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1 Introduction

In the recent past, a number of interesting agent-based financial market models have
been proposed. These models successfully explain some important stylized facts of
financial markets, such as bubbles and crashes, fat tails for the distribution of returns
and volatility clustering. These models, reviewed, for instance, in Chen, Chang,
and Du (in press); Hommes (2006); LeBaron (2006); Lux (in press); Westerhoff
(2009), are based on the observation that financial market participants use different
heuristic trading rules to determine their speculative investment positions. Note that
survey studies by Frankel and Froot (1986); Menkhoff (1997); Menkhoff and Taylor
(2007); Taylor and Allen (1992) in fact reveal that market participants use technical
and fundamental analysis to assess financial markets. Agent-based financial market
models obviously have a strong empirical microfoundation.

Recall that technical analysis is a trading philosophy built on the assumption
that prices tend to move in trends (Murphy, 1999). By extrapolating price trends,
technical trading rules usually add a positive feedback to the dynamics of financial
markets, and thus may be destabilizing. Fundamental analysis is grounded on the
belief that asset prices return to their fundamental values in the long run (Graham
and Dodd, 1951). Buying undervalued and selling overvalued assets, as suggested
by these rules, apparently has a stabilizing impact on market dynamics. In most
agent-based financial market models, the relative importance of these trading strate-
gies varies over time. It is not difficult to imagine that changes in the composition of
applied trading rules - such as a major shift from fundamental to technical trading
rules - may have a marked impact on the dynamics of financial markets.

One goal of our paper is to provide a novel view on how financial market par-
ticipants may select their trading rules. We do this by recombining a number of
building blocks from three prominent agent-based financial market models. Let us
briefly recapitulate these models:
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� Brock and Hommes (1997, 1998) developed a framework in which (a continuum
of) financial market participants endogenously chooses between different trading
rules. The agents are boundedly rational in the sense that they tend to pick trad-
ing rules which have performed well in the recent past, thereby displaying some
kind of learning behavior. The performance of the trading rules may be measured
as a weighted average of past realized profits, and the relative importance of the
trading rules is derived via a discrete choice model. Contributions developed in
this manner are often analytically tractable. Moreover, numerical investigations
reveal that complex endogenous dynamics may emerge due to an ongoing evo-
lutionary competition between trading rules. Note that in such a setting, agents
interact only indirectly with each other: their orders have an impact on the price
formation which, in turn, affects the performance of the trading rules and thus
the agents selection of rules. Put differently, an agent is not directly affected by
the actions of others.

� In Kirman (1991, 1993), an influential opinion formation model with interactions
between a fixed number of agents was introduced. In Kirman’s model, agents
may hold one of two views. In each time step, two agents may meet at random,
and there is a fixed probability that one agent may convince the other agent to fol-
low his opinion. In addition, there is also a small probability that an agent changes
his opinion independently. A key finding of this model is that direct interactions
between heterogeneous agents may lead to substantial opinion swings. Applied
to a financial market setting, one may therefore observe periods where either
destabilizing technical traders or stabilizing fundamental traders drive the mar-
ket dynamics. Note that agents may change rules due to direct interactions with
other agents but the switching probabilities are independent of the performance
of the rules.

� The models of Lux (1995, 1998) and Lux and Marchesi (1999, 2000) also focus
on the case of a limited number of agents. Within this approach, an agent may
either be an optimistic or a pessimistic technical trader or a fundamental trader.
The probability that agents switch from having an optimistic technical attitude
to a pessimistic one (and vice versa) depends on the majority opinion among
the technical traders and the current price trend. For instance, if the majority of
technical traders are optimistic and if prices are going up, the probability that pes-
simistic technical traders turn into optimistic technical traders is relatively high.
The probability that technical traders (either being optimistic or pessimistic)
switch to fundamental trading (and vice versa) depends on the relative profitabil-
ity of the rules. However, a comparison of the performance of the trading rules
is modelled in an asymmetric manner. While the attractiveness of technical anal-
ysis depends on realized profits, the popularity of fundamental analysis is given
by expected future profit opportunities. This class of models is quite good at
replicating several universal features of asset price dynamics.

