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Abstract

We present a simple �nancial market model with interacting chartists and
fundamentalists. Since some speculators only become active when a certain
misalignment level has been crossed, the model dynamics is driven by a discon-
tinuous piecewise linear map. Recent mathematical techniques allow a compre-
hensive study of the model�s dynamical system. One of its surprising features
is that model simulations may appear to be chaotic, although only regular dy-
namics can emerge. While our deterministic model is able to produce stylized
bubbles and crashes we also show that a stochastic version of our model is able
to match the �ner details of �nancial market dynamics.

Keywords: �nancial market crisis; bull and bear market dynamics; discontin-
uous piecewise linear maps; border-collision bifurcations; period adding scheme.

1 Introduction

Our paper seeks to add to the burgeoning literature on agent-based �nancial
market models which explain the dynamics of �nancial markets by highlighting
the trading activity of their participants. Seminal contributions in this �eld
include Day and Huang [13], Chiarella [9], de Grauwe et al. [19], Kirman [37],
Lux [43], Brock and Hommes [8], LeBaron et al. [38], Farmer and Joshi [22]
and He and Li [27]. According to this class of models, interactions between
heterogeneous and boundedly rational speculators, relying on simple technical
and fundamental trading rules, can generate complex endogenous price dynam-
ics, including, for instance, the emergence of bubbles and crashes. More recent
approaches are surveyed in Hommes [32], LeBaron [39], Lux [44], Chiarella et
al. [10] and Westerho¤ [70].
A few papers in this exciting area focus on the dynamics of piecewise linear

maps. Such piecewise linear maps, which may be regarded as an approximation
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of more complicated nonlinear maps, have the advantage that they often allow
for a deeper analytical study of the underlying dynamical system, and thus
advance our understanding of what is driving the dynamics of �nancial markets.
For examples, see the asset pricing models of Huang and Day [33], Day [16],
Huang et al. [34] and Tramontana et al. [67].
Our model, representing a stylized speculative market with interacting chartists

and fundamentalists, also has a piecewise linear structure1 . The reason for this
is that we assume that while some speculators are always active in the market,
others only become active when a certain misalignment level has been crossed.
Since we assume otherwise linear technical and fundamental trading rules, the
model consists of three disconnected branches. The inner regime is due to the
transactions of speculators who are always active; the two outer regimes depend
on the joint trading behavior of all market participants.
From a mathematical point of view, the peculiarity of our model is that al-

though numerically we can observe trajectories that may look chaotic, chaotic
behavior cannot occur. Instead, only regular dynamics are possible, as the
trajectories are either periodic or quasiperiodic. However, both cases are struc-
turally unstable, as they are never persistent under a parameter variation. It
should also be noted that discontinuous piecewise linear maps have not yet been
thoroughly studied. Despite their simplicity, they can, however, lead to surpris-
ing new insights. We hope that our paper will advance our knowledge of such
maps.
From an economic point of view, our simple deterministic model is able to

explain, in a qualitative sense, the excess volatility and the disconnect puzzle �
which are two of the most challenging and crucial puzzles in international �nance
(see, e.g. Shiller [62]). We �nd this rather interesting since the only assumption
required for this is that, in an otherwise linear world, there are di¤erent market
entry levels for certain types of speculators. This assumption, which appears
quite natural to us, is already su¢ cient for creating endogenous price dynamics.
For instance, the dynamics of our model may evolve as follows. Close to the
fundamental value, orders of optimistic chartists may start a bubble process.
But once a certain misalignment level has been crossed, additional fundamental
traders enter the market. Their orders may trigger a moderate price correction
or even a stronger crash. After the fundamentalists have left the market, the
remaining chartists may optimistically initiate the next bubble. However, their
mood may also have turned pessimistic. In this case, they reinforce the crash. It
is again the market entry of additional fundamentalists which pushes prices back
to fundamental values. Moreover, we demonstrate that a stochastic version of
our model is able to match the statistical properties of �nancial markets in �ner
detail. In particular, our stochastic model version is able to produce bubbles
and crashes, excess volatility, fat-tailed return distributions, uncorrelated price
changes and volatility clustering, thereby explaining some of the most important
stylized facts of �nancial markets.

1Note that there is abundant empirical evidence, summarized by Menkho¤ and Taylor [50],
which supports the view that speculators indeed rely on technical and fundamental trading
rules.
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After these introductory remarks, the plan of the paper is as follows. In
section 2 we talk about the role of piecewise linear maps in nonlinear science.
In section 3, we introduce our model and describe some preliminary properties of
its underlying dynamical system. In section 4, we start to investigate the model
in more detail. Since di¤erent parameter assumptions yield di¤erent maps, the
analysis stretches over sections 4 to 5. In Section 6 we build a stochastic version
of our model, showing how it can mimic some stylized facts of actual �nancial
markets. Finally, section 7 concludes the paper.

2 Background for the role of piecewise linear
maps in nonlinear science

It is well-known that several models in various scienti�c areas are represented
by piecewise smooth dynamical systems. The essential feature in piecewise
smooth dynamical systems, either continuous or discontinuous, is the presence
of a change of de�nition in the functions de�ning the map under study, when
a suitable border is met or crossed. This is at the basis of the existence of
border collision bifurcations, which have been introduced (although not using
this term and starting with the properties of the skew tent map) by Nusse and
Yorke [54, 55], Maistrenko et al. [47], Maistrenko et al. [48] and Maistrenko
et al. [49]. However, also in early works by Leonov [40, 41] and Mira [52,
53] several properties of piecewise linear discontinuous maps have already been
described, which, in turn, have recently been revisited and successfully improved
by Gardini et al. [25].
Mathematical insights in this area are important since these kinds of systems

have recently found a wide use in several applied �elds. We recall, for example,
the books by Banerjee and Verghese [4], Zhusubaliyev and Mosekilde [72] and
di Bernardo et al. [20]. In particular, piecewise smooth systems are applied
in power electronic circuits (Halse et al. [26], Banerjee et al. [3]), impacting
systems (Nusse et al. [56], Ing et al. [35], Sharan and Banerjee [61], to cite a
few), piecewise smooth nonlinear oscillators (Pavlovskaia et al. [58], Pavlovskaia
and Wiercigroch [59]), cryptography (de Oliveira and Sobottka et al. [57] and
Li et al. [42]) and in many other applications (Banerjee and Grebogi [2], Sushko
et al. [63, 64]).
But there are also many application of continuous and discontinuous piece-

wise smooth maps in economics and �nance. A pioneer in this �eld has been
Richard Day, as e.g. Day [11, 15], Day and Shafer [12] and Day and Pianigiani
[14], whose work has been continued in Metcaf [51] and Böhm and Kaas [5],
among others. In this respect, it is also worth mentioning the contributions
by Hommes [28, 29], Hommes and Nusse [30] and Hommes et al. [31]. Fur-
ther economic and �nancial models can be found in Puu and Sushko [60] and
Tramontana et al. [65, 66].
As we will see, the model considered in this work is quite special. On the

one hand, it di¤ers from most papers listed above because it has two disconti-

3



nuities. On the other hand, it di¤ers from some known bifurcation mechanisms
of piecewise linear maps because of a particular, always satis�ed, "stability con-
dition", which only implies the existence of periodic and quasiperiodic dynamic
behaviors. In other words, as we will see, a chaotic motion never occurs and
any small parameters�variation leads to a cycle of di¤erent period (or quasi-
periodic behavior). The main point is that the economic model here described
surprisingly leads exactly to this class of maps.
While our focus is on one-dimensional maps, we �nally mention that piece-

wise linear or piecewise smooth maps in higher-dimensional spaces have also
been proposed in di¤erent areas of science and economics. Besides some of the
aforementioned works, see, for instance, di Bernardo et al. [21], De et al. [17,
18] and Banerjee et al. [1].

