
Converse Trading Strategies, Intrinsic Noise

and the Stylized Facts of Financial Markets

Frank Westerhoff a,∗ Reiner Franke b

April 2009

aUniversity of Bamberg, Germany
bUniversity of Kiel, Germany

Abstract

The paper proposes a simple asset pricing model with three groups of traders: chartists
who believe in the persistence of bull and bear markets, fundamentalists who bet on a re-
duction of the observed mispricing, and investors who follow a buy and hold strategy. The
innovative feature of the model concerns the frequency of trading: rather than remaining
constant over time, each agent in a group is only assumed to become active with a cer-
tain probability over a given market period. Depending on the trading strategies, part
of this elementary kind of intrinsic noise is additive and another part is multiplicative.
Using bootstrap and Monte Carlo methods, it is demonstrated that this combination can
contribute to explaining the stylized facts of the daily returns on financial markets, such
as volatility clustering, fat tails, and the autocorrelation patterns.

JEL classification: D84; G12; G14; G15.

Keywords: Fundamentalist and technical trading; model validation; volatility clustering;
daily returns; autocorrelation patterns.

1. Introduction

Models with heterogeneous agents that rely on simple heuristic trading strategies have
proven to be quite successful in generating interesting dynamics that more or less resem-
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ble the evolution of asset prices on financial markets. 1 Guided by questionnaire evidence
(Menkhoff and Taylor, 2007), this literature focusses on the behaviour of fundamental
and technical traders. The latter, also called chartists, employ trading methods that at-
tempt to extract buying and selling signals from past price movements (Murphy, 1999).
Fundamentalists, by contrast, bet on a reduction of the current mispricing with respect
to some fundamental value of the asset (see already Graham and Dodd, 1951). Despite
the many different specifications of the fundamental and technical trading rules, the in-
terplay of the counteracting forces to which they give rise is the basic mechanism driving
the price dynamics in these models.

An important branch of the research is concerned with time-varying population shares
of the heterogeneous agents. In Brock and Hommes (1998), for instance, agents switch
between chartism and fundamentalism according to an evolutionary fitness measure re-
flecting their past trading performance. In Kirman (1991), social interactions between
heterogeneous agents can cause swings in opinion, e.g. a major shift from fundamental
analysis to technical analysis. In Lux and Marchesi (1999), agents tend to follow the crowd
but also compare the recent success of their trading strategies. In a nutshell, these models
work as follows. Consider a situation where technical traders dominate the market. The
dynamics is then likely to become unstable and stronger price fluctuations, associated
with bubbles and crashes, may emerge. Eventually, however, fundamental analysis may
increase in popularity for reasons that can differ from one model to another. This tends
to stabilize the market and restore tranquillity. Nevertheless, after some time the pros-
pects of technical trading improve again, and the process repeats itself in an intricate
manner.

Numerous stochastic versions of such scenarios are more ambitious in that they at-
tempt to mimic certain stylized facts of the financial markets. Concentrating on daily
data, a first challenge in calibrating these models is to produce the uncorrelated price
changes typically observed in reality. One way to achieve this is to build large-scale mod-
els with many different and sometimes even endogenously evolving trading strategies
(LeBaron 2006). Given such a large and diverse ecology of competing trading strategies,
autocorrelations in returns are liable to be cancelled out. A problematic feature of this
generally quite appealing approach is that one may end up with a black box, and pinning
down the main causalities in the many dynamic feedbacks is an arduous task. An alter-
native method is to construct small-scale models with only a few (two or three) trading
strategies (Hommes, 2006). One disadvantage of this approach is that it requires the
modeller to impose a substantial amount of exogenous noise on some of the equations in
order to eliminate the autocorrelations between returns (see Westerhoff and Dieci, 2006,
for a particular example), apart from the problem of simultaneously matching some ad-

1 For recent surveys of this burgeoning field of research, see Chiarella et al. (2009), Hommes and
Wagener (2009), Lux (2009a) and Westerhoff (2009), among others.
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ditional features of financial markets. On the other hand, small-scale models are perhaps
analytically tractable and their dynamic mechanisms are easy to understand.

Against this background, our contribution to this literature can be briefly sketched as
follows. First, the structural model we put forward falls into the category of (very) simple
models. Second, random forces are vital to our price dynamics, too. However, instead
of adding them exogenously, we can interpret them as intrinsic stochastic noise. Our
innovation in this respect is that we do not fix the number of active traders of a given
type but let them vary stochastically from one market period to another. We believe
that variable trading frequencies are a relevant phenomenon of the real world, and not
abstracting from them will prove to be a fruitful extension of existing models.