Each of these approaches has been extended in various interesting directions. There
are also alternative strands of research in which the dynamics of financial mar-
kets is driven, for instance, by nonlinear trading rules or wealth effects. For related
models see Chiarella (1992); Chiarella, Dieci, and Gardini (2002); Day and Huang
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(1990); de Grauwe and Grimaldi (2006); de Grauwe, Dewachter, and Embrechts
(1993); Farmer and Joshi (2002); Li and Rosser (2001, 2004); Rosser et al. (2003);
Westerhoff (2008); Westerhoff and Dieci (2006), among many others.

In this paper, we seek to recombine key ingredients of the three aforementioned
approaches to come up with a simple model that is able to match the stylized facts
of financial markets and that offers a novel perspective on how agents may be influ-
enced in selecting their trading rules. In our model, we consider direct interactions
between a fixed number of agents, as in Kirman approach. However, the switching
probabilities are not constant over time but depend on the recent performance of the
rules. To avoid asymmetric profit measures, as in the models of Lux and Marchesi,
we define a fitness function along the lines of the models of Brock and Hommes,
i.e., we approximate the fitness (attractiveness) of a rule by a weighted average of
current and past myopic profits. Replication of the dynamics of agent-based mod-
els is often a challenging undertaking, which is why these models are sometimes
regarded with skepticism. A second goal of our paper is thus to come up with a set-
ting for which replication of our results is rather uncomplicated, even, as we hope,
for the (interested) layman.

Our paper is organized as follows. In Sect. 2, we present our approach. In Sect. 3,
we show that our model may mimic some stylized facts of financial markets. We
also explore how a change in the number of agents and in the frequency of their
interactions affects the dynamics. In Sect. 4, we check the robustness of our results.
The last section offers some conclusions.

2 A Basic Model

Let us first preview the structure of our model. We assume that prices adjust with
respect to the current excess demand. The excess demand, in turn, depends on the
orders submitted by technical and fundamental traders. While technical traders base
their orders on a trend-extrapolation of past prices, fundamental traders place their
bets on mean reversion. The relative impact of these two trader types evolves over
time. We assume that agents regularly meet each other and talk about their past trad-
ing performance. As a result, traders may change their opinion and switch to a new
trading strategy. In particular, the time-varying switching probabilities depend on
the relative success of the rules. Numerical simulations will reveal that the fractions
of technical and fundamental trading rules evolve over time, which is exactly what
gives rise to interesting asset price dynamics. Now we are ready to turn to the details
of the model.

As in Farmer and Joshi (2002), the price adjustment is due to a simple log-linear
price impact function. Such a function describes the relation between the quantity of
an asset bought or sold in a given time interval and the price change caused by these
orders. Accordingly, the log of the price of the asset in period t C 1 is quoted as

PtC1 D Pt C a.W C
t D

C
t CW F

t DF
t /C ˛t ; (1)
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where a is a positive price adjustment coefficient, DC and DF stand for orders
generated by technical and fundamental trading rules, and W C and W F denote
the fractions of agents using these rules. Excess buying (selling) thus drives prices
up (down). Since our model only provides a simple representation of real financial
markets, we add a random term to (1). We assume that ˛ is an IID normal random
variable with mean zero and constant standard deviation �˛.

The goal of technical analysis is to exploit price trends (see Murphy (1999) for a
practical introduction). Since technical analysis typically suggests buying the asset
when prices increase, orders triggered by technical trading rules may be written as

DC
t D b.Pt � Pt�1/C ˇt : (2)

The first term of the right-hand side of (2) stands for transactions triggered by an
extrapolation of the current price trend. The reaction parameter is positive and cap-
tures how strongly the agents react to this price signal. The second term reflects
additional random orders to account for the large variety of technical trading rules.
As in (1) we assume that shocks are normally distributed, i.e., ˇ is an IID normal
random variable with mean zero and constant standard deviation �ˇ .