3 A discontinuous �nancial market model

Overall, our �nancial market model consists of rather standard building blocks,
formalizing the behavior of a market maker, and four types of speculators. A
special feature of our model is that we assume that so-called type 1 chartists
and type 1 fundamentalists are always active in the market, whereas so-called
type 2 chartists and type 2 fundamentalists only become active when prices
deviate at least a certain minimum amount from fundamentals. Note that the
more unbalanced a market becomes, the more attention it indeed receives, for
instance due to heightened media coverage. Popular examples in this respect
include the dot-com bubble and the recent �nancial crisis following the Lehman
debacle. On the one hand, this may trigger an additional in�ow of chartists
which optimistically/pessimistically speculate on a continuation of the current
bull/bear market. On the other hand, there may also be an additional in�ow
of fundamentalists which believe they can pro�t from a fundamental price cor-
rection. In this paper, we thus consider an attention-based market entry of
additional traders. In Appendix A, however, we also provide an alternative,
pro�t-based market entry argument. Note that both arguments imply the same
dynamical system.
Since our simple model concentrates on transactions of heterogeneous spec-

ulators, it can, with some liberty, be seen as a stylized representation of a stock,
commodity or foreign exchange market. The model will be presented in section
2.1. In section 2.2, we will then discuss some properties of our piecewise linear
maps, and related maps, which are helpful for understanding and appreciate the
properties of our model.

3.1 Our model�s building block

The �rst building block of our model describes price adjustments. Following
Day and Huang [13], we assume a market maker mediates transactions out of
equilibrium by providing or absorbing liquidity, depending on whether the excess
demand is positive or negative. In addition to clearing the market, the market
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maker quotes prices according to the following rule

Pt+1 = Pt + a
�
DC;1
t +DF;1

t +DC;2
t +DF;2

t

�
; (1)

where P is the log price, a is a positive price adjustment parameter, and DC;1
t ,

DF;1
t , DC;2

t and DF;2
t are the orders of the four types of speculator. Accord-

ingly, excess buying drives the price up and excess selling drives it down. For
simplicity, yet without loss of generality, we set scaling parameter a equal to 1.
Chartists believe in the persistence of bull and bear markets. The orders of

type 1 chartists are therefore given by

DC;1
t = c1 (Pt � P �) ; (2)

where c1 is a positive reaction parameter and P � stands for the asset�s (constant)
log fundamental value. Hence type 1 chartists submit buying orders in bull
markets and selling orders in bear markets2 .
The trading behavior of fundamentalists is exactly contrary to the trading

behavior of chartists. We formalize the orders of type 1 fundamentalists by

DF;1
t = f1 (P � � Pt) ; (3)

where f1 is a positive reaction parameter. Clearly, (3) generates buying orders
when the market is overvalued and generates selling orders when it is underval-
ued.
What type 1 chartists and type 1 fundamentalists have in common is that

they are almost always active. Once they perceive a mispricing, they start
trading. Type 2 chartists and type 2 fundamentalists are di¤erent to them in
the sense that they only become active when the misalignment exceeds a cer-
tain critical threshold level. As already mentioned, we assume in our model
an attention-based market entry of type 2 traders (and Appendix A develops a
pro�t-based market entry argument, leading exactly to the same demand func-
tion). The orders of type 2 chartists and type 2 fundamentalists are therefore
represented by

DC;2
t =

�
0 if jPt � P �j < z
c2 (Pt � P �) if jPt � P �j > z

(4)

and

DF;2
t =

�
0 if jPt � P �j < z
f2 (P � � Pt) if jPt � P �j > z

(5)

respectively. Again, reaction parameters c2 and f2 are positive and the afore-
mentioned threshold level is given by z > 0.
It is convenient to express the model in terms of deviations from its funda-

mental value. Using auxiliary variable Xt = Pt � P � and combining (1) to (5)
yields

Xt+1 =

�
(1 + c1 � f1)Xt if jXj < z
(1 + c1 � f1 + c2 � f2)Xt if jXj > z ; (6)

2This building block also goes back to Day and Huang [13]. Note that Boswijk et al. [6]
and Westerho¤ and Franke [71] report empirical support for such kind of trading behavior.
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which is a one-dimensional map consisting of three linear, disconnected straight
lines.
Furthermore, it is useful to introduce de�nitions S1 = c1 � f1 and S2 =

c2 � f2. Note �rst that S1 and S2 can take any values. A positive (negative)
value of S1 means that type 1 chartists are more (less) aggressive than type 1
fundamentalists. Of course, the same interpretation holds for S2 and type 2
speculators: a positive (negative) value of S2 now means that type 2 chartists
are more (less) aggressive than type 2 fundamentalists.
At �rst sight, it might appear peculiar that type 2 chartists and type 2

fundamentalists become active simultaneously when the distance between the
price and the fundamental value becomes larger than z and, indeed, a more
general model might allow for two di¤erent threshold levels (which would result
in a map with �ve linear branches). However, in an even simpler version of our
model we can have any positive value for S2 if we assume that there are only type
2 chartists and any negative value for S2 if we assume that there are only type
2 fundamentalists. As we shall see later on, the latter speci�cation, implying
additional fundamentalists, is particularly interesting (and economically quite
reasonable). For the moment, however, we shall stick to the more general setup
which includes both type 2 chartists and type 2 fundamentalists.
To simplify the notation even further, let us write X 0 = Xt+1 and X = Xt.

Then (6) can be expressed as

F : X 0 =

�
(1 + S1)X if jXj < z
(1 + S1 + S2)X if jXj > z : (7)

This is the map we explore in detail in the rest of the paper.

3.2 Some preliminary properties

First, however, it is helpful to contrast some properties of map (7) with those
of the following map

F : X 0 =

�
(1 + S1)X + E if jXj < z
(1 + S1 + S2)X if jXj > z ; (8)

where the extra parameter E can be positive or negative3 .
A �rst property is that parameter z is a scale variable. In fact, by using the

change of variable x = X=z and de�ning the aggregate parameter M = E=z;
our model in (8) becomes

F : x0 =

�
(1 + S1)x+M if jxj < 1
(1 + S1 + S2)x if jxj > 1 : (9)

That is, we have the following

Property 1. The map in (8) is topologically conjugated to the map in (9).
3Note that map (8) with E 6= 0 corresponds to a �nancial market model which is studied

in Tramontana et al. [68].

6



Note that M can be positive, negative or zero. However, the two cases with
a positive and negative sign of M are topologically conjugated to one another.
We have the following

Property 2. The map F in (9) with M < 0 is topologically conjugated with
the same map F and M > 0.

In fact, by using the change of variable y = �x, the map in (9) leads to

F : y0 =

�
(1 + S1)y �M if jyj < 1
(1 + S1 + S2)y if jyj > 1 : (10)

Clearly, the property holds also for map F in (8) with the sign of E. Hence,
model (9) can be expressed as:

F : x0 =

8<: g(x) = (1 + S1 + S2)x if x < �1
f(x) = (1 + S1)x+M if � 1 < x < 1
g(x) = (1 + S1 + S2)x if x > 1

