rules does not depend solely on past profits, but may 

also include untaxable behavioral components. All other model parts are specified as in the 

model by Brock and Hommes (1997). 

Our main results may be sketched as follows. Rational routes to randomness require 

that the destabilizing naïve expectation rule is fitter than the stabilizing rational expectation 

rule close to the steady state. The more strongly firms perceive the fitness differentials of 

expectation rules, the more quickly they will switch between expectation rules, and the more 

complex the dynamics becomes. We show that, under certain assumptions, policy-makers 

have the opportunity to completely revert rational routes to randomness. The explanation for 

this remarkable result is as follows. If firms always make profits and if the fitness of 

expectation rules depends only on past profits, policy-makers are able to level fitness 

differences between expectation rules by taxing firms’ profits. An increase in the profit tax 

rate reduces fitness differences between expectation rules and thereby counteracts an increase 

in the intensity of choice. In general, however, the effectiveness of profit taxes depends on a 

number of factors. For example, firms do not always make profits, and behavioral preferences 

for certain expectation rules cannot be affected by profit taxes. Overall, our analytical and 

numerical results suggest that policy-makers should increase (decrease) profit taxes if 

destabilizing expectation rules produce higher (lower) profits than stabilizing expectation 

rules. As we will see, our analysis also reveals a number of more subtle insights. For instance, 

profit taxes may influence the basin of attraction of the model’s steady state and create or 
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destroy coexisting high-amplitude attractors. 

Our policy implications are based on the cobweb model by Brock and Hommes 

(1997). Nevertheless, we believe that our results are of a more general nature since many 

economic systems are expectations feedback systems. As discussed in detail in Hommes 

(2013), the dynamics of many markets crucially depends on market participants’ expectations 

which, in turn, depend on the current and past outcomes of these markets. According to the 

aforementioned empirical evidence, human subjects rely in many different situations on 

heterogeneous rules to predict future economic variables. As a result, the dynamics of the 

underlying economic system depends on the mix of the rules applied. If market participants 

change their rules with respect to past performance criteria – which is also suggested by 

empirical studies – then policy-makers have the opportunity to affect the relative fitness of the 

expectation rules applied by taxing market participants’ profits, income or wealth such that 

stabilizing expectation rules become more popular and, consequently, the dynamics less 

unstable.  

 The remainder of this paper is organized as follows. In section 2, we generalize the 

cobweb model by Brock and Hommes (1997). In section 3, we present our analytical results. 

In particular, we derive the model’s steady state and discuss how its local asymptotic stability 

is affected by the intensity of choice and profit taxes. In section 4, we present various 

numerical results to illustrate how the model’s global dynamics depends on the intensity of 

choice and on profit taxes. In section 5, we summarize our main results and highlight a few 

avenues for future research. 

 

2 An evolutionary cobweb model with profit taxes 

In this section, we generalize the seminal cobweb model by Brock and Hommes (1997). The 

setup of our model is presented in section 2.1; its dynamical system is then derived in section 

2.2.  
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2.1 The model’s setup 

Cobweb models describe the price dynamics of a competitive market for a non-storable good 

that takes one time period to produce. Producers must thus form their price expectations one 

time period ahead. Brock and Hommes (1997) assume that firms switch between a free naïve 

and a costly rational expectation rule. Moreover, a firm’s choice of an expectation rule 

depends on the relative past performance of the respective rule. For high values of the 

intensity of choice, the firms’ rule selection behavior may cause complex endogenous 

dynamics, and prices may deviate substantially from their steady state. To explore whether 

policy-makers are able to manage such dynamics, we extend the model by Brock and 

Hommes (1997) along three dimensions. Besides adding profit taxes to the model, we also 

consider the fact that firms may face fixed costs and have a behavioral preference towards 

naïve expectations. 

Let us turn to the details of the model. Market clearing occurs in every period. 

Accordingly, we have 

tt SD = ,                                                                                                                                             (1) 

where tD  and tS  stand for demand and supply at time step t , respectively. Consumer 

demand is assumed to be linearly decreasing in the current price tp  and is formalized as 

tt bpaD −= ,                                                                                                                     (2) 

where 0, >ba . Firms need to form price expectations one period ahead and choose between 

two different expectation rules to determine their production decisions. Normalizing the 

number of firms to one, their total supply can be represented as 

R
t

R
t

N
t

N
tt qnqnS 11 −− += ,                                                                                                          (3) 

where N
tq  and R

tq  indicate the quantities supplied by firms holding naïve and rational 

expectations; N
tn 1−  and R

tn 1−  denote their market shares. 
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In contrast to Brock and Hommes (1997), firms face a quadratic cost function that may 

also include fixed costs, i.e. dq
c

C tt += 2
2
1 , where 0>c  and 0≥d . Moreover, firms may 

have to pay profit taxes, where 10 ≤≤τ  denotes the tax rate levied on (positive) profits. 

Despite our model changes, the firms’ optimal supply, derived from expected profit 

maximization, i.e.  







≤−−

>−−−
=

0

0))(1(
maxargmaxarg

tt
e
ttt

e
t

tt
e
ttt

e
t

q
e
t

q CqpforCqp

CqpforCqp

tt

τ
p  ,                             (4)  

remains as in Brock and Hommes (1997) and is given by e
tt cpq = . In forming their price 

expectations, firms can either use a naïve predictor by simply taking the last observed price as 

a forecast, i.e. 1−= t
e
t pp , or they can use a rational expectations forecast (perfect foresight), 

i.e. t
e
t pp = . Quantities supplied by firms using naïve or rational expectation rules are 

therefore given by 

1−= t
N
t cpq                                                                                                                             (5) 

and 

t
R
t cpq = .                                                                                                                        (6) 

Naïve expectations are freely available; by contrast, rational expectations may incur positive 

per period information costs 0≥F . In order to generate accurate forecasts, firms must have 

perfect knowledge about all producers’ prices and beliefs. Information costs can be seen as an 

extra effort that firms may encounter in acquiring this knowledge. It goes without saying that 

information costs have no impact on the firms’ optimal supply decision and have, for 

notational simplicity, been omitted in the firms’ maximization problem (4). 