Fundamental analysis (see Graham and Dodd (1951) for a classical contribution)
presumes that prices may disconnect from fundamental values in the short run. In the
long run, however, prices are expected to converge towards their fundamental val-
ues. Since fundamental analysis suggests buying (selling) the asset when the price is
below (above) its fundamental value, orders generated by fundamental trading rules
may be formalized as

DF
t D c.Ft � Pt /C �t ; (3)

where c is a positive reaction parameter and F is the log of the fundamental value.
Note that we assume that traders are able to compute the true fundamental value of
the asset. In order to allow for deviations from the strict application of this rule, we
include a random variable � in (3), where � is IID normally distributed with mean
zero and constant standard deviation �� .

For simplicity, the fundamental value is set constant, i.e.,

Ft D 0: (4)

Alternatively, the evolution of the fundamental value may be modelled as a random
walk and we will do this later on. However, in order to show that the dynamics of
a financial market may not depend on fundamental shocks, we abstain from this for
the moment.

We furthermore assume that there are N traders in total. Let K be the number of
technical traders. We are then able to define the weight of technical traders as

W C
t D

Kt

N
: (5)
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Similarly, the weight of fundamental traders is given as

W F
t D

N �Kt

N
: (6)

Obviously, (5) and (6) imply thatW F
t D 1 �W C

t .
The number of technical and fundamental trades is determined as follows. As

in Kirman (1991, 1993), we assume that two traders meet at random in each time
step, and that the first trader will adopt the opinion of the other trader with a certain
probability .1�ı/. In addition, there is a small probability � that a trader will change
his attitude independently. Contrary to Kirmans approach, however, the probability
that a trader converts another trader is asymmetric and depends on the current and
past myopic profitability of the rules (indicated by the fitness variablesAC and AF ,
which we define in the sequel). Suppose that technical trading rules have generated
higher myopic profits than fundamental trading rules in the recent past. Then it
is more likely that a technical trader will convince a fundamental trader than vice
versa. Similarly, when fundamental trading rules are regarded as more profitable
than technical trading rules, the chances are higher that a fundamental trader will
successfully challenge a technical trader. Thus, we express the transition probability
of K as

Kt D

8̂
<̂
ˆ̂:
Kt�1 C 1 with probability pC

t�1 D N �Kt�1

N

�
"C .1 � ı/F !C

t�1
Kt�1

N �1

�
Kt�1 � 1 with probability p�

t�1 D Kt�1

N

�
"C .1 � ı/C !F

t�1
N �Kt�1

N �1

�
;

Kt�1 with probability 1 � pC
t�1 � p�

t�1

(7)
where the probability that a fundamental trader is converted into an technical trader
is

.1� ı/F !C
t�1 D

(
0:5C � for AC

t > AF
t

0:5 � � otherwise
(8)

and the probability that a technical trader is converted into a fundamental trader is

.1 � ı/C !F
t�1 D

(
0:5 � � for AC

t > AF
t

0:5C � otherwise
; (9)

respectively.
Finally, we measure the fitness (attractiveness) of the trading rules as

AC
t D .exp ŒPt � � exp ŒPt�1�/D

C
t�2 C dAC

t�1; (10)

and
AF

t D .exp ŒPt � � exp ŒPt�1�/D
F
t�2 C dAF

t�1; (11)

respectively. Formulations (10) and (11) are as in Westerhoff and Dieci (2006)
which, in turn, were inspired by Brock and Hommes (1998). Note that the fitness
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of a trading rule depends on two components. First, the agents take into account the
most recent performance of the rules, indicated by the first terms of the right-hand
side. The timing we assume is as follows. Orders submitted in period t � 2 are exe-
cuted at the price stated in period t�1. Whether or not these orders produce myopic
profits then depends on the realized price in period t . Second, the agents have a
memory. The memory parameter 0 � d � 1 measures how quickly current myopic
profits are discounted. For d D 0, agents obviously have no memory, while for
d D 1 they compute the fitness of a rule as the sum of all observed myopic profits.