; (11)

and is represented by a one-dimensional piecewise linear discontinuous map,
with two discontinuity points.
Investigating dynamics of this kind of map is quite new, and not yet fully

understood. We can therefore have some generic dynamic properties for our
class of maps, which are related to the piecewise linear structure (see Tramon-
tana et al. [68]). As we shall see, the case with M = 0 is very special. The
numerical simulations of the observed dynamics may lead to incorrect conclu-
sions, re�ecting a sequence of states very close to chaotic behavior, although
no chaos can occur. In fact, this case leads to a non-chaotic map with peculiar
properties, with regular dynamics, either being periodic or quasiperiodic, and
will be completely investigated in this paper.
By contrast, when M 6= 0; the dynamic behavior generally includes attract-

ing cycles (structurally stable, as persistent for variation of each parameter in
some interval) or truly chaotic dynamics (also structurally stable or robust, i.e.
persistent under parameter variation). The most important property for these
piecewise linear maps is that the appearance of cycles cannot occur via a fold
(or tangent) bifurcation, as is usual in smooth maps. Instead, a cycle can ap-
pear/disappear only via a border collision bifurcation. This term, initially used
in papers by Nusse and Yorke [54,55], is now used extensively in the literature
of piecewise smooth systems. A cycle undergoes a border collision bifurcation
when one of its periodic points merges with a discontinuity point.
Even if map (9) can generate cycles with periodic points in two or three of

its partitions, there are only two functions involved, so that the eigenvalue of
a cycle depends only on the number of periodic points in which functions f(x)
and g(x) are applied. Moreover, the �ip bifurcations are not the usual ones (we
recall that for smooth maps it is associated with the appearance of a stable cycle
of double period). In piecewise linear maps only degenerate �ip bifurcations can
occur, so that at the bifurcation value a whole segment of cycles of double
period exists, stable but not asymptotically stable. The dynamic e¤ects, after
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the bifurcation, are not uniquely de�ned. It is possible to have several kinds
of dynamics, but often this bifurcation leads to chaotic sets, that is to cyclic
chaotic intervals (see Sushko and Gardini [64]). Thus the following property
holds:

Property 3. A structurally stable cycle of map F in (9) can appear/disappear
only via a border collision bifurcation. The eigenvalue of a cycle having p peri-
odic points in the middle region ( jxj < 1) and q outside ( jxj > 1) is given by
� = (1 + S1)p(1 + S1 + S2)q: Only degenerate-type �ip bifurcations can occur.

Moreover, another property of map (9) is also immediate, and excludes cases
which are unfeasible in the applied context, as leading to divergent trajectories.
We know from property 3 that when both slopes of functions f(x) and g(x)
are in modulus higher than 1, then all of the possible cycles are unstable, as
j�j > 1: In these cases, a piecewise linear map can only have chaotic dynamics
(when bounded trajectories exist) or divergent trajectories. However, due to
the particular structure of our map, when j1 + S1j > 1 and j1 + S1 + S2j > 1,
we cannot have bounded dynamics because function g(x) is linear. This implies
that whatever the dynamics in the range jxj < 1, where the map is a¢ ne, in a
�nite number of iterations any not �xed trajectory enters the region with jxj > 1;
where it depends on the iterations of an expanding linear function (g(x); the
graph of which is through the origin). The length of the interval bounded by
0 and xt can therefore only increase at each step. The unique possible existing
cycle is thus an unstable �xed point. Hence we have proved the following

Property 4. Consider map F in (9) with j1+S1j > 1 and j1+S1+S2j > 1:
Then any initial condition di¤erent to the unstable �xed point (if existing) has
a divergent trajectory.

Economically, j1+S1j > 1means either that type 1 chartists are slightly more
aggressive than type 1 fundamentalists (S1 > 0) or that type 1 fundamentalists
are considerably more aggressive than type 1 chartists (S1 < �2). Moreover,
j1 + S1 + S2j > 1 may be interpreted in the sense that the joint impact of
type 1 and type 2 chartists dominates, at least slightly, over the joint impact of
type 1 and type 2 fundamentalists or that the joint impact of type 1 and type
2 fundamentalists is much stronger than the joint impact of type 1 and type
2 chartists. We learn from this, furthermore, that not only chartists but also
fundamentalists can contribute to market instability.
In the statement of property 3 we considered structurally stable cycles, which

can occur only for M 6= 0: Depending on the values of the parameters, as such
positive or negative slopes of functions f and g, we can have di¤erent dynamic
properties. The possible outcomes associated withM 6= 0 has been investigated
in Tramontana et al. [68], while the dynamics existing whenM = 0 is the object
of the present study. As already remarked, the case M = 0 is special as only
structurally unstable dynamics, either periodic or quasiperiodic, can exist.
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4 Non-chaotic regime at M = 0

Let us consider map F in (11), for the particular case M = 0; say F0 (which
corresponds to map F in (7) after the change of variable x = X=z):

F0 : x0 =

�
f(x) = (1 + S1)x if jxj < 1
g(x) = (1 + S1 + S2)x if jxj > 1 (12)

and keeping all of the possible values for the slopes of functions f(x) and g(x);
that is (1 + S1) and (1 + S1 + S2) can be positive or negative and in modulus
higher or smaller than 1. We can therefore consider the regions in the parameter
space (S1; S2), as summarized in Fig. 1. This map is a particular case of a class
of dynamical systems, whose properties have been analyzed in Gardini and
Tramontana [24]. In this subsection we recall the main properties that hold for
our speci�c model.
Before proceeding to comment on behavior in the parameter space, let us

remark on one further property speci�c to this case M = 0, which holds in the
phase space of variable x. Performing the change of variable y = �x, the map
is transformed into itself:

y0 =

�
f(y) = (1 + S1)y if jyj < 1
g(y) = (1 + S1 + S2)y if jyj > 1 (13)

which means that the phase space is symmetric with respect to the origin. That
is: either a trajectory is symmetric with respect to the origin or the symmetric
one also exists. This is particularly true for a periodic orbit. We have therefore
proved the following
Property 5. Map F0 is invariant with respect to the change of variable

y = �x: Thus a periodic orbit (x1; x2; :::xn) either has points symmetric with
respect to the origin or (�x1;�x2; :::� xn) is also a periodic orbit.
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Fig. 1 Two-dimensional parameter space (S1; S2) at M = 0: The regions are
bounded by straight lines S1 = 0; S1 = �2; S2 = �S1; S2 = �S1 � 2: Line

S2 = �S1 � 1 leads only to a qualitative change.

Let us now consider the parameter space. In Fig. 1 the regions with divergent
dynamics are those already introduced in Property 4; those associated with the
stability of the �xed point in origin O = (0; 0) are described in the following

Property 6. Consider map F0 with j1 + S1j < 1: For j1 + S1 + S2j < 1
�xed point O in the origin is globally attracting. For j1 + S1 + S2j > 1 �xed
point O is attracting, with basin of attraction B(O) =]� 1; 1[; while any i.c. x
with jxj > 1 has a divergent trajectory .
In fact, if j1 + S1 + S2j < 1, then any initial condition in the range jxj > 1

has a trajectory which, in a few iterations, enters range jxj < 1 from which the
trajectory converges to the origin. This leads to the red region in Fig. 1, while
the dynamics in the other regions of the vertical strip of Fig. 1 are associated
with j1+S1+S2j > 1: In such a case, any initial condition in the range jxj < 1
has a trajectory which converges to the origin, as it is locally stable and the
map is linear in that region, while any initial condition in range jxj > 1; due to
the structure of the piecewise linear map, has a trajectory which is divergent.�
Similar to before, these cases can be interpreted economically. For instance,

the unique �xed point of the model, where the price is equal to its fundamental
value, is globally stable if type 1 fundamentalists are more aggressive than type
1 chartists, but also not too aggressive (�2 < S1 < 0) and also if the joint
impact of both types of fundamentalists is stronger, yet not very much stronger
(S1 + S2 has to remain larger than -2), than the joint impact of both types of
chartist.
The particular cases with (1 + S1) = 1 and (1 + S1) = �1; that is S1 = 0

and S1 = �2; are degenerate bifurcations (as described in Sushko and Gardini
[64]). For S1 = 0 there is segment ]� 1; 1[ �lled with �xed points; for S1 = �2
segment ]� 1; 1[ is �lled with period 2 cycles. At these degenerate bifurcations,
the existing cycles are stable but not asymptotically stable (i.e. they do not
attract the trajectories of nearby points). After the bifurcation, for j1+S1j > 1;
the result depends on the modulus of (1 + S1 + S2): As we have seen, for
j1+S1+S2j > 1 only divergent dynamics can occur, while for j1+S1+S2j < 1
an invariant absorbing interval J exists, given by:

J = [f(�1); f(1)] = [�(1 + S1); (1 + S1)]; if (1 + S1) > 1 (14)

J = [f(1); f(�1)] = [(1 + S1);�(1 + S1)]; if (1 + S1) < �1;

attracting the trajectories of all points of the phase space outside J (and from
which a trajectory cannot escape). Thus the dynamics cannot be divergent.
It follows that the particular cases left to our analysis are exactly those in

the green regions of Fig. 1, which is the main object of our work. As visible
from Fig. 1, the regions under investigation are really four di¤erent regions,
associated with di¤erent values of the slopes of functions f(x) and g(x): For
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S1 > 0, these include the two cases

H1(i) : (1 + S1) > 1; 0 < (1 + S1 + S2) < 1; increasing/increasing (15)

H1(ii) : (1 + S1) > 1; �1 < (1 + S1 + S2) < 0; increasing/decreasing,

while for S1 < �2, these include the two cases

H2(i) : (1 + S1) < �1; 0 < (1 + S1 + S2) < 1; decreasing/increasing(16)
H2(ii) : (1 + S1) < �1; �1 < (1 + S1 + S2) < 0; decreasing/decreasing.

Again, these four regions have a simple economic interpretation. For in-
stance, case H1(i) states that type 1 chartists are more aggressive than type 1
fundamentalists, but that the joint impact of both types of fundamentalist is
stronger than the joint impact of both types of chartist. The di¤erence between
case H1(i) and case H1(ii) is that the joint impact of both types of fundamen-
talist is stronger in case H1(ii), yet also not too much stronger (S1 + S2 has to
remain above -2). Obviously, the main di¤erence between the two H1 cases and
the two H2 cases is then that the H2 cases imply that type 1 fundamentalists
are so aggressive that they destabilize the steady state within the inner regime.
Global stability will, however, still be maintained as long as j1 + S1 + S2j < 1.
Given the assumption S1 < �2, it is then clear that aggressive type 2 chartists
are required to prevent price explosions.
In the next sections, we shall fully explain cases H1(i) and H1(ii), which will

also be used to explain cases H2: Let us �rst introduce the peculiar property of
our model described by map F0; which is stated in the following

Property (S). Consider map F0 with j1 + S1j > 1 and j1 + S1 + S2j < 1:
Then the following equalities hold :

(S) : f � g(1) = g � f(1) ; f � g(�1) = g � f(�1): (17)

In fact, this property can be immediately veri�ed from the de�nition of map
F0 given in (12): we have g � f(1) = (1 + S1 + S2)(1 + S1) and f � g(1) =
(1 + S1)(1 + S1 + S2) as well as g � f(�1) = �(1 + S1 + S2)(1 + S1) and
f � g(�1) = �(1 + S1)(1 + S1 + S2); so that the properties in (17) hold.�
Property (S) is an important property because it leads to a stability regime

which is, however, structurally unstable, that is: any small change in any pa-
rameter of the model leads to a di¤erent dynamic behavior. The important
dynamic property of map F in this case M = 0 is exactly this Property (S)
which, as we shall see, implies that an invariant set I exists, and each point
of I has a unique rank-1 preimage in the set I itself. This property (that
each point of I has a unique rank-1 preimage in the set I itself) is exactly the
property of a linear rotation on a circle and, depending on a suitable rotation
number, which in our case is associated with the values of parameters S1 and
S2; a trajectory may be either periodic (in which case all of the points of the
interval I are periodic of the same period), or quasiperiodic and dense in the
interval I. In case H1(i) (increasing/increasing), considered in the next section,
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there are two disjoint invariant absorbing intervals: IR and IL. In case H1(ii)
(increasing/decreasing), considered thereafter, the invariant set I will be the
union of two intervals.
Let us analyze the conditions leading to periodic dynamics. Let x be a point

belonging to the absorbing set I of map F0, di¤erent to a discontinuity point.
Then it can be a periodic point of �rst period n if n is the minimum integer
such that Fn0 (x) = x: Let p be the number of periodic points of the n�cycle in
the region jxj < 1 and q in the region jxj > 1, (p+ q) = n. Then we have

Fn0 (x) = (1 + S
1)p(1 + S1 + S2)qx: (18)

It follows that the condition of periodic orbit, (1 + S1)p(1 + S1 + S2)qx = x;
can be satis�ed by a point x 6= 0 i¤ the eigenvalue � = (1 + S1)p(1 + S1 + S2)q
of the cycle satis�es the following equation

(1 + S1)p(1 + S1 + S2)q = 1; (19)

and thus the eigenvalue is � = 1: We have so proved the following

Property 7. Consider map F0 with j1 + S1j > 1 and j1 + S1 + S2j < 1.
a) All of the trajectories enter an invariant absorbing interval I, inside which

we can have either all periodic orbits or all quasiperiodic trajectories.

b) The periodic orbits occur when the parameters satisfy the equation � =
(1 + S1)p(1 + S1 + S2)q = 1 for suitable integers p and q:

The proofs are given in Gardini and Tramontana [24].
The fact that the eigenvalue of any cycle is equal to 1 means that the cycle

is stable but not attracting, and in the piecewise linear case this can only occur
for all points of an interval. That is, map F0 necessarily satis�es condition
Fn0 (x) = x for all points x of a suitable interval, invariant for F

n
0 , all points of

which are periodic of the same period and with the same symbol sequence (i.e.
with the same sequence of applied functions f(x) and g(x)). Examples shall be
given in the following sections, where the di¤erent cases are considered.

5 Dynamics in case H1(i); increasing/increasing

Let us consider here the e¤ects of Property (S) for the dynamics when the map
has the two functions f(x) and g(x), both with positive slopes (1+S1) > 1 and
0 < (1 + S1 + S2) < 1, as qualitatively shown in Fig. 2a.
Under such assumptions, the map leads to two coexisting absorbing intervals,

and thus we necessarily have bistability. In fact, any initial condition in region
x > 0 will forever be in that region, entering the absorbing interval IR =
[g(1); f(1)] in a �nite number of iterations, from which it cannot escape. Thus
it attracts the points in B(IR) =]0;+1[, which is its basin of attraction. The
restriction of map F0 to absorbing interval IR is given by

FR : x0 =

�
f(x) = (1 + S1)x if g(1) < x < 1
g(x) = (1 + S1 + S2)x if 1 < x < f(1)

; (20)
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where g(1) = (1 + S1 + S2) 2 (0; 1) and f(1) = (1 + S1) > 1:

Fig. 2 Map F0 in case H1(i) at S1 = 0:75 and S2 = �0:9940711 is shown in (a):

Similarly, any initial condition in region x < 0 will forever be in that region,
entering the absorbing interval IL = [f(�1); g(�1)] in a �nite number of itera-
tions, from which it cannot escape, and it attracts the points in B(IL) =]�1; 0[.
The restriction of map F0 to absorbing interval IL is given by