 The market shares of firms holding either naïve or rational expectations are updated 

over time according to an evolutionary fitness measure. Firms are boundedly rational in the 
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sense that they tend to choose the forecasting strategy with the highest fitness which, in turn, 

depends on profits realized in the past. Since we also consider the firms’ behavioral 

preference towards certain prediction strategies (e.g. Branch 2004, Franke and Westerhoff 

2012, Anufriev et al. 2013b), the fitness of naïve and rational expectations is defined as 

BA N
t

N
t += p                                                                                                                        (7) 

and 

R
t

R
tA p= ,                                                                                                                           (8) 

where N
tp  and R

tp  describe the profits realized by firms that follow naïve and rational 

expectations, respectively, and parameter 0≥B  represents a behavioral bias towards naïve 

expectations.1  

If pre-tax profits are positive, profits realized by naïve producers are given by 

)
2

)()(1(
2

d
c

qqp
N
tN

tt
N
t −−−= τp , while profits realized by rational firms amount to 

)
2

)()(1(
2

Fd
c

qqp
R
tR

tt
R
t −−−−= τp . Of course, firms are not required to pay profit taxes if 

their profits are not positive. For the two forecasting strategies, profits realized in period t  can 

be expressed by the two parted functions 










≤−−−−

>−−−−−
=

−−−−

−−−−

0)2(
2
1)2(

2
1

0)2(
2
1))2(

2
1)(1(

1111

1111

dppcpifdppcp

dppcpifdppcp

tttttt

tttttt
N
t

τ
p                     (9) 

and 

1 It is easy to extend our analysis to 0<B , i.e. to the case in which firms have a behavioral preference towards 

rational expectations. A number of results for this scenario are sketched in footnote 2.  
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








≤−−−−

>−−−−−
=

0
2
1

2
1

0
2
1)

2
1)(1(

22

22

FdcpifFdcp

FdcpifFdcp

tt

tt
R
t

τ
p ,                                                     (10) 

respectively.  

Brock and Hommes (1997) determine the market shares of producers that choose 

naïve or rational expectations via the discrete choice approach taken by Manski and 

McFadden (1981). Therefore, we have  

)exp()exp(
)exp(

R
t

N
t

N
tN

t
AA

An
ββ

β
+

=                                                                                            (11) 

and 

)exp()exp(
)exp(

R
t

N
t

R
tR

t
AA

An
ββ

β
+

= .                                                                                        (12) 

Note that the greater the fitness of an expectation rule, the more firms will rely on it. 

Parameter 0≥β  may be regarded as the firms’ intensity of choice. It measures how sensitive 

firms are to selecting the most attractive predictor. For 0=β , firms do not observe any 

fitness differentials between the two forecasting strategies, and both market shares will equal 

½. The higher the intensity of choice, the more firms will select the prediction strategy with 

the greatest fitness. For ∞=β , fitness differentials are observed perfectly and all firms will 

choose the predictor that yields the greater fitness. 

 

2.2 The model’s dynamical system 

Let us next derive the model’s dynamical system. Combining (1)-(3) with (5)-(6) yields 

t
R
tt

N
tt cpncpnbpa 111 −−− +=− .                                                                                                (13) 

Since 111 =+ −−
R
t

N
t nn , the model’s steady state price results as  
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cb
ap
+

=* .                                                                                                                         (14) 

Moreover, solving (13) explicitly for tp  reveals that 

R
t

t
N
t

t
cnb

cpnap
1

11

−

−−

+

−
= .                                                                                                             (15) 

Before we continue, let us briefly comment on the model’s time structure. The current price 

tp  depends on past market shares N
tn 1−  and R

tn 1− . Once price tp  has been fixed, profits 

generated by the two expectation rules can be identified and, as a result, the new market 

shares N
tn  and R

tn  follow from (11) and (12). The next period’s price 1+tp  is determined 

with the new market shares and so on. In this sense, prices and market shares coevolve over 

time.  

It is convenient to rewrite the model’s dynamical system in deviations from the steady 

state price *p , i.e. to introduce *~ ppp tt −= . Moreover, we define the difference between the 

market shares of the two expectation rules as N
t

R
tt nnm −= , where 1=tm  ( 1−=tm ) 

corresponds to the case in which all producers hold rational (naïve) expectations. As in the 

original model by Brock and Hommes (1997), the dynamics of our model is driven by a two-

dimensional nonlinear map. If we denote by N
t

R
tt AAA −=  the relative fitness of rational 

expectations versus naïve expectations, we obtain for our setup the dynamical system 

bcm
pcmp

t

tt
t 2)1(

~)1(~
1

11
++

−−
=

−

−−                                                                                                            (16) 

and 

)
2
1tanh( tt Am β= ,                                                                                                         (17) 

where 
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( )

( )


















≤∧≤−−−

>∧≤−−−−+−−

≤∧>−−−+−++−

>∧>−−−−

=

−

−

−−−

−

00)~~(
2

00))~(
2

()~~(
2

00)~~2)(~(
2

~~
2

00)~~
2

)(1(

2
1

2*2
1

*
1

*
1

2
1

2
1

tttt

ttttt

ttttttt

tttt

t

ifBFppc

ifBFFdppcppc

ifBFdpppppcppc

ifBFppc

A

ωµ

ωµτ

ωµττ

ωµτ

 (18) 

with 

dpppppc
tttt −+−+= −− )~~2)(~(

2
*

1
*

1µ                                                                               (19) 

and 

Fdppc
tt −−+= 2*)~(

2
ω .                                                                                                (20) 

The relative fitness function defined in (18) contains four branches. Since tµ  and tω  

represent pre-tax profits of naïve and rational firms, expressed in deviations from the steady 

state price, the first, second, third and fourth branch imply that all firms make profits, only 

naïve firms make profits, only rational firms make profits and no firms make profits, 

respectively. Note that for 0=τ , i.e. in the absence of profit taxes, (18) simplifies to 

BFppcA ttt −−−= −
2

1)~~(
2

. If firms furthermore have no preference towards the naïve 

expectation rule, i.e. if 0=τ  and 0=B , the model corresponds exactly to the model by 

Brock and Hommes (1997). While fixed costs, represented by parameter d , are irrelevant in 

the original model, they may affect the dynamics of our model, as indicated by the second and 

third branch of (18). 

 

3 A number of analytical results 

In this section, we present our analytical results. In section 3.1, we derive the steady state of 

our model and a necessary and sufficient condition for its local asymptotic stability. In section 
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3.2, we examine how the intensity of choice and profit taxes affect the model’s steady state 

and its local asymptotic stability.  