3 Some Simulation Results

The dynamics of international financial markets display certain stylized facts (Cont,
2001; Lux and Ausloos, 2002; Mantegna and Stanley, 2000). These universal fea-
tures include (1) a random walk-like behavior of prices, (2) the sporadic appearance
of bubbles and crashes, (3) excess volatility, (4) fat tails of the distribution of returns,
and (5) volatility clustering. To be able to replicate these properties, we have selected
the following parameter setting:1

a D 1, b D 0:05, c D 0:02, d D 0:95, � D 0:1, � D 0:45, �˛ D 0:0025,
�ˇ D 0:025, �� D 0:0025.

In the remaining part of the paper, we explore the dynamics of the model for differ-
ent values ofN . In particular, we increaseN from 25 to 100 and to 500. In addition,
for the case N D 500 we consider that there is more than one direct interaction
between agents per trading time step.

3.1 Setting 1: N D 25

In our first experiment, we assume that there are only N D 25 agents. Of course, in
real markets we usually observe a much larger number of traders. In the first step, it
can be assumed that these agents reflect the trading activities of larger trading insti-
tutions or of groups of agents who collectively behave in the same manner (think,
for instance, of group pressure). However, in the next subsections we increase the
number of agents.

The seven panels of Fig. 1 aim at illustrating what kind of dynamics our model
may produce for a limited number of speculators. In the top panel, we see the

1 Interested readers should note that calibrating agent-based financial market models may be a
time-consuming and pain-staking trial and error process. Some initial progress in estimating such
models has recently been reported by Alfarano, Lux, and Wagner (2005); Boswijk, Hommes, and
Manzan (2007); Manzan and Westerhoff (2007); Westerhoff and Reitz (2003); Winker, Gilli, and
Jeleskovic (2007).
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Fig. 1 The panels show the evolution of log prices, the returns, the weights of technical analy-
sis, the distribution of the returns (the dotted line gives the corresponding normal distribution),
estimates of the tail index, and the autocorrelation coefficients of raw and absolute returns, respec-
tively. The simulation is based on 5,000 time steps and N D 25 traders. The remaining parameters
are specified in Sect. 3

development of log prices. As can be seen, prices move erratically around their
fundamental values. There are periods where prices are close to the fundamental
value but occasionally larger bubbles set in. A prominent example is given around
time step 4,000, where the distance between log prices and log fundamental values
is about 0.5, implying a substantial overvaluation of about 65%.
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In the second panel, returns, defined as log price changes, are plotted. Note that
extreme price changes are often larger than five percent, although the fundamental
value is fixed. A constant fundamental value naturally implies that the entire volatil-
ity should be regarded as excess volatility. The third panel depicts the evolution of
the weights of technical and fundamental trading strategies. As can be seen, there
is a permanent evolutionary competition between the rules. Neither technical nor
fundamental trading rules die out over time. We will come back to this soon.

In the two panels below, we characterize the distribution of the returns. Let us
start with the left-hand panel. The solid line represents the distribution of the returns
of our model, whereas the dotted line visualizes a normal distribution with identical
mean and standard deviation. A closer inspection reveals that the distribution of
returns of our financial market model has more probability mass in the center, less
probability mass in the shoulder parts and more probability mass in the tails than
the normal distribution. Estimates of the kurtosis support this view. However, the
kurtosis is an unreliable indicator of fat-tailedness.

For this reason, we plot estimates of the tail index in the right-hand panel, varying
the number of the largest observations from 0% to 10%. For this particular simula-
tion run we obtain a tail index of about 3.7 (using the largest 5% of the observations).
We found for other simulation runs that the tail index hovers around the range from
3.5 to 4.5, which may be slightly too high on average. Most tail indices estimated
from real financial data seem to range between 3 and 4, and are almost always
captured by the interval 2–5 (e.g., Lux 2009).