FL : x0 =

�
g(x) = (1 + S1 + S2)x if f(�1) < x < �1
f(x) = (1 + S1)x if � 1 < x < g(�1) ; (21)

where f(�1) = �(1 + S1) < �1 and g(�1) = �(1 + S1 + S2) 2 (�1; 0):
Which kind of dynamics, then, can we have inside the two invariant absorb-

ing intervals? Since no divergent trajectory can occur, we can argue that an
initial condition in the intervals leads to some attracting set. However, this is
not the case. An attracting set (or attractor) is de�ned as some invariant set
for which a neighborhood exists whose points converge to the attractor. But
this cannot occur in our map, due to the existence of property (S). In fact, it
is known (as shown in [25,36]) that in the case of a piecewise smooth increasing
discontinuous map, the property in (17) leads to a map which is conjugated
with a linear rotation. This means that, depending on the values of S1 and
S2, a suitable rotation number may be de�ned, which may be rational or irra-
tional. For a rational rotation number, all points of absorbing intervals IR=L

are periodic (and all of the same period). For an irrational rotation number,
all points of absorbing intervals IR=L have quasiperiodic trajectories dense in
absorbing intervals IR=L, but are not chaotic. Thus no true attracting set can
exist, but the dynamics are regular: when there are periodic orbits, these are
stable but not attracting. This is also the case when there are quasiperiodic tra-
jectories. Moreover, these dynamics are structurally unstable, as they depend
on a rational or irrational rotation number, which cannot persist when varying
the parameters.
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An example of periodic orbits is shown in Fig. 2 for case H1(i) at S1 = 0:75
and S2 = �0:9940711 (the reason why this value arises is explained below). At
these parameter values, all points of invariant intervals IR and IL are periodic
of period 3 (see Fig. 2a). The third iterate of the map is shown in Fig. 2b. It
consists in several branches, one of which belongs to the diagonal on invariant
interval IR, and a second branch on the diagonal on interval IL:
The main result for our map is that this dynamic property is always true,

independent of the values of the slopes, in the regions marked with (S) in Fig. 1.
That is, for map F0 in which we are interested, this kind of non-chaotic regime,
characterized by structurally unstable orbits (either periodic or quasiperiodic),
is persistent for both parameters in cases H1(i and ii) and cases H2(i and ii);
previously de�ned.
Let us consider here a few more properties on the organization of the exist-

ing cycles. Property 7, in the previous section, states when a cycle can exist.
However, is it possible to �nd the exact values of p and q that give us the cy-
cles? And is it possible to somehow organize their existence regions (which are
curves in the two-dimensional parameter plane (S1; S2))? The answers to both
questions is positive and in Fig. 3 we can see some border collision bifurcation
curves in the (S1; S2) parameter plane. In Appendix B we recall how to analyt-
ically obtain such curves. Under assumption H1(i); the in�nitely many curves
for which parameters (S1, S2) are associated with periodic orbits are dense in
that region.
However, if we numerically compute a bifurcation diagram, we observe a

�gure as shown in Fig. 4, where variable x is reported as a function of S2 at
S1 = 0:75 �xed.
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Fig. 3 Curves drawn analytically in regions H1(i) and H1(ii); as explained in the
text, associated with periodic orbits of �rst and second complexity level.
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Fig. 4 One-dimensional bifurcation diagram for map F0 showing x as a function of
S2 in both regions H1(i) and H1(ii):

For S1 = 0:75 �xed, the region corresponding to assumptionH1(i) is the interval
�1:75 < S2 < �0:75: There we have two disjoint and coexisting invariant
absorbing intervals IR (in black in Fig. 4) and IL (in red in Fig. 4). The
numerical results are qualitatively similar to those which can be obtained in a
chaotic regime. However, no chaotic regime can exist here. Since there are either
periodic points or quasiperiodic trajectories at all the parameters values, and
due to the fact that both the values of periodic orbits and quasiperiodic orbits
are dense in the interval, we can numerically observe mainly a quasiperiodic
orbit.

Fig. 5 Map F0 in case H1(i) at S1 = 0:75 and S2 = �1:5 is shown in (a): (b) shows
versus time behavior of two coexisting trajectories at the same parameters as in (a).

We notice that the versus time trajectory may also be misleading. It may be
considered chaotic, although this cannot be the case. An example is shown in
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Fig. 5. Fig. 5b shows the versus time behaviors of two coexisting trajectories,
one in absorbing interval IR and the other in absorbing interval IL:

5.1 Dynamics in the other cases

Fig. 3 also shows the bifurcation curves in region H1(i), drawn re�ected in
region H1(ii). That is, if parameter (S1; S2) belongs to a curve in region H1(i),
then also the parameter which is symmetric with respect to curve S2 = �(1+S1)
necessarily belongs to a curve in region H1(ii) associated with a periodic orbit
of F0. For example, Fig.6 shows the 3-cycle symmetric to the 3-cycle shown in
Fig.2.
Another example is given in Fig 7, where to the 4-cycles in region H1(i)

(Fig. 7a) are associated symmetric points of 8-cycles in region H1(ii) (Fig. 7c).

Fig. 6 Map F0 in case H1(ii) at (1+S1) = 1:75 and (1+S1+S2) = �0:7559289:
In (a) all points are periodic of period 3. (b) shows a typical timeplot.
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Fig. 7 Map F0 in case H1(i) at a = 1 + S1 = 1:75 and
b = 1 + S1 + S2 = 0:829826534 with 4-cycles and F 40 are shown in (a). In (b) a
timeplot. In (c) at parameters (a;�b), corresponding to a point in H1(ii), there

exist all 8-cycles, and F 80 is shown. In (d) a timeplot.

While the results associated with the case under assumptions H1(i) has already
been proved in the literature, only recently, Gardini and Tramontana [24] proves
similar results for case H1(ii) and H2(i; ii). In particular, for case H1(ii) (in-
creasing/decreasing) Gardini and Tramontana [24] show that the dynamics are
exactly the same as those described in the increasing/increasing case, and we
can analytically write the curves for which we can �nd all periodic orbits and
of any level of complexity. The property in (17) still holds, meaning that even
if the map has increasing and decreasing branches (see Fig. 8), it is uniquely
invertible in the invariant absorbing set, given by

I = [f(�1); g(1)] [ [f(1); g(�1)]: (22)

As a consequence of Property (S), in set I the map has either all periodic
points dense in I or quasiperiodic trajectories dense in I. A numerically ob-
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tained bifurcation diagram is shown in Fig. 4 at S1 = 0:75 �xed, in the region
corresponding to assumption H1(ii), which is the interval �2:75 < S2 < �1:75:
Although the �gure suggests chaotic behavior, it is not. We can determine
the curves associated with periodic orbits. In fact, regarding the structure of
the existing cycles, we can see that in this case, in a periodic orbit function
g(x) is necessarily applied an even number of times. Thus on the curves of
region H1(ii), which are symmetric of those of region H1(i), either the period
is the same (if the number of applications of g is even (i.e. if q is even in
apb

q
= (1 + S1)

p
(1 + S1 + S2)

q
= 1) or it corresponds to a cycle of double

period (see Appendix C for the technical details).

Fig. 8 Map F0 in case H1(ii) at S1 = 0:75 and S2 = �1:9 is shown in (a): (b)
shows versus time trajectories of x at the same parameter values as in (a), in the

absorbing interval I de�ned in (22).

Gardini and Tramontana [24] also generalize the reasoning, saying that all
curves existing in regionH1(i; ii) with (1+S1) > 1must also have the symmetric
curves in region (1+S1) < �1; in H2(i; ii), associated with periodic orbits. Ax
example is given in Fig. 9 where we can see the cycles corrisponding to the
4-cycles in Fig. 7 (see Appendix C for the details).
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Fig. 9 Map F0 in case (�a; b) = (�1:75; 0:829826534), corresponding to a point in
H2(i); shows all 8-cycles in (a), as well as F 80 . In (b) a timeplot. In (c) the case

(�a;�b) = (�1:75;�0:829826534), corresponding to a point in H2(ii); we have all
4-cycles, and F 40 is shown. In (d) a timeplot.