 

3.1 Steady state and local asymptotic stability 

In general, a firm’s steady-state profits may be positive or negative. Since firms cannot 

permanently sustain losses, from now on we impose the following viability condition 

0)(
2

2* >−− Fdpc ,                                                                                                            (21) 

which ensures that firms’ steady-state profits (with and without tax payments) are positive. As 

a result, the steady-state value of the rules’ relative fitness (18) can be expressed as 

0)1(* ≤−−−= BFA τ .                                                                                               (22) 

Under assumption (21), the model’s unique steady state is given by 

))))1((
2
1tanh(,0(),~( ** BFmp +−−= τβ .                                                                            (23) 

Recall that a necessary and sufficient condition guaranteeing that a steady state of a two-

dimensional nonlinear map is locally asymptotically stable is that the two eigenvalues of its 

Jacobian matrix, calculated at the steady state, are less than one in modulus (see, e.g. 

Gandolfo 2009 or Medio and Lines 2001). Denoting the eigenvalues by 1λ  and 2λ , the 

condition for local asymptotic stability can formally be represented by 1|| 2,1 <λ . In our case, 

computation of the eigenvalues reveals that 

01 =λ                                                                                                                                 (24) 

and   

bcm
cm
2)1(

)1(
*

*
2

++

−
−=λ .                                                                                                         (25) 

Since 11 * ≤≤− m , it follows that 2λ  is bounded between 02 ≤≤− λ
b
c . As in Brock and 
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Hommes (1997), we assume that the market is unstable when all firms hold naïve 

expectations, i.e. demand and supply parameters b  and c  satisfy that 1>
b
c . Note that 

12 −=λ  if 
c
bm −=* . Therefore, local asymptotic stability of the model’s steady state 

requires that 
c
bm −>* .  

 

3.2 Influence of and relation between the intensity of choice and profit taxes 

We first explore the role played by the intensity of choice. Let us initially assume that 0>F , 

0>B  and 10 <≤ τ  so that the steady-state value of the relative fitness of the expectation 

rules ))1((* BFA +−−= τ  is negative. If the intensity of choice then increases from 0 to ∞+ , 

the steady-state difference in market shares *m  decreases from 0 to 1− , i.e. the model passes 

from a situation in which half of the firms hold naïve expectations to a situation in which all 

firms hold naïve expectations. This can be explained as follows. Since both expectation rules 

yield identical forecasts at the steady state, the free naïve expectation rule generates higher 

profits. Moreover, firms have a behavioral preference towards the naïve expectation rule. For 

some critical value cβ , we obtain 
c
bm −=*  and the steady state becomes unstable. Note that 

this result holds if 0≥F , 0>B  and 10 ≤≤ τ  or if 0>F , 0=B  and 10 <≤ τ . Suppose first 

that information costs are zero and/or that the profit tax rate is one. As long as firms have a 

behavioral preference for the naïve rule, the steady-state value of the rules’ relative fitness is 

negative. Alternatively, if firms have no behavioral preference for the naïve rule, information 

costs have to be positive and the profit tax rate has to be smaller than one in order to have a 

negative steady-state value of the relative fitness of the expectation rules. The steady-state 

value of the relative fitness of the expectation rules is only zero and the model’s steady state is 
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always locally asymptotically stable, irrespective of the firms’ intensity of choice, if 0=F , 

0=B  and 10 ≤≤ τ  or if 0≥F , 0=B  and 1=τ . 

 What can we say about the role played by profit tax rate τ ? Here we have to consider 

three cases. When 0>F  and 0=B , referred to as case X , the model’s steady state simplifies 

to  

)))1(
2
1tanh(,0(),~( *** FmpX τβ −−== .                                                                            (26) 

Note first that in this case, which corresponds to the model by Brock and Hommes (1997), 

augmented by profit taxes, *m  increases with τ . Moreover, every destabilizing increase in β  

can be compensated by an increase in τ  such that the steady state remains locally 

asymptotically stable. For instance, if β  doubles and )1( τ−  shrinks by 50 percent, *m  

remains constant. In the extreme scenario in which +∞=β , stability of the steady state 

requires 1=τ . Differences in profits or fitness, respectively, are then equal to zero, and the 

market shares of the two groups are equal. Case X thus has a very strong policy implication. 

Under the assumptions of case X, an unstable steady state can always be stabilized by an 

increase in the profit tax rate. 

When 0=F  and 0>B , referred to as case Y , our steady state simplifies to 

))
2
1tanh(,0(),~( *** BmpY β−== .                                                                                       (27) 

Obviously, the steady state and its local asymptotic stability are independent of τ . This is 

because pre-tax profits generated by naïve and rational firms are identical at the steady state 

and subject to the same profit tax rate, which is why differences in profits are always equal to 

zero. Accordingly, policy-makers are unable to reestablish market stability by taxing 

producers’ profits. However, the global dynamics of our model is affected by taxes, which we 

outline in more detail in section 4.  
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When 0>F  and 0>B , the model’s steady state is given by  

))))1((
2
1tanh(,0(),~( *** BFmpZ +−−== τβ ,                                                              (28) 

which we already defined in (23). In this case, referred to as case Z , a destabilizing increase 

in β  may be compensated by an increase in τ . Since τ cannot exceed 1, stability of the 

steady state can only be obtained if 
B

cb )/(arctanh2
≤β . If this condition is satisfied, 

however, a higher τ  than in case X  is needed to obtain stability of the steady state. Suppose 

that stability in case X  is, for a given value of β , just maintained for VFX =− )1( τ . For 

case Z , we then have VBFZ =+− )1( τ . Accordingly, we obtain 
F
BXZ +=ττ . Since 0>F  

and 0>B , Zτ  is higher than Xτ . What is the economic explanation for this result? 

Remember that fitness differences in case X  are due to profit differences, which can always 

be leveled by an increasing tax rate so that the steady state remains stable. In case Z , 

however, fitness differences occur not only via profit differences, but also due to parameter B . 

Since the behavioral preference towards naïve expectations is not taxable, profit differences 

need to be reduced more strongly than in case X  in order to obtain the same stability 

property. This can only be realized by a higher profit tax rate. 2 

 

 

2 Suppose that 0>F  and 0<B . In this case, say case Z ′ , every destabilizing increase in β  can be 

compensated by an increase in τ  such that the steady state remains stable. Compared to case X, however, a 

lower τ  is required to obtain stability: since 
F
BXZ +=′ ττ  , 0>F  and 0<B , we have XZ ττ <′ . The 

explanation for this result is as follows. 0<B  implies a behavioral preference towards rational expectations. 

Profit differences, therefore, do not need to be reduced as strongly as in case X to increase the fitness of rational 

expectations. Branch (2004) argues that individuals have a behavioral preference towards rational expectations. 

At least with a view to market stability, this may be good news for policy-makers. 
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4 A number of numerical results 

In this section, we present a number of simulations to illustrate how the global dynamics of 

our model depends on the intensity of choice and on profit taxes. In section 4.1, we first 

explain the general design of our numerical experiments. In sections 4.2, 4.3 and 4.4, we then 

explore our model’s dynamics for cases X , Y  and Z , respectively. 