In the last two panels, we plot the autocorrelation functions for raw returns and
for absolute returns, respectively. Absence of significant autocorrelation between
raw returns suggests that prices advance in a random walk-like manner. Despite
the sporadic development of bubbles and crashes, it is thus hard to predict prices
within our model. However, the autocorrelation coefficients for absolute returns are
clearly significant and decay slowly. The autocorrelation coefficients are even pos-
itive for more than 100 lags. This is also in agreement with the second panel, and
is a clear sign of volatility clustering, as observed in many real financial markets.
From Fig. 1 we can also understand what is driving the dynamics of our model.
Comparing the second and the third panel reveals that periods where technical
analysis is rather popular are associated with higher volatility. Also, bubbles may
be triggered in these periods. The trend-extrapolating (and highly noisy) nature
of technical analysis has obviously a destabilizing impact on the dynamics. Note
that technical analysis is quite profitable during the course of a bubble. As a result,
more traders learn about this due to their interactions with other traders. Since tech-
nical analysis consequently gains in popularity, bubbles may possess some kind
of momentum. A major shift from technical to fundamental analysis may be wit-
nessed when a bubble collapses. A dominance of fundamental analysis then leads
to a period where prices are closer towards fundamental values and where volatility
is less dramatic.2

2 What causes the everlasting competition between the trading strategies? Since prices fluctuate
randomly it is hard for traders to make systematic and consistent long-run profits, i.e., the difference
in the fitness of the two competing rules oscillates somehow around zero, which, in turn, causes
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3.2 Setting 2: N D 100

Now we turn to the case with N D 100 traders. Figure 2 may be directly compared
with Fig. 1, since it is based on the same simulation design. The only difference is
that the number of traders is quadrupled. As indicated by the third panel, the pop-
ularity of the trading strategies now varies only very slowly over time. Therefore,
there are extremely long periods where one or the other trading strategy dominates
the market, which has some obvious consequences for the dynamics. For instance,
between time steps 1,500 and 2,700 the majority of traders rely on fundamental
analysis, and hence we find a period where prices are more or less in line with fun-
damental values and where absolute returns are rather low. Afterwards, technical
analysis gains in strength and for the next 2,000 time steps volatility is elevated.
Since the model is calibrated to daily data, 2,000 time steps correspond to a time
span of about 8 years. Although some stylized facts may still be replicated for
N D 100 agents, the dynamics of our model appears less convincing than before.
Apparently, to generate realistic dynamics, the popularity of technical and funda-
mental trading rules has to vary more quickly, at least from a technical point of
view. If there are only 25 traders, it may – in an extreme scenario – only take 25
time steps to accomplish a regime change from pure technical to pure fundamental
analysis (or vice versa). An increase in the number of agents naturally increases the
duration of such a complete regime switch. As seen in Fig. 2, regime changes may
take a very long time if the number of agents is equal to 100 (of course, internal
and external factors delay regime changes). In the next section, we try to show that
this is not directly a problem of setting the number of agents too high. To achieve
a reasonable fit of actual market dynamics with our model, the relation between the
number of agents and the number of direct interactions between them per trading
time step has to be within a certain range.

3.3 Setting 3: N D 500

Let us increase the number of agents up to N D 500. In addition, let us assume
that there is not only one direct interaction between the agents per trading time step
but that there are 20 contacts. Clearly, we now always run the interaction part of
the model 20 times before we iterate the trading part of the model. As a result,
the whole system may then again complete a full regime turn from pure funda-
mental to pure technical analysis (or the other way around) within 25 trading time
steps.

Figure 3 presents the results. The qualitative similarities between Figs. 1 and 3
are striking. We recover bubbles and crashes, excess volatility, fat tails for the dis-

repeated swings in opinion. Put differently, if one of the rules outperformed the other one, it would
also dominate the market. In addition, traders may change their opinion independently of market
circumstances.
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Fig. 2 The same simulation design as in Fig. 1, except that we now consider N D 100 agents

tribution of the returns, absence of autocorrelation for raw returns, and volatility
clustering, i.e., our model again mimics key stylized facts of financial markets
quite well.