6 A calibrated stochastic model version

So far, we have seen that our model is able to produce endogenous dynamics for
a broad range of parameter values and thus has, at least in a qualitative sense,
some potential to explain the emergence of bubbles and crashes and the high
variability of �nancial markets. The goal of this section is to explore to which
extend our model is able to mimic the �ner details of the dynamics of actual
�nancial markets. For a general survey about the statistical properties of actual
�nancial markets see, for instance, Lux and Ausloos [45].
Let us �rst consider Fig. 10 which visualizes the behavior of the Dow Jones

Index. Since other �nancial markets possess quite similar statistical properties
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�that is the reason why these properties are called stylized facts �it is su¢ cient
for us to restrict our attention on this particular market. The underlying time
series runs from 1995 to 2012 and contains 4525 observations. The top panel of
Fig. 10 shows the evolution of the Dow Jones Index. Note its enormous up and
down movements (the average of the Dow Jones Index is given with 9218, and
displayed by the dotted line). For instance, between 1995 and 2001 the Dow
Jones Index more than doubled its value while between 2007 and 2009 it lost
about half its value. Such price swings are typical indicators for bubbles and
crashes. The panel below presents the log changes of the Dow Jones Index, i.e.
its returns. As we can see, the Dow Jones Index is quite volatile. For instance,
the standard deviation of the return time series is roughly 0.12. Moreover, the
returns repeatedly exceeded the 5 percent level and there are even two occasions
where the Dow Jones Index increased by more than 10 percent.
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Fig. 10. The dynamics of the Dow Jones Index. The underlying time series runs
from 1995 to 2012 and contains 4525 observations.
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The left panel in the center of Fig. 10 depicts the distribution of the returns.
As revealed by the thick line, the distribution of the returns of the Dow Jones
Index is unimodal, almost symmetric and bell-shaped. The thin line shows nor-
mally distributed returns with identical mean and standard deviation (estimated
from the returns of the Dow Jones Index). Relative to the normal distribution,
we detect a higher concentration around the mean, thinner shoulders and again
more probability mass in the tails of the distribution. The latter result becomes
more apparent in the right panel in which the thick line presents the cumula-
tive distribution of normalized positive and negative returns, on a log-log scale,
while the thin line shows the same for standard normally distributed returns.
The extra probability mass located in the tails of the return distribution of the
Dow Jones Index is quite remarkable. A regression on the largest 30 percent of
these observations delivers a tail index of about 3.17, providing ample evidence
for the existence of a fat-tailed return distribution.
The bottom two panels contain the autocorrelation coe¢ cients of raw returns

and absolute returns for the �rst 100 daily lags. Note that for almost all lags
the autocorrelation coe¢ cients of the raw returns are not signi�cant (95 percent
con�dence intervals are given by the thin dotted lines). Despite its boom-bust
behavior, as documented by the �rst panel of Fig. 10, the path of the Dow
Jones Index is, in a statistical sense, close to a random walk. However, the
autocorrelation coe¢ cients of absolute returns are highly signi�cant, even after
100 lags, indicating that periods of low volatility alternate with periods of high
volatility. Of course, the strong volatility clustering behavior of the Dow Jones
Index is already observable in the second panel of Fig. 10.
At �rst sight, one could have the impression that our simple model has

no chance to produce such intricate dynamics. And indeed, our deterministic
model only o¤ers a stylized explanation for bubbles and crashes and excess
volatility. As we will see, however, a stochastic version of our model is capable
to produce realistic dynamics. Let us turn back to our �nancial market model,
as represented by (1) to (5), and assume that the reaction parameters of the
traders as well as their perceptions of the fundamental value are subject to
stochastic variations. To be more precise, let us assume that

c1 � N(0:150; 0:046); f1 � N(0:138; 0:046);
c2 � N(0:128; 0:043); f2 � N(0:150; 0:043);
P � � N(0; 0:065); z = 0:2

Before we continue, a few remarks are in order. First, the above parame-
ter values have been identi�ed via a trial-and-error calibration exercise, i.e. we
have systematically varied these parameters till the model dynamics appeared
satisfactory to us. For more advanced techniques to estimate simple agent-
based �nancial market models see Franke and Westerho¤ [23]. Second, it seems
reasonable to us that the reaction parameters of the traders and their percep-
tion of the fundamental value are not constant but may change from period
to period. Neither do all traders always follow exactly their trading rules nor
is the computation of the fundamental value always free of errors. Since we
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don�t want to model the traders� deviations from their deterministic trading
rules in detail, we simply assume that the reaction coe¢ cients and the percep-
tion of the fundamental are random variables. A similar modeling strategy is
adopted in Westerho¤ and Franke [71] and Tramontana and Westerho¤ [69]4 .
Note that there are no deterministic agent-based �nancial market models which
can jointly replicate the main stylized facts of �nancial markets, i.e. some kind
of randomness seems to be needed in these models to obtain a good �t. Third,
our speci�cation has a clear economic interpretation, at least with respect to
the means of the above random variables. According to our speci�cation, type
1 chartists (weakly) dominate type 1 fundamentalists while type 2 fundamen-
talists (strongly) dominate type 2 chartists. As a result, the dynamics is within
the inner regime, on average, unstable, while the dynamics is within the outer
regimes, on average, stable. The perceived log fundamental values vary around 0
and type 2 traders enter the market when the misalignment exceeds 20 percent.
Fig. 11 presents a typical simulation run of our stochastic model. Since

the underlying time series contains 4500 observations, Fig. 11 can directly
be compared with Fig. 10. The similarity between the two �gures becomes
immediately obvious. Our stochastic model is able to produce bubbles and
crashes and excess volatility, as demonstrated by the �rst two panels. Prices
erratically oscillate around the fundamental value with pronounced amplitude
and there are a number of sharper price changes. The standard deviation of the
return time series is with 0.014 slightly above what we have measured for the
returns of the Dow Jones Index.

4An alternative to assuming that key model parameters are random variables is to add
additive noise to the main structural model equations, as is, for instance, done in Franke and
Westerho¤ [23].
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Fig. 11. A representative simulation run of our stochastic model. The underlying
time series contains 4500 observations. Parameter setting as in Section 8.
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Also the distribution of simulated returns is well behaved and deviates in
the same way as before from normally distributed returns with identical mean
and standard deviation (now estimated from simulated returns). While our
simulation run possess somewhat more probability mass in the center of the
return distribution, the tail behavior of simulated and actual returns is strikingly
similar. For instance, the estimate of the tail index for simulated returns is
given with 3.14, compared to 3.17 for the returns of the Dow Jones Index. Note
also that simulated returns are hardly predictable: almost all autocorrelation
coe¢ cients of the raw returns are insigni�cant. In contrast, the autocorrelation
coe¢ cients of the absolute returns are clearly signi�cant, even after 100 lags.
Hence, prices essentially follow a random walk and volatility strongly clusters.
All in all, we can conclude that our stochastic model has some potential to

replicate the dynamics of real �nancial markets. But how does the stochastic
version of our model function? Recall that type 1 chartists dominate, on aver-
age, type 1 fundamentalists. Suppose that this is the case for a few consecutive
time steps. As the analysis of our deterministic model reveals, the dynamics is
then unstable and a monotonic price explosion sets in, at least as long as the
system remains in the inner regime. But type 1 chartists only weakly domi-
nate type 1 fundamentalists. If, by chance, type 1 fundamentalists dominate
type 1 chartists, prices monotonically converge towards the fundamental value
(given our choice of parameters and, of course, as long as the realizations of
the random variables are not too extreme). Within the inner regime, these two
scenarios alternate more or less randomly and, as a result, the price dynamics
is close to a random walk process (the di¤erence in the means of c1 and f1 is so
small that the probability that prices increase or decrease due to a monotonic
explosion or a monotonic conversion is roughly 50 percent). However, type 1
chartists are on average more aggressive than type 1 fundamentalists and there-
fore prices trace out a bubble path from time to time. If the dynamics enters the
outer regime, the aggregate forces of type 1 and type 2 fundamentalists domi-
nate the aggregate forces of type 1 and type 2 chartists and this brings prices
eventually back to more moderate values. Since the reaction parameters of all
traders are random variables, this may not appear immediately, i.e. bubbles
may also build up further. Note furthermore that the price signals of chartists
and fundamentalists increase with the misalignment. The farther away the price
is from its fundamental value, the more aggressive is the trading behavior of the
speculators. As a result, the market maker adjusts prices, due to higher excess
demands, more strongly, which explains the volatility clustering phenomenon.
During these periods we also observe stronger price changes, causing fat tails.
Note that if prices are close to the fundamental value, misperceptions of the
fundamental value may turn a bull market into a bear market or a bear market
into a bull market. Therefore, prices �uctuate above and below the fundamen-
tal value (without such misperceptions, prices would stay, due to the monotonic
price dynamics, either always above or always below the fundamental value).
To sum up, our simple �nancial market model is able to match some im-

portant statistical properties of actual �nancial markets. Therefore, our model
may be considered as validated. Since our model rests only a minimum set of
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economic assumption, we �nd this outcome quite remarkable. We also stress
that to understand the functioning of the stochastic version of our model, the
analysis of the underlying deterministic model is quite helpful. Finally, our sto-
chastic model operates at the border of stability and instability. In the future,
we will explore whether also variations of parameter combinations that lead to
di¤erent cycles can generate realistic dynamics. There seems to be some further
potential.