 

4.1 Preliminaries 

Our analytical results provide important insights about how the intensity of choice and the 

profit tax rate affect the model’s steady state and its local asymptotic stability. As we will see, 

our analytical results also help us to understand the model’s global dynamics. To study the 

global behavior of our model, we consider the following five parameter constellations: 

Case )(HX : 0.1=F , 0.0=B , 10=a , 5.0=b , 35.1=c , 000.0=d  

Case )(LX : 0.1=F , 0.0=B , 10=a , 5.0=b , 35.1=c , 72.18=d  

Case )(HY : 0.0=F , 0.1=B , 10=a , 5.0=b , 35.1=c , 000.0=d  

Case )(LY : 0.0=F , 0.1=B , 10=a , 5.0=b , 35.1=c , 72.18=d  

Case )(HZ : 8.0=F , 2.0=B , 10=a , 5.0=b , 35.1=c , 000.0=d  

A few comments seem to be in order. We assume in all cases that 1=+ BF . For 0=τ , 

information costs and behavioral bias thus jointly imply the same steady-state fitness 

advantage of the naïve forecasting rule over the rational forecasting rule. In line with Brock 

and Hommes (1997), we always assume that 10=a , 5.0=b  and 35.1=c . As we will see, 

the global dynamics of our model depends – in contrast to the model’s steady state and its 

local asymptotic stability – on the size of fixed costs d .  Given 10=a , 5.0=b  and 35.1=c , 

steady-state profits generated by naïve and rational firms amount to d−7224.19  and 

Fd −−7224.19 , respectively. For 72.18=d  and, say, 1=F , steady-state profits generated 

by naïve and rational firms are still positive and our viability condition is fulfilled. However, 

18 
 



these steady-state profits are rather low. In fact, once the dynamics starts, profits made by 

naïve and/or rational firms begin to fluctuate and may occasionally become negative. For 

0=d , steady-state profits made by firms are substantially higher and even remain positive in 

the presence of larger price fluctuations.3 We discuss case X and case Y when firms’ steady-

state profits are high and low. For case Z, it is sufficient to focus on the scenario when firms’ 

steady-state profits are high. In total, this generates five cases: )(HX , )(LX , )(HY , )(LY  

and )(HZ , where H and L stand for high and low steady-state profits, respectively. 

To analyze the effect of both the intensity of choice and the profit tax rate on our 

model dynamics, we use β  and τ  as bifurcation parameters. In all bifurcation diagrams, the 

bifurcation parameter is increased in 500 discrete steps, while all other parameters remain 

constant. For each parameter value, we plot 30 observations after erasing a transient phase of 

1000 periods. For some parameter combinations, we present basins of attraction of the steady 

state and other coexisting attractors. For these computations, a transient phase of 1000 periods 

has been omitted. To investigate whether our results are robust, we occasionally add 

exogenous noise to the dynamics. In these experiments, we then add a normally distributed 

random variable with mean zero and standard deviation 0.10 to the evolution of tp~  in (16).  

To be able to quantify the effect of profit taxes on our model dynamics, we introduce 

two statistics. As a measure of the variability of prices, we define 

∑
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;                                                                                        (29) 

to identify the market’s mispricing we use 

3 To be precise, the value of parameter a  is irrelevant in the model by Brock and Hommes (1997). In our model, 

parameter a  may render a firm’s profits positive or negative and thus for 0>τ  it has an impact on its global 

dynamics. Since it is more intuitive to control the size of a firm’s profits via parameter d , we keep parameter a  

constant at 10=a . 
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where T  represents the length of the underlying sample. When we compute these statistics, 

we add the aforementioned exogenous noise to the dynamics, omit a transient phase of 1000 

periods and use a sample length of 5000=T  periods. 

 

4.2 The dynamics of the model in case X 

We start our numerical analysis with case )(HX , i.e. we set 1=F , 0=B  and 0=d . Under 

these assumptions, our model corresponds to that by Brock and Hommes (1997), augmented 

by profit taxes. Figure 1 provides a number of examples about how the intensity of choice and 

profit taxes may affect the model dynamics. Panel (a) presents a bifurcation diagram for the 

intensity of choice. Since the profit tax rate is set to 0=τ , we face exactly the same scenario 

explored in Brock and Hommes (1997).4 As can be seen, the bifurcation route evolves from a 

stable steady state to chaotic price fluctuations as β  increases from 0 to 5. The primary 

bifurcation towards instability is a period-doubling bifurcation at which the steady state 

becomes unstable and a stable 2-cycle emerges. If β  becomes larger, further bifurcations 

occur and the model dynamics becomes increasingly complicated. To explore the effect of 

profit taxes, we repeat our simulations from panel (a) in panel (b), but now setting 5.0=τ . 

The corresponding bifurcation route shows that the primary bifurcation occurs for a higher 

value of the intensity of choice (as can also be verified analytically, cβ  doubles from 

78.0≈cβ  to 56.1≈cβ ). Moreover, price fluctuations are more dampened (and less 

complicated) for high values of the intensity of choice.  

[Figure 1 about here] 

4 See, for instance, figure 5.2 on page 142 in Hommes (2013). 
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The stabilizing impact of profit taxes can be identified most clearly from panel (c) of 

figure 1, which presents a bifurcation diagram for τ  with 5=β . By increasing the profit tax 

rate from 0 to 1, we observe that chaotic price fluctuations eventually converge to 0~* =p . To 

be precise, the model’s steady state becomes stable when the profit tax rate exceeds 

844.0=τ . Again, this observation is in line with our analytical results as 5)844.01( −  yields 

0.78, the value of cβ  for 0=τ . A closer comparison of panels (a) and (c) reveals that the 

rational route to randomness from panel (a) can be reverted exactly by increasing the tax rate 

from 0 to 1. The explanation for this – at least at first sight – puzzling result is surprisingly 

simple. Under parameter setting )(HX , firms always make profits. Therefore, only the first 

branch of the relative fitness function (18) matters, and (17) and (18) can be combined to 

( ) ))~~
2

)(1(
2
1tanh( 2

1 Fppcm ttt −−−= −τβ . We immediately see that every destabilizing 

increase in β  can be compensated by an appropriate increase in τ . For instance, a doubling 

of β  necessitates a halving of )1( τ−  to keep the term )1( τβ −  constant. Panel (d) repeats 

our simulation from panel (c) in a noisy environment. As it turns out, the stabilizing effect of 

profit taxes is robust with respect to additional exogenous noise – at least with a view to the 

amplitude of price fluctuations. Panels (e) and (f) in figure 1 show how our policy measures 

react to increasing tax rates. As in panel (d), we set 5=β  and add exogenous noise to the 

dynamics. Overall, volatility and distortion decrease with increasing profit tax rates. The 

reduction in volatility is only slowed down due to high-amplitude noisy cycles for an 

intermediate range of profit tax rates, say between 0.4 and 0.6. 