Third, to make our point as stark, or pure, as possible, the fundamentalists and tech-
nical traders are specified in such a way that their individual asset demands directly
oppose each other, and that the noise originating from their time-varying market partic-
ipation is multiplicatively linked to the price. Furthermore, we introduce another type
of demand that gives rise to additive noise. As it turns out, the combination of these
most elementary mechanisms has the potential to reproduce the main stylized facts of
the daily returns on the financial markets—not perfectly but to a remarkable degree.
To be more precise, we are interested here in the absence of autocorrelations in the raw
returns, in the fat tails of their frequency distributions, and in volatility clustering and
long memory effects.

The remainder of the paper is organized as follows. The model is formulated in the
next section. Section 3 presents a typical simulation run. It serves to discuss the func-
tioning of the model and also contrasts various properties of its return series with their
empirical counterparts from the S&P 500 stock market index. In Section 4 the robustness
of these features is tested. To this end, the frequency distributions of a set of selected
summary statistics from a battery of Monte Carlo experiments are set against the fre-
quency distributions that are obtained from the same number of bootstrap samples of
the empirical returns. We view these investigations as a validation of the model with
respect to the daily observations from major stock market indices. In a similar study it
is shown in Section 5 that the model is able to discriminate between stock and foreign
exchange markets (specifically, the USD–DEM exchange rate). Section 6 concludes.

2. Formulation of the model

We consider a market for one risky asset that is populated by three kinds of traders, whom
we call fundamentalists, chartists, and investors. Fundamentalists base their demand on
the differences between the current price and the fundamental value. Even though they
might expect the gap between the two prices to widen in the immediate future, they
do not trade on the likeliness of this event and rather choose to place their bets on an
eventual rapprochement. Chartists, on the other hand, believe in the persistence of a bull
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or bear market over the next few days and accordingly buy in the first case and sell in
the second. Thus they formally take the opposite view of the fundamentalists. In fact,
although it is not necessary to specify fundamentalism and chartism in this model simply
as two converse trading strategies, it is nevertheless very convenient for our purposes. 2

These agents, however, are not active in each and every period, nor is it a constant
fraction of each group that enters the market. If a single chartist or fundamentalist,
respectively, becomes active on day t, then, neglecting any nonlinearities, his or her
market orders dC

t and dF
t are supposed to be given by

dC
t = χ (pt − p?) (1)

dF
t = φ (p? − pt) (2)

where pt denotes the log price of the asset, p? its (constant) fundamental value, and χ

and φ are two constant and positive coefficients that measure the agents’ responsiveness
to the observed mispricing. 3

The third group of agents, the investors, do not explicitly act on the price but trade for
reasons outside the model. Occasionally such an agent buys the asset to hold it for a longer
time, and with equal probability an exogenous event induces him or her to sell the asset
in his/her possession; one motivation here, for example, can be concerns about liquidity.
Formally, a pool of potential buyers and a pool of potential sellers may be distinguished,
where an active agent buys or sells dB

t and dS
t units of the asset, respectively. In order to

avoid a drift in the price (which would also affect the fundamental value), we postulate
already at the present stage that this number is identical for both groups. It is also fixed
at a positive value κ > 0, leading to

dB
t = κ (3)

dS
t = −κ (4)

To make the exposition easier, we admit that a given agent can be in the pool of potential
buyers at some time and in the pool of potential sellers at some other time. It is only
assumed that the switches from one pool to another tend to offset each other. 4

In principle, an agent’s decision on whether to trade or remain inactive is dependent
on current market conditions, and may also be affected by the behaviour of other agents.

2 The same version of technical trading or trend chasing has also been employed in models by
Day and Huang (1990), Brock and Hommes (1998), and Boswijk et al. (2007). In the latter
two cases this becomes obvious if their price expectations are combined with the market maker
scenario below.
3 Although we are concerned with daily prices and Boswijk et al. (2007) deal with annual data,
it is interesting to note that their paper finds some empirical support for eqs (1) and (2). It
moreover reports that the market impact of the two opposing groups is time-varying, which will
actually be a key feature of our model.
4 We abstain from randomizing these switches, too, as this would only blow up the notation.
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To make our point as stark as possible, we disregard such endogenous effects and treat
these decisions as purely random. That is, letting A = C,F,B, S stand for chartists,
fundamentalists, and investors from the pool of potential buyers and sellers, respectively,
each trader in group A has the same probability πA of entering the market on a given
day, and this probability remains fixed over time. If NA is the (constant) total number of
agents of type A, the number At of active traders on day t of this type therefore follows
a binomial distribution,

At ∼ B(NA, πA) , A = C,F,B, S (5)

As a consequence, there will be an average of πA NA agents in group A who are active
on a given market day. The variance of these activities is πA (1−πA) NA, which shows
that for a given number NA the variability in trading becomes negligible for both very
small and very high probabilities πA.