7 Conclusions

In this paper we study a simple �nancial market model in which interactions be-
tween heterogeneous speculators can generate endogenous price dynamics. For
two reasons, the model has a discontinuous piecewise linear shape: �rst, specu-
lators (essentially) rely on linear technical and fundamental trading strategies.
Second, while some of them are always active, others stop trading if the mis-
alignment in the market drops below a certain threshold value. One advantage
of the model�s functional form is that it allows an in-depth and complete analyt-
ical investigation of its properties. We �nd, for instance, that the model cannot
produce chaotic motions �although the dynamics appear to be chaotic. More-
over, the model�s periodic or quasiperiodic dynamics is structurally unstable,
which means that any small change in any parameter of the model leads to a
di¤erent dynamic behavior. Since our knowledge about discontinuous piecewise
linear maps is not yet very deep, we hope that our analysis is also useful for the
investigation of similar dynamical systems.
From an economic point of view, we would like to stress that it is quite re-

markable that a simple model such as ours can help us to explain the emergence
of bubbles and crashes. Within our model, bounded endogenous dynamics re-
quire that its steady state is unstable. As we have seen, this can be caused
by either too aggressive chartists or by too aggressive fundamentalists. Further
away from the steady state, the model has, of course, to be stable. Again, this
can, in principle, be caused by both the market entry of additional chartists or
additional fundamentalists. Additional chartists are bene�cial for market sta-
bility if the steady state is destabilized by too aggressive fundamentalists while
additional fundamentalists are needed for market stability if the steady state
is unstable due to the trading behavior of too aggressive chartists. Despite its
simplicity, it is possible to bring our model to the data. If some key model
parameters are treated as random variables, the model dynamics may mimic
certain properties of actual �nancial markets quite well. Simulations reveal,
among others, virtually unpredictable prices, fat-tailed return distributions and
volatility clustering.
Our model may be extended in various directions. Of course, one could

assume more complex demand functions. For instance, one could allow chartists
to explicitly extrapolate past price trends, which would increase the dimension
of our model (the simplest case would be given by a two-dimensional system
in which chartists condition their orders on the last observable price change).
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Alternatively, one could consider di¤erent market entry levels for chartists and
fundamentalists. As a result, the model would then still be piecewise linear,
but instead of having three linear branches, it would have �ve. Moreover, it
could be interesting to explore our model�s policy implications in more detail.
According to conventional wisdom, it is essentially the behavior of chartists
which destabilizes �nancial markets. A typical recommendation thus is to reduce
their trading activity to obtain calmer markets. Yet, as our model shows, the
trading activity of chartists can also contribute to market stability. Causalities
acting inside �nancial markets are apparently more complicated than one is
tempted to believe, indicating that more research in this direction is needed to
improve our understanding of how �nancial markets function. And for this, a
better understanding of the dynamics of discontinuous piecewise linear maps
seems to be quite helpful.
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Appendix A (Microfoundation of the demand func-
tions)
The goal of this appendix is to o¤er a brief microfoundation for demand

functions (4) and (5). Instead of assuming that the market entry of type 2
traders is attention based, their market entry decision now depends on pro�t
considerations.
Let us start with type 2 chartists. Their transactions may be expressed as

DC;2
t = nC;2wC;2t dC;2t ; (A1)

where nC;2 denotes the total number of type 2 chartists, wC;2t the fraction of
active type 2 chartists and dC;2t the transaction of an active type 2 chartist.
The demand of an active type 2 chartist is formalized as

dC;2t = c2(Pt � P �): (A2)

Accordingly, an active type 2 trader is buying in a bull market (Pt > P �)
and selling in a bear market (Pt < P �), with trading aggressiveness c2 > 0.
The market shares of active and inactive type 2 chartists are modeled via

the discrete choice approach (Brock and Hommes [7,8]). The market share of
active type 2 chartists thus results as

wC;2t =
Exp

h
�aC;2t

i
Exp

h
�aC;2t

i
+ Exp

h
�aC;2t

i ; (A3)

where aC;2t and aC;2t indicate the attractiveness for type 2 chartists to be active
or to be inactive, respectively, and parameter � > 0 is the so-called sensitivity
of choice parameter. Of course, the market share of inactive type 2 chartists is
given with (1 � wC;2t ). The main implications of (A3) are as follows. Suppose,
for instance, that aC;2t > aC;2t . Then, there are more active type 2 chartists than
inactive type 2 chartists. Moreover, the market share of active type 2 traders
increases with �.
For type 2 chartists, the attractiveness of being active depends on expected

risk-adjusted pro�t opportunities and is measured as

aC;2t = �C;2 jPt � P �j � �C;2; (A4)

where �C;2 and �C;2 are positive parameters. The �rst term in (A4) captures
expected pro�t opportunities. For a type 2 chartist, a market becomes increas-
ingly attractive the more a bull or a bear state is developed. The second term
in (A4), i.e. parameter �C;2, accounts for the risk associated with trading5 .
For simplicity, the attractiveness of being inactive is set to

aC;2t = 0: (A5)

5Brock and Hommes [7,8] use �C;2 to model (constant) trading costs while Franke and
Westerho¤ [23] use �C;2 to model predisposition e¤ects. Of course, such interpretations may
also be applied in our case.
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Note that the daily risk free interest rate is indeed close to zero.
In the following, we consider the so-called neoclassical limit, that is, the

case in which � goes to plus in�nity (see again Brock and Hommes [7,8]). As
a result, all type 2 chartists are active if jPt � P �j > �C;2=�C;2 and inactive if
jPt � P �j < �C;2=�C;2. Normalizing the number of type 2 chartists to nC;2 = 1
and de�ning z = �C;2=�C;2, demand function (A1) turns into

DC;2
t =

�
0 if jPt � P �j < z
c2(Pt � P �) if jPt � P �j > z

; (A6)

which is formally equivalent to demand function (4).
A similar argument can easily be developed for the demand function of type

2 fundamentalists. Here, all type 2 fundamentalists switch from inactivity to
activity if jPt � P �j is about to exceed �F;2=�F;2. The market entry levels for
type 2 chartists and type 2 fundamentalists become identical if z = �C;2=�C;2 =
�F;2=�F;2, otherwise one would obtain a discontinuous piecewise linear map with
�ve branches.
Appendix B (Border Collision Bifurcation curves)
In case H1(i), we can follow the same technique used in the case of attracting

cycles when the so-called period adding scheme works. Indeed, as shown in
Gardini et al. [25], the intersection of the existing periodicity regions with the
locus (S) of the stable (but not attracting) regime where Property (S) holds
is a set of points in the locus which still follows the adding mechanism. We
can therefore reason similarly in our case. It is clear that, in order to have the
sequence of a so-called maximal cycle in interval IR; say with symbol sequence
fgk, we have to look for a periodic point that can be obtained as a �xed point
of composite function gk � f(x); solving of the equation gk � f(x) = x: For their
existence we have to determine all parameters S1 and S2 which satisfy, for any
k � 1;

fgk : (1 + S1)(1 + S1 + S2)k = 1: (B1)