 How does the dynamics change if firms’ profits are not always positive? Figure 2 

illustrates the dynamics of the model for case )(LX  with 1=F , 0=B   and 72.18=d . Since 

the design of figure 2 is identical to that of figure 1, our simulations can be compared directly 

with each other. The profit tax rate in panel (a) is set to 0=τ  so that fixed costs are 
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irrelevant. As a result, the bifurcation diagram in panel (a) of figure 2 is equivalent to the 

bifurcation diagram in panel (a) of figure 1. Accordingly, an increase in the intensity of choice 

again triggers a rational route to randomness. In panel (b) we repeat these simulations for 

5.0=τ  and also observe for case )(LX  a stabilizing effect of profit taxes. Compared to panel 

(b) of figure 1, however, two aspects deserve our attention. First, in case )(LX  the 2-cycle 

emerges abruptly with a significant amplitude and not smoothly, as in case )(HX . We 

investigate this intriguing phenomenon, caused by the emergence of coexisting attractors, in 

more detail in figure 3. Second, while profit taxes also stabilize the dynamics in case )(LX , 

the effect is less powerful than in case )(HX .  

[Figure 2 about here] 

The bifurcation diagram in panel (c) of figure 2 also reveals that an increasing tax rate 

decreases the amplitude of price fluctuations. Moreover, a convergence to the steady state sets 

in again when τ  exceeds 0.84. However, the bifurcation route differs from the bifurcation 

route in panel (c) of figure 1. In particular, the stabilizing effect of increasing profit taxes is 

much weaker. Furthermore, panel (c) of figure 2 also suggests that the steady state may 

coexist for some values of τ  with other types of attractors (which we will also discuss in 

figure 3). In panel (d), we observe that the stabilizing effect of an increasing profit tax rate 

holds with respect to exogenous noise which, in turn, is further supported by panels (e) and 

(f). Both volatility and distortion decrease smoothly as the profit tax rate increases from 0 to 

1, although the effect is weaker than in case )(HX .  

The bifurcation diagram in panel (b) of figure 2 is based on initial conditions which 

are close to the model’s steady state. In contrast, the bifurcation diagram depicted in panel (a) 

of figure 3 is based on initial conditions which are more distant from the model’s steady state. 

A comparison of these bifurcations diagrams reveals the coexistence of different attractors, 
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approximately between 56.112.1 << β .5 Indeed, in panel (c) of figure 3, we plot time series 

of our model for different initial values when 2.1=β  and 5.0=τ . Obviously, one orbit 

turns into a 2-cycle (black line, generated with 25.0~
1 =p  and *

1 mm = ) while the other 

converges to the model’s steady state (red line, generated with 1.0~
1 =p  and *

1 mm = ). The 

corresponding basins of attraction are visualized in panel (e). For initial values included in the 

light red area, the system converges to its steady state (represented by the red dot). Initial 

values from the light gray area imply a convergence to a 2-cycle (represented by black dots).  

Coexisting attractors may have interesting policy implications. Suppose that the price 

has converged towards the model’s steady state. As long as exogenous shocks are not too 

large, the system will not leave the steady state’s basin of attraction, and endogenous forces 

will drive the price back towards its equilibrium value. However, if the exogenous shocks are 

larger, the system may be pushed into the light gray area and the price then endogenously 

starts to fluctuate up and down. Panel (g) reveals that the light red area increases with the 

profit tax rate (simulations are based on 585.0=τ ). Policy-makers may thus have the chance 

to drive back the price to its steady state by (temporarily) increasing the profit tax rate. In 

contrast, a reduction in the profit tax rate or an increase in the intensity of choice (not 

depicted) reduces the steady state’s basin of attraction. 

[Figure 3 about here] 

5 Let us be more precise. At about 12.1=β , we observe a fold border collision bifurcation, i.e. the birth of an 

attracting and a repelling 2-cycle. The transition between the steady state and the attracting 2-cycle is sharp: 

when the attracting 2-cycle emerges it is already distant to the steady state and reached from a larger set of initial 

conditions. As β  increases, the amplitude of the attracting 2-cycle increases while the amplitude of the repelling 

2-cycle decreases. At about 56.1=β , the repelling 2-cycle merges with the steady state and we witness a 

subcritical flip bifurcation. A deeper analysis of this bifurcation structure is possible, but beyond the scope of our 

paper. However, more details are available upon request. We greatly thank Irina Sushko for helping us to 

understand what is occurring here.  
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A similar phenomenon can be detected by comparing the bifurcation diagrams in panel 

(c) of figure 2 and in panel (b) of figure 3. Both bifurcation diagrams are based on 5=β  and 

10 ≤≤τ . Between 184.0 ≤≤τ , the steady state coexists with other types of attractors. One 

example is given in panel (d) of figure 3, which shows trajectories for two different initial 

values based on 5=β  and 85.0=τ . While our model produces chaotic dynamics for 

25.0~
1 =p  and *

1 mm =  (black line), the price converges to its steady state for 001.0~
1 =p  

and *
1 mm =  (red line). Panel (f) visualizes the coexisting attractors’ basins of attraction. In 

this example, the basin of attraction of the steady state is rather small. Further simulations 

reveal that the steady state also coexists with different cycles as the profit tax rate increases. 

For instance, for 95.0=τ  the steady state coexists with an 8-cycle while for 1=τ  the steady 

state coexists with a 4-cycle.6 Panel (h) contains an example for 99.0=τ . It should be noted 

that the amplitude of cycles decreases with the profit tax rate and that the basin of attraction of 

the coexisting steady state increases with the profit tax rate. Also from this perspective, higher 

profit tax rates may be regarded as beneficial for market stability. 

Let us briefly summarize our numerical results for case X. Due to information costs, 

naïve firms make (on average) higher profits than rational firms. As the intensity of choice 

increases, more and more firms thus switch to naïve expectations and the amplitude of price 

fluctuations increases. By imposing profit taxes, policy-makers have the opportunity to reduce 

profit differences between naïve and rational expectations. If they do this, more firms will rely 

on rational expectations, and the price dynamics becomes dampened. The stabilizing effect of 

profit taxes is particularly strong if both types of firms continuously generate profits. 