In general the market orders, totalling
∑

A At dA
t , are not balanced. The excess demand

(or supply) exerts a pressure on the price, causing it to move upwards (or downwards)
proportionately. Introducing a positive coefficient µ to measure the impact on the price
(which can be treated as a constant since the size of the population of agents was assumed
to be constant), the adjustment equation reads pt+1 = pt+µ

∑
A At dA

t . Using eqs (1) – (4)
from above, it can be written as

pt+1 = pt + µ [ (χCt − φ Ft) (pt − p?) + κ (Bt − St) ] (6)

In sum, the stochastic price dynamics brought about by our model are completely de-
scribed by the two equations (5) and (6).

Four points are worth pointing out. First, technically speaking the variables Ct, Ft,
Bt, St are just noise terms. They are, however, not imposed from the outside but are of
an intrinsic nature. Conceptually, this kind of noise takes up an issue which has so far
been neglected in most models that do not go into the details of the microstructure of
the market. Usually the agents (or a fixed proportion of them) are supposed to trade
in each time step, whereas in our eq. (5) their trading activities are—realistically, as we
may claim—allowed to be variable over time. On the other hand, we do not yet seek
systematic determinants of the market entry decisions but limit ourselves to a simple
random mechanism. Insofar as the desired properties of the model that we will find can
be attributed to effects beyond the deterministic trading rules, it is thus apparent that
already these most elementary changes in the trading frequency can provide a major
explanation of the stylized facts.

Second, the intrinsic noise is the only type of random perturbations that we consider,
although it has to be acknowledged that this interpretation is not completely compelling.
Since (under conditions that are easily satisfied here) a binomial distribution is well
approximated by a Gaussian distribution, the last term in eq. (6) could also be viewed as
ordinary additive and normally distributed white noise, the precise nature of which may
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not be of greater interest. The little story around the investors might then be dispensed
with.

Nevertheless, as a third point we would like to emphasize that the noise originating
from the fundamentalists and chartists is less customary. It is indeed linked in a multi-
plicative way to the gap between the actual and the fundamental price. This specification
is furthermore derived from an economic reasoning and is not just a purposive technical
device.

Finally, we can easily characterize the deterministic price equation that arises if the
number of active traders At is fixed at its average value πANA for all groups. The
unique equilibrium price coincides with the fundamental value if πBNB = πSNS and
µ (χπCNC − φπF NF ) 6= 0, and global asymptotic stability prevails if and only if the
latter expression is negative (but larger than −2). Since in this case (6) degenerates to a
one-dimensional linear adjustment equation, the dynamic behaviour is rather uninterest-
ing. The extreme structural poorness of the model’s deterministic counterpart, which is
especially due to the specification of the chartists as ‘anti-fundamentalists’, underscores
the central role of the stochastic noise process that we have put forward.

3. An illustrative sample run

The model has been designed to explain—at least partially—the most important stylized
facts of financial markets. 5 Referring to price changes at a daily frequency, we want to
check the four features that have received the most attention in the literature on agent-
based models. These are the absence of autocorrelations in the raw returns, fat tails in
their frequency distributions, volatility clustering, and long memory (see Chen et al.,
2009, p. 19), and we will consider them in both qualitative and quantitative terms. With
a view to stock markets, which will be discussed shortly, we settle on the numerical
parameters given in Table 1.

χ φ κ µ p? NC=NF πC=πF NB=NS πB=πS

1.000 1.011 0.165 0.010 0.00 200 0.50 1000 0.010

Table 1: The stock market parameter scenario.

As can be seen, we assume an equal number of chartists and fundamentalists who on
average trade every second day, and an equal, considerably larger number of buying and
selling investors who on average only trade every 100 days. In particular, the equilibrium

5 Detailed descriptions of the statistical properties of asset prices can be found in Cont (2000),
Lux and Ausloos (2002), or Lux (2009b).
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price is thus equal to the fundamental value p?, the (log) level of which is arbitrary
and has been normalized at zero for concreteness. The coefficient µ can be used to scale
the parameters χ, φ, κ and has been set such that the responsiveness χ of the chartists
equals unity. The fundamentalists are assumed to be slightly more aggressive, so that
the expected value of the random coefficient χCt−φFt on the price is negative in (6) and
the dynamics generated by these two groups is mean-reverting in the long run (without
overshooting the fundamental value, since 1 − µ (χπCNC − φπF NF ) is positive). As
already indicated at the end of the previous section, the term µκ (Bt − St) in (6) could
be regarded as additive white noise, the variance of which is given by the product of µ2κ2

and πB(1−πB)NB + πS(1−πS)NS .
The dynamic process governing the market price can therefore be summarized as an

interplay of two stochastic laws, one of which is additive and the other multiplicative.
Without the investors, the price would eventually converge toward the fundamental value.
That is, p? would be approached under random fluctuations that become increasingly
smaller over time. Here it is the very role of the investors to permanently offset this
tendency. On the other hand, without the chartists and fundamentalists the process
would degenerate to an ordinary random walk. Their presence and the slight long-run
dominance of the stabilizing fundamentalists over the chartists prevents the price from
diverging too far from its equilibrium or, more technically, ensures that its variance
remains bounded. Given the number of agents and their trading probabilities, the overall
noise level of the process is determined by the trading volume κ of the active investors,
and its value in Table 1 will turn out to be of a suitable order of magnitude.