Thus we have curves in the parameter plane (S1, S2) given by:

S2 = �(1 + S1) + 1

(1 + S1)1=k
; (B2)

a few of which (for k = 1; :::; 10) are drawn in Fig. 3a. For k = 2 we have
the 3�cycles. For S1 = 0:75, therefore, we have computed from (B2) the value
S2 = �0:9940711; used to draw the example in Fig. 2.
Following the adding mechanism, we can �nd two families of in�nite curves

associated with cycles of second level of complexity between any two consecutive
curves associated with maximal cycles, or cycles of �rst level of complexity. For
example, we have the following pair of families of in�nite curves (both for any
m � 1) between the two curves fgk and fgk+1 :

(fgk)mfgk+1 : (1 + S1)1+m(1 + S1 + S2)k+1+mk = 1 (B3)

: S2 = �(1 + S1) + 1=(1 + S1)(1+m)=(k+1+mk)
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fgk(fgk+1)m : (1 + S1)1+m(1 + S1 + S2)k+m(1+k) = 1 (B4)

: S2 = �(1 + S1) + 1=(1 + S1)(1+m)=(k+m+mk):

A few of these curves are shown in Fig. 3b for k = 1; :::; 10 and m = 1; 2; 3. In
Fig. 3c the curves of Fig. 3a,b are shown together (inside each pair of green
curves of Fig. 3a we have those in blue and red from equations (B3) and (B4)).
Similarly, we can continue for any level of complexity: between any two con-

secutive curves, with symbol sequence A and B; of the same level of complexity,
we can compute two families of in�nitely many curves, with symbol sequence
(A)nB and A(B)n, for any n � 1:
Exchanging f and g, we obtain a maximal cycle existing in interval IR; with

di¤erent symbol sequence, gfk. A periodic point can be obtained as a �xed
point of function fk � g(x). We therefore have to determine all parameters S1
and S2 such that, for any k � 1 :

gfk : (1 + S1 + S2)(1 + S1)k = 1 (B5)

and two families of curves of cycles of second complexity level are given, for any
m � 1; by:

gfk(gfk+1)m : (1 + S1 + S2)1+m(1 + S1)k+m(1+k) = 1 (B6)

: S2 = �(1 + S1) + 1=(1 + S1)(k+m+mk)=(1+m)

(gfk)mgfk+1 : (1 + S1 + S2)1+m(1 + S1)k+1+mk = 1 (B7)

: S2 = �(1 + S1) + 1=(1 + S1)(k+1+mk)=(1+m)

and so on for any level. A few of the curves in (B5) are drawn in region (i) in
Fig. 3d for k = 1; :::; 10: In Fig. 3e the curves from equations (B6) and (B7)
are drawn for k = 1; :::; 10 and m = 1; 2; 3; in Fig.3f the curves of Fig.3 d,e are
shown together.

Appendix C (Symmetry between H1(i; ii) and H2(i; ii))
We state that all curves existing in region H1(i; ii) with (1 + S1) > 1 must

also have the symmetric curves in region (1 + S1) < �1; in H2(i; ii), associated
with periodic orbits.
To show this, let us de�ne slopes a = (1 + S1) and b = (1 + S1 + S2): Then

let us consider parameters (a; b) corresponding to a point (S1; S2) belonging to
a curve in region H1(i). Then also parameters (a;�b) necessarily belong to a
curve associated with a periodic orbit of F0; in region H1(ii). In fact, we know
that

apb
q
= 1 (C1)

for some suitable integers p and q. Then if q is even, we also have

ap(�b)q = 1; (C2)
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in which case the symmetric curve is associated with a cycle of the same period
(n = p+ q). Otherwise, if q is odd, we have ap(�b)q = �1 and

a2p(�b)2q = 1; (C3)

which means that the symmetric curve corresponds to a cycle of double period
(2n = 2(p+ q)).
For example, in the case of the 3-cycle shown in Fig. 2 at (a; b) = (1:75; 0:7559289),

we have p = 1 and q = 2, which is even. Thus we must also have 3-cycles at
(a;�b) = (1:75;�0:7559289); corresponding to a curve in region H1(ii), as is in
fact shown in Fig. 6.
To parameters (a; b) = (1:75; 0:829826534) corresponds a curve in the region

H1(i) (from (??) with k = 3). The region is associated with 4-cycles with
p = 1 and q = 3 which is odd (see Fig.7a), and it follows that at (a;�b) =
(1:75;�0:829826534) corresponds a curve in the region H1(ii) and we must
have 8-cycles, as is in fact shown in Fig. 7b.
Similarly, if p is even, we also have

(�a)pbq = 1; (C4)

in which case the symmetric curve in region H2(i) is associated with a cycle of
the same period (n = p+ q). Otherwise, if p is odd we have (�a)pbq = �1 and

(�a)2pb2q = 1; (C5)

which means that the symmetric curve in region H2(i) corresponds to a cycle
of double period (2n = 2(p+ q)).
While considering the symmetric point in region H2(ii); we necessarily have

(�a)p(�b)q = 1 (C6)

when p and q are both even or both odd, in which case we have cycles of the same
period, and when p and q are one odd and one even, from (�a)p(�b)q = �1,
then we have

(�a)2p(�b)2q = 1, (C7)

in which case it corresponds to cycles of double period.
An example is shown in Fig. 8. Considering the 4-cycle in Fig. 7a, at

(a; b) = (1:75; 0:829826534); belonging to a curve in region H1(i) associated with
4-cycles with p = 1 and q = 3, at (�a; b) = (�1:75; 0:829826534), corresponding
to a point in H2(i), we must have 8-cycles, as is in fact shown in Fig. 8a. At
(�a;�b) = (�1:75;�0:829826534), corresponding to a point in H2(ii), we must
have 4-cycles, as shown in Fig. 8b.
It is clear from the remarks given here that the curves associated with pe-

riodic orbits existing in region H1(i) (where the curves are dense) also exist in
all other regions.
The dynamics in the case of assumptions H2(i; ii) are similar, since they can

be reduced to those of cases H1(i; ii) using the second iterate of the map (see
Gardini and Tramontana [24]).
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An example is shown in Fig. 12a. However, we notice that although the
versus time dynamics of map (F0)2 when non periodic is qualitatively similar
to that in Fig. 9b, the versus time dynamics of map F0 is di¤erent, as shown in
Fig. 12b.

Fig. 12 Map F0 in case H2(i) at S1 = �2:5 and S2 = 1:9s shown in (a): (b) shows
versus time trajectories of x at the same parameter values as in (a), in the absorbing

interval I .

By contrast, considering case H2(ii); for the second iteration (F0)2 nothing
changes in interval (xl; xr), where the function is f2(x). While when now we
apply, outside that interval, f once and g once; the result is a positive sloped
function, and the second iterate (F0)2 is a continuous function in the points
x = 1 and x = �1, as we can immediately verify by direct computation, or as
a consequence of Property (S). Function (F0)2 is therefore now topologically
conjugated to that already considered in case H1(i); with discontinuity points
in xl and xr in place of �1 and 1, respectively, and slopes given by (1+S1)2 > 0
and (1+S1)(1+S1+S2) > 0 in place of (1+S1) and (1+S1+S2); respectively.
That is, we have two coexisting invariant absorbing intervals, one in region x > 0
and the other in region x < 0, see Fig.13a. However, for map F0 there is always
a unique absorbing interval I, and the states jump from the positive region to
the negative one, and vice versa. An example of the versus time trajectory is
shown in Fig. 13b.
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Fig. 13 Map F0 in case H2(ii) at S1 = �2:5 and S2 = 1:1 is shown in (a): (b)
shows versus time trajectories of x at the same parameter values as in (a), in the

absorbing interval I .
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