Naturally, if a firm’s profits are negative, it does not have to pay taxes. The more frequently 

6 Of course, technically, we can raise τ  above one. In doing so, we first observe that the 4-cycle turns into a 2-

cycle before the dynamics eventually converges to the model’s steady state. It seems that the 2-cycle emerges 

again due to a fold border collision bifurcation.  
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the firm’s profits are negative, the lower the stabilizing effect of profit taxes. We have also 

seen that the dynamics of our model may give rise to coexisting attractors. Numerical 

evidence suggests that the steady state’s basin of attraction increases with the profit tax rate 

while the amplitude of the fluctuations of the coexisting attractor decreases simultaneously. 

Overall, policy-makers may thus want to increase the profit tax rate in case X to stabilize the 

dynamics. 

 

4.3 The dynamics of the model in case Y 

Let us turn to case )(HY  and assume that 0=F , 1=B  and 0=d . Panel (a) of figure 4 

shows a bifurcation diagram for the intensity of choice. Since 0=τ  and 1=+ BF , we 

observe for increasing values of the intensity of choice the same rational route to randomness 

as in panel (a) of figure 1 and in panel (a) of figure 2. In panel (b) of figure 4, we repeat the 

simulation from panel (a) for 5.0=τ . Note that the steady state and its local asymptotic 

stability are independent of the profit tax while the model’s global behavior is clearly affected 

by it. As can be seen, the primary bifurcation towards instability occurs again at 78.0≈cβ . 

However, once the intensity of choice exceeds this value, the price dynamics shows higher 

amplitude fluctuations than without profit taxes. For instance, for 5=β  and 0=τ  price 

fluctuations are bounded between ±1.29 while for 5=β  and 5.0=τ  they scatter between 

±1.83.   

To illustrate these results in more detail, we present two bifurcation diagrams in which 

we vary the profit tax rate between 0 and 1. In panel (c), we set 5=β  and thus the model 

produces complex dynamics for 0=τ . In panel (g), we assume that 75.0=β  so that the 

model’s steady state is locally asymptotically stable for 0=τ . The bifurcation route in panel 

(c) undoubtedly reveals that higher profit taxes amplify price fluctuations. As depicted in 

panel (d), this is also true in a noisy environment. Further evidence of this result is provided 
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by panels (e) and (f), which reveal that volatility and distortion grow with τ . In panel (g), the 

dynamics always converges towards 0~* =p , irrespective of the profit tax rate. Nevertheless, 

a destabilizing impact of profit taxes can be observed when the simulation from panel (g) is 

repeated with exogenous noise. The increase in the amplitude of the price fluctuations in 

panel (h) is also confirmed by panels (i) and (j). Both volatility and distortion slope upwards 

as the profit tax rate increases. While the destabilizing effect of profit taxes seems to be rather 

weak in absolute terms, volatility and distortion more than triple in relative terms.  

[Figure 4 about here] 

How do profit taxes influence the dynamics of our model in case )(HY ? Let us begin 

with the scenario depicted in panel (g) of figure 4 in which the steady state is locally 

asymptotically stable. In the absence of information costs ( 0=F ), firms using the naïve or 

the rational expectation rule realize identical pre-tax profits. Since both types of firms are 

subject to the same profit tax rate, differences in profits are equal to zero and therefore 

independent of τ . If we exogenously stimulate the dynamics by adding noise, the picture 

starts to change. In the presence of price fluctuations, rational expectations deliver more 

precise predictions than naïve expectations and are thus more profitable. If these profit 

differences are taxed away, fewer firms opt for rational expectations, and price fluctuations 

increase. The explanation for what is occurring in panel (c) is similar. Recall that firms have a 

behavioral preference towards the simple expectation rule, which is why more and more firms 

use naïve expectations as the intensity of choice increases. When prices start to fluctuate, 

rational expectations outperform naïve expectations. However, the economic fitness 

advantage of rational expectations decreases with the profit tax rate. Since the behavioral 

fitness advantage of naïve expectations is not taxable, firms switch from rational expectations 

to naïve expectations as the profit tax rate increases and, therefore, price fluctuations amplify. 
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Clearly, policy-makers who intend to stabilize the dynamics should promote rational 

expectations by decreasing profit taxes. 

Figure 5 illustrates our model dynamics for case )(LY . For 0=F , 1=B  and 

72.18=d , firms’ steady-state profits are still positive, yet at a much lower level than before. 

As a result, out-of-equilibrium profits of firms may, at least temporarily, become negative. To 

be able to draw direct comparisons between cases )(LY  and )(HY , figure 5 has the same 

design as figure 4. In panel (a) of figure 5, we observe our standard rational route to 

randomness. When we set 5.0=τ , the bifurcation route from panel (a) changes to that 

presented in panel (b). Again, the steady state and its local asymptotic stability are not 

influenced by the imposition of profit taxes, but the model’s global behavior is. Note that in 

comparison to panel (b) of figure 4, price dynamics is less destabilized by increasing profit 

tax rates. The bifurcation route for the profit tax rate in panel (c) reveals that price fluctuations 

amplify with τ . Panels (d), (e) and (f) demonstrate that this observation is robust with respect 

to exogenous noise. However, the effect is much weaker than in case )(HY . Panel (g) reveals 

that the destabilizing impact of an increase in τ  is also weaker when 75.0=β . This finding 

also holds in a noisy environment, as is witnessed in panels (h), (i) and (j). In the (unrealistic) 

limit in which firms always make losses, profit taxes obviously become irrelevant for the 

model dynamics. 

[Figure 5 about here] 

Let us summarize our numerical results for case Y. Due to firms’ behavioral bias 

towards naïve expectation rules, more and more firms abstain from rational expectations as 

the intensity of choice increases. Consequently, the model’s steady state becomes unstable 

and endogenous dynamics set in. When policy-makers impose profit taxes, the profit 

advantage of rational expectations decreases while the behavioral advantage of naïve 

expectations remains constant. This leads to fewer firms relying on rational expectations and 
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less stable price dynamics. To foster market stability, policy-makers may wish to promote 

rational expectations by decreasing profit taxes. Overall, the destabilizing impact of profit 

taxes depends on both the level of the intensity of choice and the level of steady-state profits. 

If the intensity of choice is low, firms do not realize fitness differentials very well. Policy-

makers can then only moderately affect the behavior of firms by changing the profit tax rate. 