Figure 1 presents a sample run of the model with the parameters from Table 1. It is
computed over the same time span as the daily data of the S&P 500, to which it will be
compared. The series thus covers 6767 days, which are 100 days less than the period for
the S&P 500 from January 1980 to mid-March 2007. 6

The upper panel illustrates the fluctuations of the price around the fundamental value
p? =0, revealing that they occur in an irregular manner. There are indeed longer periods
of tranquillity where the price remains close to p?, but they are occasionally disrupted
by larger bubbles where the price disconnects from p?. From the description above it is
clear that the bubble episodes can result from a temporary prevalence of the random walk
tendencies in the price process when the chartists and fundamentalists largely neutralize
each other. An alternative, or additional, reason is a (likewise temporary) predominance
of the chartists over the fundamentalists, which causes a monotonic divergent motion of
the price.

Larger deviations of the price from the fundamental value will also affect volatility.
When either the chartists or fundamentalists become dominant for a few days within the

6 This means that the entire series covers 6867 days, from which the first 100 days are set aside
to allow the computation of autocorrelations up to a lag of 100 days from t=1 onward.
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Figure 1: Simulated and empirical time series.

group of the speculators in such a situation, and the buying and selling investors more
or less offset each other, the combination of the multiplicative noise and the larger gap
between pt and p? leads to price changes that are well above normal. In other words, the
occasional misalignment in the price causes a volatility clustering in the returns, or at
least it increases the likelihood of particularly high or low returns. This is clearly visible
in the middle panel of Figure 1; typical examples are the periods around t=600, t=1700,
or t=5750. We may also anticipate from this phenomenon that the distributions of the
returns will not be normal.

The bottom panel in the diagram displays the returns from the S&P 500 over the
same time horizon. A comparison with the middle panel shows that the pattern of the
alternation of periods of tranquillity and volatility in the returns is similar for the simu-
lated and empirical series. Also the quantitative outbursts are comparable in size (note
that the second and third panels have the same scale). Differences can be seen in the
band width of the returns in the periods of relative tranquillity. While the noise level is
then constant in the simulated series, the empirical series exhibit certain changes from
the first, say, 1800 days to the period between t = 3000 and t = 4000, where the band
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becomes narrower, and from there to the period between t = 4700 and t = 5700, which
seems to be almost on the edge of tranquillity. Clearly, a simple model cannot account
for such ‘regime shifts’ (if they were found to be significant at all).

Figure 2: Autocorrelation functions of returns.

Note: Thin (bold) lines indicate empirical (simulated) returns, the two upper (lower) lines
represent the ACF of absolute (raw) returns, and the dotted lines mark the insignificance band
(at the 95% level). The underlying simulation horizon is 10 times the empirical horizon, i.e.,
67,670 days.

The time scale of Figure 1 does not allow us to assess the behaviour of the returns
over a few consecutive days. As the model is set up, however, we have every reason to
believe that it can reproduce the stylized fact of uncorrelated returns. This is confirmed
for lags from 1 to 100 days by the lower bold line in Figure 2. To obtain a smoother
shape of the autocorrelation function (ACF), the coefficients are based on a 10 times
longer simulation horizon of 67,670 days. 7 For this larger sample none of the coefficients
is significantly different from zero. Likewise, as shown by the lower thin line, they are
not significantly different from their empirical counterparts.

The other two lines in the diagram take us back to the issue of volatility clustering.
Note that this concept, which describes the tendency of large changes in the asset price
to be followed by large changes and small changes to be followed by small changes, is
closely related to the long-term dependencies between returns, a phenomenon usually
referred to as long memory. A common quantitative characteristic of these effects is the
ACF of squared or absolute returns. Since one is as good as the other, Figure 2 plots the
autocorrelation coefficients of the first 100 lags of the absolute returns. These statistics

7 Since it reduces the overall computational effort by roughly two-thirds, this and the simulations
to follow have approximated the binomial deviates with random draws from the corresponding
normal distribution; see Press et al. (1986, Section 7.3) for the computational background.
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are a crucial test for a model’s ability to reproduce the empirical long memory effects,
and the diagram documents that the present model passes this test with success.

As an additional feature, we report our evidence of the non-normality of the returns.
Measuring the fatness of the tail by the well-known Hill estimator, where we specify the
tail as the upper 5 per cent of the absolute returns, practically no difference is found
between the simulated and empirical series: the Hill estimator α̂H of the latter is 3.30,
while our (extended) sample run yields α̂H = 3.27.