Two further comments are required. Note first that periods of high volatility may
or may not be associated with bubbles and crashes. It may thus happen that prices
fluctuate wildly around fundamental values. We consider it interesting that there is
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Fig. 3 The same simulation design as in Fig. 1, except that we now consider N D 500 agents
and 20 direct interactions per trading time step

not a strict one-to-one relation between high volatility and bubble periods.3 Finally,
although the model once again generates a distribution which deviates from the
normal distribution, in the sense that there is more probability mass in its tails, the

3 This implies that technical analysis may also outperform fundamental analysis in a non-bubble
period; otherwise its weight – which is mostly driven by the agent (imitative) learning behavior –
would not have increased.
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fat-tailedness could be stronger. For the underlying simulation run we compute a
tail index of 4.3. Other simulation runs generate indices between 3.5 and 4.5, as was
the case for N D 25 traders.

4 Robustness of the Dynamics

In this section, we test whether our results are robust. First, we explore the impact of
different random number sequences on the dynamics of our model. Next, we assume
that the fundamental value is not constant but follows a random walk. Finally,
we study the consequences of financial market crashes by introducing extreme
shocks both in fundamental values and in prices. However, instead of perform-
ing a larger and more sophisticated Monte Carlo study to check the robustness
of the dynamics of our model, we restrict ourselves to presenting and discussing
some additional simulation runs. The reason for doing this is that we strongly
believe in the strength of the human eye, which has a remarkable ability to iden-
tify both regularities and irregularities in time series. It is also instructive to inspect
single simulation runs. Phenomena such as bubbles and crashes or volatility out-
bursts are infrequent, irregular phenomena, and by measuring them with certain
statistics their true nature is at least partially lost. Nevertheless, we ascertained
that a more elaborate statistical analysis would also confirm the robustness of the
dynamics.4

4.1 Random Number Sequences

Let us start with the issue of different random number sequences. Figure 4 displays
four repetitions of the first three panels of Fig. 1. The only difference between Figs. 1
and 4 is that we have exchanged the seeds for the random variables. Note that all
simulation runs are characterized by an endogenous competition between the trading
rules. Volatility clustering is always visible, whereas bubbles and crashes may be
absent for longer time periods or may evolve on a smaller scale. However, and this is
one of the reasons why we should pay attention to these simulation runs, the panels
show us that even after a very long time period without significant mispricing the
next bubble may be just about to kick in. This warning may have a philosophical
attitude but, given the common sense of policy makers, it seems important to us to
note that even a stable period of, say, 10 years does not guarantee that the future will
also be stable. A major bull or bear market period may just be days away without
much forewarning.

4 Also modest changes in the parameter setting do not destroy the model ability to mimic actual
asset price dynamics reasonably well.
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Fig. 4 Four repetitions of Fig. 1 using different random number streams

Figure 5 extends the analysis for N D 100 traders. In all simulation runs we see
that the degree of volatility clustering is presumably exaggerated. The reason for
this is that swings in opinion take too much time. Finally, Fig. 6 demonstrates that
our model may generate realistic dynamics for a scenario with N D 500 agents and
20 direct interactions per trading time step.

4.2 Evolution of the Fundamental Value

So far, we have assumed that the fundamental value is constant. In the following, we
explore the dynamics of our model when the fundamental value follows a random
walk. To be precise, the log of the fundamental value now evolves as

Ft D Ft�1 C �t (12)
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Fig. 5 Four repetitions of Fig. 2 using different random number streams

The fundamental shocks � are normally distributed with mean zero and constant
standard deviation �� .