If steady-state profits are low, price fluctuations may drive firms’ profits into the negative 

zone. The more frequently firms make losses, the less effectively policy-makers can use profit 

taxes to control the fitness difference between naïve and rational expectations. 

 

4.4 The dynamics of the model in case Z 

Before we begin with our numerical analysis of case Z, let us briefly contrast the key results 

of cases X and Y. In case X, free naïve expectations generate (on average) higher profits than 

costly rational expectations. Policy-makers seeking to calm down price fluctuations thus have 

to curb naïve expectations by increasing profit taxes. In case Y, rational expectations are free 

and outperform naïve expectations, but firms have a behavioral preference towards naïve 

expectations. To improve market stability, policy-makers now have to increase the popularity 

of rational expectations by reducing profit taxes. Case Z may be regarded as a nontrivial 

combination of cases X and Y. In case Z, rational expectations are costly, and firms have a 

behavioral preference towards naïve expectations. As we will see, there are parameter 

constellations in which the basic results of case X survive, in which the basic results of case Y 

survive and in which a mix of the results of cases X and Y appears. 

Figure 6 illustrates how profit taxes may affect the dynamics of our model under the 

scenario of case )(HZ , i.e. for 8.0=F , 2.0=B  and 0=d .7 Since 1=+ BF  and 0=τ , the 

bifurcation diagram with respect to the intensity of choice, depicted in panel (a), portrays our 

standard rational route to randomness. In panel (b), we repeat the simulation from panel (a). 

7 Since case Z(L) yields no additional results,  it is omitted for the sake of brevity. 
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For 5.0=τ , we observe a stabilizing effect of profit taxes: the primary bifurcation shifts from 

78.0≈cβ  to 30.1≈cβ  and, for a given value of β , price fluctuations are lower. How do 

these results relate to case )(HX  and case )(HY ? Compared to case )(HX , the primary 

bifurcation towards instability already occurs at 30.1≈cβ  instead of 56.1≈cβ , and the price 

dynamics is, for a given value of β , more volatile (see figure 1, panel (b)). The explanation 

of why profit taxes work less effectively in case )(HZ  than in case )(HX  is as follows. 

Fitness differences in case )(HX  result from profit differences only, while in case )(HZ  

they also contain a (tax-independent) behavioral component. As a result, the fitness difference 

is not reduced as strongly as in case )(HX  when profit taxes are imposed. Put differently, to 

obtain the same fitness difference as in case )(HX , profit differences have to be reduced 

more strongly. As revealed by our analytical results, this can be achieved by imposing a 

higher tax rate. For instance, policy-makers have to increase the profit tax rate from 5.0=τ  

to 625.0=τ  to elevate the primary bifurcation from 30.1≈cβ  to 56.1≈cβ . Recall that in 

case )(HY , profit taxes do not affect the properties of the steady state, but are destabilizing 

once endogenous dynamics kick in (see figure 4, panel (b)).  

[Figure 6 about here] 

 Whether profit taxes have to be increased or decreased to improve market stability 

depends, amongst others, on the intensity of choice and the associated price variability. To 

exemplify this point, we choose three different values for the intensity of choice. In panels (c), 

(e) and (g) we increase τ  from 0 to 1 and set 5=β , 3=β  and 25=β , respectively. Panels 

(d), (f) and (h) show the corresponding bifurcation routes when exogenous noise is added. Let 

us begin with panel (e) in which the model dynamics eventually converges to 0~* =p  as τ  

increases. This can be explained as follows. For 0=τ , price fluctuations are rather moderate. 

Therefore, prediction errors of naïve expectations are relatively low and the simple 
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forecasting strategy is the more profitable one. When policy-makers impose profit taxes, the 

effect of reducing profit differences dominates the behavioral bias towards naïve expectations, 

and the dynamics of our model stabilizes. As can be checked analytically, for 3=β  the 

model’s steady state becomes stable when the profit tax rate crosses 93.0=τ . However, the 

profit tax rate cannot exceed 1 and stability of the steady state can therefore only be obtained 

in case Z  if 89.3)/(arctanh2
≤≤

B
cbβ . From panel (g), in which 25=β , we observe that 

price fluctuations increase with τ . Note that for 25=β  and 0=τ , price fluctuations are so 

strong that it is (often) beneficial to buy rational expectations. The imposition of profit taxes 

thus penalizes the use of rational expectations more strongly than the use of naïve 

expectations. Since the behavioral fitness advantage is independent of τ , naïve expectations 

gain in popularity as profit taxes increase and, consequently, price dynamics becomes even 

more unstable. One may argue that the dynamics depicted in panel (e) is basically in line with 

the results we obtain in case X while the dynamics shown in panel (g) is basically in line with 

the results we obtain in case Y. The dynamics visualized in panel (c) may be regarded as a 

nontrivial combination of these results. We first observe that an increase in the profit tax rate 

decreases the amplitude of price fluctuations before price fluctuations start to increase again. 

Panels (d), (f) and (h) reveal that our observations also hold in a noisy environment. The 

corresponding volatility and distortion functions (not depicted) further support our findings.  

 Let us summarize our numerical results for case )(HZ . Since we assume that rational 

expectations are costly and that firms have a behavioral preference towards naïve 

expectations, more and more firms rely on naïve expectations as the intensity of choice 

increases and, as a result, the model’s dynamics becomes increasingly complicated. Whether 

policy-makers need to increase or decrease profit taxes to foster market stability depends, 

amongst others, on the firm’s intensity of choice. If the intensity of choice is low, prices 

fluctuate only mildly and simple expectations generate higher profits. When policy-makers 
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impose profit taxes in such a situation, the effect of reducing the profit advantage of naïve 

expectations over rational expectations dominates the behavioral fitness advantage of naïve 

expectations. More firms then rely on rational expectations, and price dynamics are more 

stable. If the intensity of choice is high, prices fluctuate strongly and, consequently, rational 

expectations are more profitable than naïve expectations. Policy-makers are able to further 

promote rational expectations and thus to stabilize price fluctuations by decreasing profit 

taxes. For some parameter constellations, however, we observe that an increase in the profit 

tax rate initially stabilizes the dynamics, but then destabilizes it. 