The section should nevertheless be concluded with a word of caution. Although the
results for the ACF of the raw and absolute returns as well as the Hill estimator may seem
highly gratifying, the model is still rejected by harder econometric criteria that compile
this information in a single objective function. A suitable tool in this respect, which
has the advantage of being more transparent than other simulation-based econometric
procedures, is the method of simulated moments (see Lee and Ingram, 1991, or Duffie
and Singleton, 1993, as standard references; or Franke, 2008a, for a recent application).
Without going into detail, let us here briefly mention that in our application of this
approach we employed nine moments: one for the variance of the raw returns rt, one for
the mean of the absolute returns, one for the first-order autocovariance of rt, four for the
autocovariances of |rt| at different short and long lags, and two moments reflecting the
Hill estimator. The econometric theory rejects a model if the objective function J that is
built up from these moments exceeds a certain value of the χ2-distribution. The critical
value depends on the degrees of freedom involved (which in turn depend on the number
of free parameters that we are trying to estimate) and is here typically in the region of 10
or 12. By contrast, we obtain J ≈ 50 for our simulation run over the long horizon. This
econometric result puts the above findings into perspective and, in particular, prevents
us from selling our model as a “true” model. However, the matching properties that have
been obtained so far in Figures 1 and 2 and in the computation of the tail index can still
be regarded as fairly satisfactory, or at least competitive.

4. A more systematic investigation

Even if the results presented in the previous section may be attractive, it should not
be forgotten that they were based on a single simulation run—which we might have
been accordingly selected. As a matter of fact, when repeating the experiment with
other random number sequences we can also observe quite different summary statistics,
despite the seemingly comfortably long sample period of over 67,000 time steps. The
problem of the model’s robustness therefore has to be taken seriously.

We undertook a Monte Carlo study to treat the problem in a systematic way. To this
end, 5000 simulations were run with different random seeds over 67,670 days. Before
turning to the results themselves it should be mentioned that in rare cases the price
might wander so far away from the fundamental value that the randomly occurring
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larger differences in the trading activities of fundamentalists and chartists lead to an
extreme excess demand for the asset. The returns over these episodes, which at most last
a few hundred days, are occasionally so disproportionately high or low that the entire
summary statistics are completely out of line. The phenomenon could easily be prevented
by introducing a suitable nonlinearity in the formulation of demand. For example, it
would be quite reasonable to assume that beyond a certain threshold of mispricing, the
confidence of the fundamentalists in their trading strategy rises relative to the confidence
of the chartists. In other words, the trading probabilities of the fundamentalists increase
and those of the chartists decrease, thus reinforcing the mean reversion tendencies on
the market. The overly strong bubbles, however, are so exceptional that such a remedy
does not appear worthwhile.

Accordingly, if such an event was encountered in a simulation run, we simply discarded
the entire sample. 8 This occurred in 360 out of 5360 simulation runs. If it is (very
conservatively) assumed that the extreme bubbles last no longer than 500 days, we
would have an upper-bound of 360 · 500 = 180, 000 days of excessive volatility out of a
total of 67, 670 · 5360 ≈ 3.62 billion days. Hence this rough-and-ready assessment says
the probability that the unadjusted model produces a (hitherto) unrealistic bubble is less
than 0.049%. We believe this is a reasonable figure to justify what has just been called
“not worthwhile”.

This being understood, we can compute a set of summary statistics for each simulation
run and thereby obtain a frequency distribution of them on the basis of 5000 samples. Let
us begin with a measure for volatility, which we define here as the standard deviation of
the raw returns. Given that this magnitude is basically a matter of scaling the model and
that each simulation runs extends over 271 years, a lower sample variability of the model
may have been expected than the range of 0.93 for the 2.5% quantile and 1.06 for the
97.5% quantile. 9 On the other hand, the median with a value of 0.98 is not very different
from the empirical volatility of 1.02. The distribution of the Hill estimator may not appear
too narrow, either: with roughly 3 and 4 as its lower and upper boundary, respectively,
the 95% confidence interval covers the whole range of what has been estimated for a
large number of stock markets. In any case, the empirical Hill estimator of the S&P500
is well within that interval.

The density functions of the volatility and the Hill estimator from the Monte Carlo
experiment are plotted in the upper two panels of Figure 3. 10 Higher values of the trading
capital κ could shift the volatility distribution in the top-left panel further to the right, so

8 To be precise, the event was specified by J > 150 for the objective function outlined above.
9 These numbers and the other statistics discussed here are documented in Table A1 in the
appendix. In addition, the table reports two (representative) autocorrelation coefficients for the
raw returns to confirm their overall insignificance.
10 The density functions have been estimated by means of the Epanechnikov kernel; see Davidson
and MacKinnon (2004, pp. 678–683).
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Figure 3: Frequency distributions of selected summary statistics.