How do fundamental shocks change the dynamics of the model? It may be
surprising to see that the statistical properties of our dynamics are more or less inde-
pendent of (12), as is visible in the two scenarios depicted in Fig. 7. In the top three
panels, the standard deviation of the fundamental shocks is �� D 0:0065 while in
the bottom three panels it is �� D 0:013. Since the standard deviation of the returns
of Fig. 3 (with a constant fundamental value) is about 0.013, we thus assume in the
first (second) scenario that the fundamental shocks are half as volatile (as volatile)
as these returns. Apart from that, the simulation design remains as it was in Fig. 3,
i.e., there are 500 traders and 20 interactions per trading time step. We also rely on
the same random number sequences. Of course, due to the evolution of the funda-
mental value also the course of the price is affected, yet its statistical properties are
quite robust. Interestingly, the volatility is not amplified through the fundamental
shocks. For both scenarios we obtain volatility estimates which are close to 0.013.
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Fig. 6 Four repetitions of Fig. 3 using different random number streams

4.3 Financial Market Crashes

Finally, we investigate how the dynamics of our model reacts to extreme market
crashes. In the first three panels of Fig. 8, we assume that the log of the fundamental
value is 0 until time step 800 but then drops sharply to �0.5. Apparently, this cor-
responds to an extreme negative fundamental crash. Everything else is again as in
Fig. 3. The top panel reveals that also the price crashes, yet not as quickly. It takes
about 450 time steps (which corresponds to a time span of almost two years) before
prices have reached their fundamental value again. Afterward, prices fluctuate in a
similar way as in Fig. 3, expect that the price level is now shifted downwards. In
the bottom set of panels, we introduce a price crash, i.e., we hold the fundamental
value constant but set the price of period 800 equal to �0.5. After this (exogenous)
price crash, the market remains for some time strongly undervalued but then prices
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Fig. 7 The same simulation design as in Fig. 3, except that the fundamental value (given by the
gray line) now follows a random walk with a standard deviation of 0.0065 (top set of panels) and
0.013 (bottom set of panels)

recover and the dynamics become again comparable to the dynamics represented in
Fig. 3. To sum up, both crash scenarios have a temporary impact on the dynamics.
In the long run, however, the model dynamics apparently digests such crashes and
then behaves as usual.
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Fig. 8 The same simulation design as in Fig. 3, except that the log of the fundamental value (the
log of the price) is set to �0.5 in the top set of panels (bottom set of panels) in period 800

5 Conclusions

The goal of this paper is to develop a simple agent-based financial market model
with direct interactions between the market participants. When the traders meet each
other within our model, they compare the past success of their trading rules. Should
an agent discover that his opponent uses a more profitable strategy, it is quite likely
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that he/she will change his/her strategy. Simulations reveal that such a setting may
incorporate a permanent evolutionary competition between the trading rules. For
instance, there may be periods where fundamental analysis dominates the markets.
Prices then fluctuate in the vicinity of their fundamental values. However, at some
point in time a major shift towards technical analysis may set in and the market
becomes unstable. Besides an increase in volatility, spectacular bubbles and crashes
may materialize.

Moreover, we have demonstrated that our model may generate realistic dynam-
ics for a lower or higher number of traders. However, in the latter case we have
to increase the number of interactions per trading time step. Otherwise the relative
importance of the trading rules is not flexible enough due to the assumed tandem
recruitment process. Of course, one could also consider increasing the number of
agents further, say, to 5,000 traders. Realistic dynamics may still be recovered
as long as the number of contacts between the agents per trading time step is
appropriately adjusted.

One interesting extension of the current setup may be to consider that (also) the
probability that an agent changes his opinion independently from social interactions
is state dependent. One could, for instance, assume that the probability to switch
from a technical to a fundamental attitude is relatively high if fundamental analysis
outperforms technical analysis. In this sense, the agents would then (also) display
some kind of individual economic reasoning behavior. Another worthwhile investi-
gation may be to consider different technical trading strategies instead of the simple
trend-continuation rule we have assumed in the present paper. How do the dynamics
look like if technical traders apply moving average rules with longer time windows?
Moreover, we consider only random meetings between agents in our model. It would
be interesting to see a setup in which agents have a social network. Interactions and
the resulting dynamics may, for instance, be studied for a simple lattice or more
complex network structures.

Finally, we would like to point out that, with a bit of experience, it is quite simple
to program our model. It should therefore be possible, even for interested laymen, to
reproduce the dynamics of our model. From a scientific point of view, replication of
results is important. Everything required for such an exercise is given in our paper.
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