 

5 Conclusions 

The dynamic behavior of many markets depends crucially on the expectations of their market 

participants. Empirical evidence reveals that market participants use different rules to form 

their expectations. As a result, the dynamic behavior of a market depends on the mix of 

expectation rules applied. For instance, a market may be rather stable if stabilizing 

expectation rules are more popular than destabilizing expectation rules. Empirical evidence 

furthermore indicates that the market participants’ selection of expectation rules depends on 

economic fitness criteria such as profits realized in the past. In line with these observations, 

Brock and Hommes (1997) develop a cobweb model in which firms adapt their price 

expectations by a profit-based switching between free naïve expectations and costly rational 

expectations. One of their key results is that fixed-point dynamics may turn into increasingly 

complex dynamics as the firms’ intensity of choice (i.e. their response to fitness differences) 

increases. The main contribution of our paper is to show that policy-makers may be able to 

manage such rational routes to randomness. In particular, we find that policy-makers should 

increase (decrease) profit taxes if destabilizing expectation rules generate higher (lower) 

profits than stabilizing expectation rules. This alters the composition of expectation rules 
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applied in favor of more stabilizing expectation rules and thus calms down a market’s price 

fluctuations.    

To make the exposition of our arguments as clear as possible, we use the seminal 

cobweb model by Brock and Hommes (1997) as a simple, yet powerful reference model. Our 

analysis may be extended in various directions. For instance, one may equip firms with 

different and/or more expectation rules to forecast futures prices. Policy-makers would then 

have to determine whether the more stabilizing or more destabilizing expectation rules 

produce higher profits. As revealed by our analysis of case )(HZ , there may be a nontrivial 

relation between market stability and profit tax rates. Identifying volatility-minimizing profit 

tax rates may be a challenging task in reality. One may also substitute the discrete choice 

approach of Manski and McFadden (1981) with another switching model, i.e. the transition 

probability approach of Weidlich and Haag (1983). Alternatively, one could think about 

investigating the stabilizing effects of other tax measures. For example, what are the 

consequences of revenue taxes, lump sum taxes or subsidies? Moreover, the model by Brock 

and Hommes (1997) is a partial equilibrium model. How do our results change in a general 

equilibrium framework? In our setup, tax revenues are not redistributed and our focus is on 

market stability. Against this backdrop, a welfare analysis may be worthwhile. Instead of 

exploring the dynamics of cobweb markets, one could also study different markets, say 

financial markets in which traders have to pay taxes on their speculative profits.  

Nevertheless, our paper reveals that, as long as the market participants’ selection of 

their expectation rules depends on economic fitness criteria, policy-makers can affect the mix 

of the expectation rules applied promoting market stability. Given the volatility of real 

markets, we regard this as an important insight. 
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Figure 1: Dynamics for case X(H). (a) Bifurcation diagram for the intensity of choice with 0=τ . (b) Bifurcation 
diagram for the intensity of choice with 5.0=τ . (c) Bifurcation diagram for the profit tax rate with 5=β . (d) 
Bifurcation diagram for the profit tax rate with 5=β  and exogenous noise. (e) Volatility as a function of profit 
taxes with 5=β  and exogenous noise. (f) Distortion as a function of profit taxes with 5=β  and exogenous 
noise. 
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Figure 2: Dynamics for case X(L). (a) Bifurcation diagram for the intensity of choice with 0=τ . (b) Bifurcation 
diagram for the intensity of choice with 5.0=τ . (c) Bifurcation diagram for the profit tax rate with 5=β . (d) 
Bifurcation diagram for the profit tax rate with 5=β  and exogenous noise. (e) Volatility as a function of profit 
taxes with 5=β  and exogenous noise. (f) Distortion as a function of profit taxes with 5=β  and exogenous 
noise. 
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Figure 3: Coexisting attractors for case X(L). (a) Bifurcation diagram for the intensity of choice with 5.0=τ . 
(b) Bifurcation diagram for the profit tax rate with 5=β . (c) Time series for initial conditions ( 1.0~

1 =p , 
*

1 mm = ), red line, and ( 25.0~
1 =p , *

1 mm = ), black line, with 2.1=β  and 5.0=τ . (d) Time series for initial 

conditions ( 001.0~
1 =p , *

1 mm = ), red line, and ( 25.0~
1 =p , *

1 mm = ), black line, with 5=β  and 85.0=τ . 
(e) Basins of attraction and coexisting attractors with 2.1=β  and 5.0=τ . (f) Basins of attraction and coexisting 
attractors for 5=β  and 85.0=τ . (g) Basins of attraction and coexisting attractors with 2.1=β  and 58.0=τ . 
(h) Basins of attraction and coexisting attractors for 5=β  and 99.0=τ . 
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Figure 4: Dynamics for case Y(H). (a) Bifurcation diagram for the intensity of choice with 0=τ . (b) 
Bifurcation diagram for the intensity of choice with 5.0=τ . (c) Bifurcation diagram for the profit tax rate with 

5=β . (d) Bifurcation diagram for the profit tax rate with 5=β  and exogenous noise. (e) Volatility as a 
function of profit taxes with 5=β  and exogenous noise. (f) Distortion as a function of profit taxes with 5=β  
and exogenous noise. (g) Bifurcation diagram for the profit tax rate with 75.0=β . (h) Bifurcation diagram for 
the profit tax rate with 75.0=β  and exogenous noise. (i) Volatility as a function of profit taxes with 75.0=β  
and exogenous noise. (j) Distortion as a function of profit taxes with 75.0=β  and exogenous noise. 
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Figure 5: Dynamics for case Y(L). (a) Bifurcation diagram for the intensity of choice with 0=τ . (b) Bifurcation 
diagram for the intensity of choice with 5.0=τ . (c) Bifurcation diagram for the profit tax rate with 5=β . (d) 
Bifurcation diagram for the profit tax rate with 5=β  and exogenous noise. (e) Volatility as a function of profit 
taxes with 5=β  and exogenous noise. (f) Distortion as a function of profit taxes with 5=β  and exogenous 
noise. (g) Bifurcation diagram for the profit tax rate with 75.0=β . (h) Bifurcation diagram for the profit tax rate 
with 75.0=β  and exogenous noise. (i) Volatility as a function of profit taxes with 75.0=β  and exogenous 
noise. (j) Distortion as a function of profit taxes with 75.0=β  and exogenous noise. 
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Figure 6: Dynamics for case Z(H). (a) Bifurcation diagram for the intensity of choice with 0=τ . (b) Bifurcation 
diagram for the intensity of choice with 5.0=τ . (c) Bifurcation diagram for the profit tax rate with 5=β . (d) 
Bifurcation diagram for the profit tax rate with 5=β  and exogenous noise. (e) Bifurcation diagram for the 
profit tax rate with 3=β . (f) Bifurcation diagram for the profit tax rate with 3=β  and exogenous noise. (g) 
Bifurcation diagram for the profit tax rate with 25=β . (h) Bifurcation diagram for the profit tax rate with 

25=β  and exogenous noise.  
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