Note: The bold (blue) line plots the frequency distributions generated by the parameter val-
ues in Table 1; they are based on 5000 simulation runs over 10 times the empirical horizon.
The vertical dotted lines indicate their 2.5% quantile, the median and the 97.5% quantile,
respectively, while the bold (red) bar indicates the empirical summary statistic. The thin solid
(green) line represents the bootstrapped frequency distributions, which are likewise based on
5000 samples.

that the median would be closer to the empirical volatility. Fixing the other parameters
there are, however, limits to this procedure since then some of the other statistics would
begin to deteriorate (the overall outcome of which we could evaluate by the objective
function J that was briefly outlined at the end of the last section).

The other four panels in Figure 3 demonstrate the density functions of the autocor-
relation coefficients of the absolute returns at lags 1, 10, 50 and 100. Again, in all four
cases the empirical statistic is well within the 95% confidence interval, and for the lags
1 and 10 it is pleasantly close to the median of the Monte Carlo samples. Nevertheless,
the support of the distributions also seems rather wide again, where at the longer lags
a small but non-negligible part of the samples even yields insignificant coefficients near
zero.
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On the whole, the distributions in Figure 3 may convey the impression of a limited
robustness of the model. Such an evaluation needs, however, to be put into perspective.
For this reason we ask what kind of variation in the statistics could be expected from the
empirical data itself. This question can be answered by a bootstrap procedure or, more
precisely, due to the serial correlation in the absolute returns, by a block bootstrap. A
suitable block length is a year, i.e. 250 days. Accordingly we reduce the empirical return
series of the S&P 500 to 6750 observations, subdivide it into 27 blocks of 250 days, and
construct a new series block by block from 27 random draws (with replacement), from
which all of the desired statistics can then be computed. Repeating this 5000 times,
we have an equally large sample of bootstrapped statistics available and can draw the
density functions for them. These are the thin solid (green) lines in Figure 3.

The important message from this check is that by and large the bootstrap distributions
are similarly wide to the distributions of the statistics from the Monte Carlo exercise. 11

Hence the widths of the model-generated frequency distributions are quite in line with
what we can, or even should, expect from the repeated simulations of a model.

Before the “fit” of the model’s frequency distributions to the bootstrap distributions
in Figure 1 is seen too positively, it should be recalled that these are only the marginal
distributions of the single statistics and that the coincidence in the joint distributions
could be much weaker. In this respect we should come back to the objective function
J already mentioned, which characterizes the goodness-of-fit of the empirical summary
statistics, or moments, by a single number. Computing the frequency distributions of the
values of J for both the bootstrap and the model-generated series, we practically find
no overlap between the two distributions. This discrepancy is so pronounced that again
there is no scope for mistaking the model as a “true” model. Again, we may evaluate the
model’s ability to mimic the stylized facts of interest to us as “satisfactory, though not
perfect”.

5. Validating the model for a foreign exchange market

We need not make a statement in this paper about whether econometric methods ap-
plied to the daily returns are indeed capable of telling apart the major stock indices
of the world. In any case, the broad confidence intervals in the Monte Carlo frequency
distributions in Figure 3 have demonstrated that this would probably demand too much
from the present model. On the other hand, visual inspection of, in particular, the ACF

11 The much wider bootstrap distribution of the volatility could be explained by the different
noise levels of the S&P 500 returns over longer periods of time, which we have already touched
on in the discussion of Figure 1. Normally there are multiple random draws of the same block at
the cost of other blocks that do not appear at all in the bootstrap series. This causes a certain
dispersion of the volatility measure across the 5000 samples. In contrast, as has also been noted
in the discussion of Figure 1, the model’s noise over the (relatively) tranquil periods is more
homogeneous.
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of the absolute returns is sufficient to distinguish between the leading stock and foreign
exchange (FX) markets. We may therefore ask how far we can get with our model in this
respect. Our empirical series for this investigation will be the USD–DEM exchange rate
over the same time horizon as before, from January 1980 to mid-March 2007.

Even a full-fledged estimation procedure—if it made sense after all—could not possibly
identify all of the parameters of the model. Besides the fundamental value p?, of course,
we chose to fix the market impact coefficient µ, the reaction coefficients χ and φ of
the chartists and fundamentalists, and the trading capital κ and trading probability
πB = πS of the buying and selling investors. A readjustment was undertaken for the
number NB = NS of the two types of investors, the number NC = NF of the two types
of speculators, and the trading probability πC = πF of the latter. Table 2 shows the
values on which we now agree.

χ φ κ µ p? NC=NF πC=πF NB=NS πB=πS

1.000 1.011 0.165 0.010 0.00 275 0.60 525 0.010

Table 2: The FX market parameter scenario.

Comparing the table to the stock market parameter scenario in Table 1, it can be seen
that the FX scenario assigns a much weaker role to the long-term investors (525 versus
1000), and a stronger role to the speculators concerning both their absolute number
(275 versus 200) and their trading frequency (0.60 versus 0.50). Applying the method
of simulated moments indicated above, we also treated this as an estimation problem.
According to the econometric standards provided by the method, the changes in NB =
NS and πC = πF (but not NC = NF ) are highly significant. Without carrying the
analogy too far, it could be said that the signs of the modifications from Table 1 to Table
2 correspond to the general verbal characterizations of stock and FX markets. If, on the
whole, the fitting properties of the two parameter scenarios are deemed acceptable, the
model could thus be said to have some explanatory power. 12

To see the consequences of the parameter changes, we first simulate the model with
the same random number sequence as in Section 3. The results are presented in Figure
4. A comparison of the top panel of this figure with that in Figure 1 shows that the
pattern of the evolution of the price is almost perfectly maintained. The only essential

12 While there are far more traders on the FX than on the stock markets, when considering the
absolute number of agents in the model the ceteris paribus condition of the fixed market impact
coefficient µ should be taken into account. A more scrupulous modelling approach might scale
it in some way with the overall number of agents, but the problem of how precisely this should
be specified seems to be terra incognita in all models where the market prices are assumed to
respond to total excess demand (since the number of traders is usually fixed).
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Figure 4: Simulated and empirical time series (FX market scenario).

difference is a reduction in size. The reason for this phenomenon is obvious: the model’s
random walk tendencies are weaker owing to the lower level of the additive noise, which
is caused by the fewer investors.

At first glance, the higher weight of the chartists and fundamentalists on the market
might be suggestive of an increase in the volatility of returns. The noise originating from
this side, however, is multiplicative. That is, the random term (χCt − φFt) in the price
equation (6) is multiplied by the price gap (pt−p?). Although in the new scenario the first
term increases in modulus, the price gaps have been seen to decline. In fact, the second
effect turns out to be dominant. As can be seen from a comparison of the simulated
returns in Figures 1 and 4, the price changes in the bubble periods are now considerably
smaller (notice also the lower scale of the return panels in Figure 4). The return series
still exhibits a certain degree of volatility clustering, but it is clearly less pronounced
than in the stock market scenario.

Lower fluctuations of the returns, on average as well as in their more extreme values, are
also observed in the return series of the USD–DEM exchange rate; see the bottom panel
of Figure 4. On the basis of a mere visual inspection, one might even wonder if volatility
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clustering is present here at all. Regarding its numerical characterization, at least the
corresponding long memory effects should be distinctly weaker. This is clearly brought
out by the upper thin line in Figure 5, which plots the ACF of the absolute returns of
the empirical exchange rate. Nevertheless, over the first 50 lags the long memory effects
have not completely disappeared, either.

Figure 5: Autocorrelation functions of returns (FX market scenario).

Note: See legend in Figure 2; the underlying empirical series here is the USD–DEM exchange
rate.

The diagram above also demonstrates that the model-generated ACF of the absolute
returns can match its empirical counterpart for most of the lags. Only the first few lags
are somewhat overestimated. The problem is that while the shape of the ACFs produced
by the model typically comes close to a kind of power law, which is so attractive in the
theory of financial markets, the empirical ACF might be too flat over the first few lags for
such a stylized description. Correspondingly, if another choice of the model parameters
lowers the bold line over an initial lag interval, this ACF would tend to be below the
empirical thin line at the longer lags. The “fitting” in Figure 5 is a compromise in this
respect. Nonetheless, the serial correlation in the raw returns is again insignificant for
both the empirical and artificial series.

To detach ourselves from this example of a selected simulation run, we conduct the
same battery of experiments as in Section 4 for the stock market scenario, resulting in
Figure 6 as a counterpart to Figure 3. The bold lines represent the frequency distribution
of the 5000 simulations of the model, and the thin solid lines to which they are contrasted
are the frequency distributions of the 5000 (block) bootstrap samples of the returns from
the empirical exchange rate. The two distributions are fairly congruent for the volatility,
the Hill estimator and the autocorrelations at lags 10 and 50. The fact that the empirical
coefficient at lag 100 exceeds the 97.5% quantile of the model-generated distribution is
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Figure 6: Frequency distributions of selected summary statistics
(FX market scenario).

Note: See legend in Figure 3; the underlying empirical series here is the USD–DEM exchange
rate.

not very dramatic since its bootstrap distribution centres more to the left and larger
parts of the two distributions are in a region of insignificance anyway.

On the other hand, the overestimation of the first-order autocorrelation of the absolute
returns in Figure 5 was no exception. The two middle panels in Figure 6 show that the
model’s distribution of this coefficient covers a higher range than the distribution of the
lag-10 coefficients, whereas the opposite is true for the bootstrap distributions of the
empirical returns (see Table A2 in the Appendix for the precise quantiles). Accepting
this limitation, however, we can conclude that the model’s moment matching is still of
a satisfactory quality, and that the alternative parameter scenario in Table 2 provides
a respectable explanation of the different features of the return series from stock and
foreign exchange markets.
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6. Conclusion

The paper has proposed a minimal structural model that introduces intrinsic stochastic
noise in the form of a probabilistic market participation of the individual agents. Apply-
ing this noise to the fundamentalist and chartist strategies, we thus obtain a source of
randomness that is multiplicatively linked to the price. Applying the intrinsic noise to our
type of investors, who randomly buy and sell the asset, an additive random mechanism
emerges. Its main role is to prevent the price dynamics (or the multiplicative noise, so to
speak) from dying out. Finally, fundamentalists and chartists were specified as trading
in opposite directions. As a result, the price dynamics will occasionally become unstable
and tend to diverge from the fundamental value. Since, on the other hand, fundamen-
talism was supposed to have a weak dominance in the long run, the price will eventually
return to its benchmark. In short, periods of tranquillity and a certain turmoil alternate
in an unpredictable though balanced fashion, which is the core of the phenomenon of
volatility clustering.

Our study also went beyond such a qualitative description and attempted to match a
number of summary statistics of the empirical returns from the S&P 500 or, alternatively,
the USD–DEM exchange rate, which besides the absence of serial correlation in the raw
returns reflect the fat tails and the long memory effects in the autocorrelation pattern
of the absolute returns. Although the fit is not perfect, given the extreme parsimony of
the model we nevertheless consider it to be fairly satisfactory. In this sense, the model
can be claimed to be “validated”. We would also like to add that it is still a challenge to
other structural small-scale models to catch up with the present standard of “moment
matching”. 13

A possible criticism of our model may be directed against the converse trading strate-
gies of fundamentalists and chartists. A simple specification of the trend-following behav-
iour of technical traders along the lines of, say, Beja and Goldman (1980), or a moving-
average rule as in Chiarella et al. (2006), may be a straightforward and attractive idea
here. Our conjecture is that since the fundamentalist and chartist strategies would then
also act against each other in the price dynamics, albeit with a short time delay, the
basic mechanism generating the volatility clustering would be essentially maintained.
The advantage of the converse strategies is that they make the mechanism even more
transparent, which is why we adhered to them.

Generally, we believe that the present model and the results we obtained from it are
not only interesting per se but could also stimulate the design of other small-scale models.

13 According to the explicit method-of-simulated-moments estimation in Franke (2008a), the
threshold switching model by Manzan and Westerhoff (2005) appears to be somewhat supe-
rior to the present model. Franke (2008b) discusses two other, structurally very appealing models
from the literature, which reveals that they cannot reasonably keep their promises of matching
the stylized facts.
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A promising avenue for future research might be the endogeneization of the individual
probabilistic trading frequencies which, with regard to their expected values, might cor-
respond to the strategy switching mechanisms introduced by Lux (1995) or Brock and
Hommes (1998). Considering the relatively strong contribution of our highly parsimo-
nious model to the stylized facts, we would be interested in learning which minimal
extensions in these directions would lead here to a significant improvement, which is still
desirable.
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Appendix:

Summary statistics of the Monte Carlo and bootstrap experiments

Autocorrelations ( of rt | of |rt| ) at Lag

Q V H 1 10 1 10 50 100

2.5% 0.93 3.07 −0.020 −0.019 0.118 0.096 0.035 0.006

0.88 3.00 −0.014 −0.029 0.082 0.101 0.026 0.000

50.0% 0.98 3.58 −0.006 −0.005 0.174 0.149 0.072 0.029

1.03 3.49 0.018 −0.003 0.173 0.138 0.067 0.036

97.5% 1.06 4.06 0.010 0.010 0.268 0.238 0.145 0.085

1.18 4.05 0.047 0.027 0.258 0.190 0.116 0.078

Table A1: Quantiles (Q) of the summary statistics for the stock market scenario.

Note: For each quantile, the first row gives the results of the 5000 simulations runs of the
model and the second row the results of the 5000 bootstrap samples of the S&P 500 returns.
V stands for volatility, H for the Hill estimator.

Autocorrelations of |rt| at Lag

Q V H 1 10 50 100

2.5% 0.64 3.73 0.087 0.063 0.011 −0.005

0.62 3.62 0.033 0.070 0.010 −0.013

50.0% 0.66 4.08 0.120 0.093 0.028 0.006

0.67 4.05 0.076 0.100 0.034 0.015

97.5% 0.68 4.43 0.160 0.131 0.055 0.024

0.72 4.62 0.117 0.130 0.060 0.044

Table A2: Quantiles (Q) of the summary statistics for the FX market scenario.

Note: The empirical returns are from the USD–DEM exchange rate. The quantiles of the
autocorrelation coefficients for the raw returns are very similar to Table A1.
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