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1 Introduction

In a previous paper Tramontana et al. (2009), we developed a three-dimensional
discrete-time dynamic model in which two stock markets of two countries, say
H(ome) and A(broad), are linked via and with the foreign exchange market. The
latter is modelled in the sense of Day and Huang (1990), i.e. it is characterized by a
nonlinear interplay between technical traders (or chartists) and fundamental traders
(or fundamentalists). In the absence of connections, the foreign exchange market
is driven by the iteration of a one-dimensional cubic map, which has the potential
to produce a regime of alternating and unpredictable bubbles and crashes for suffi-
ciently large values of a key parameter, which captures the speculative behavior of
chartists. Such a dynamic feature, first observed and explained by Day and Huang
(1990) in their stylized model of financial market dynamics, can be understood with
the help of bifurcation analysis: an initial situation of bi-stability (two coexisting,
attracting non-fundamental steady states around an unstable fundamental equilib-
rium) evolves into coexistence of cycles or chaotic intervals within two disjoint bull
and bear regions, which eventually merge via a homoclinic bifurcation. By intro-
ducing connections between markets (i.e. by allowing stock market traders to be
active abroad), the endogenous fluctuations originating in one of the markets spread
throughout the whole three-dimensional system. It therefore becomes interesting to
investigate how the coupling of the markets affects the bull and bear dynamics of
the model. With regard to this, in Tramontana et al. (2009) we already performed a
thorough analytical and numerical study of two simplified lower-dimensional cases,
where connections are either totally absent (each market evolves according to an
independent one-dimensional map) or occur in one direction (a two-dimensional
system evolves independently of the third dynamic equation). Also a short analysis
of the stability of the equilibria of the three-dimensional model was there started,
arguing that the global (homoclinic) bifurcations may still be a characteristic of the
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dynamics. This investigation is precisely the object of the present paper. We shall
analyze the dynamic behavior of the complete three-dimensional model, following
the approach adopted in Tramontana et al. (2009), based mainly on the numeri-
cal and graphical detection of the relevant global bifurcations. Although analytical
conditions for such global bifurcation, mainly homoclinic bifurcations, are difficult
to be formalized, their existence and occurrence can be numerically detected. As
it is standard in the qualitative study of dynamic behaviors, the transverse cross-
ing between stable and unstable sets of unstable cycles, leading to homoclinic
trajectories, give numerical tools which may be considered as proofs in a given
numerical example.

The structure of the paper is as follows. In Sect. 2 we briefly describe the three-
dimensional model of interacting stock and foreign exchange markets. The main
results regarding the lower-dimensional subcases explored in Tramontana et al.
(2009) are summarized in Sect. 3. Section 4 deals with the dynamics of the complete
three-dimensional model by discussing, in particular, the steady state properties
and the existence of multiple equilibria (Sect. 4.1), the homoclinic bifurcations of
the non-fundamental steady states (Sect. 4.2) and of the fundamental equilibrium
(Sect. 4.3), and the so-called final bifurcation (Sect. 4.4). Section 5 concludes the
paper.

2 The Dynamic Model

This model describes the joint evolution of two stock markets (denoted asH andA),
denominated in different currencies, and the related foreign exchange market. While
the two stock prices (PH

t and PA
t , respectively) adjust over time depending on the

excess demand for stock generated by national and foreign fundamental traders, the
exchange rate1(St ) depends on the excess demand of currencyH . The latter consists
of (i) demand for currency by heterogeneous speculators (technical and fundamen-
tal traders) who explicitly focus on the foreign exchange market and (ii) demand
for currency by stock market traders who invest abroad, who obviously buy/sell for-
eign currency to conduct stock market transactions. In the following, we denote as
FH , F A and F S the fundamental values of the two stock prices and the exchange
rate, respectively. Assuming, for the sake of simplicity, a linear price impact func-
tion, prices in the three markets jointly evolve according to the following laws of
motion:

PH
tC1 D PH

t C aH .DHH
F;t CDHA

F;t /; (1)

PA
tC1 D PA

t C aA.DAA
F;t CDAH

F;t /; (2)

1 Here we define the exchange rate as the price, expressed in currency A, of one unit of
currency H .
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StC1 D St C d.PH
t DHA

F;t �
PA

t

St

DAH
F;t CDS

C;t CDS
F;t /; (3)

where aH , aA and d are positive parameters, and where the demand terms appearing
on the right-hand sides of the above equations have the following definitions and
meaning:

� DHH
F;t D bH .FH �PH

t /, bH >0, is the demand2 for stockH by the fundamen-
tal traders (or fundamentalists) from countryH .

� DHA
F;t D cH Œ.FH �PH

t /C �H .F S �St /�, cH D 0, �H > 0, is the demand for
stock H by the fundamental traders from country A.

� DAA
F;t D bA.FA � PA

t /, b
A > 0, is the demand for stock A by the fundamental

traders from country A.
� DAH

F;t D cAŒ.FA � PA
t /C �A. 1

F S � 1
St
/�, cA D 0, �A > 0, is the demand for

stock A by the fundamental traders from countryH .
� DS

C;t D e.St � F S /, e > 0, and DS
F;t D f .F S � St /

3, f > 0, are the demands
of currency H by chartists and fundamentalists, respectively, who enter spec-
ulative positions in the foreign exchange market. In particular, chartist demand
coefficient, e, turns out to be an important bifurcation parameter in our analysis.

The following additional comments about agents’ demands are useful:

(1) Fundamentalists seek to profit from mean reversion, so that they submit buy-
ing orders (positive demand) when the market is undervalued (the price is
below fundamental) and selling orders (negative demand) when the market is
overvalued.

(2) In addition, foreign fundamentalists may also benefit from exchange rate move-
ments, and therefore their demand function also includes a term that is depen-
dent on the observed mispricing in the foreign exchange market; in particular,
traders from H to A take into account the reciprocal values of the exchange
rate and its fundamental.

(3) In the foreign exchange market, chartists believe in the persistence of bull
markets or bear markets and therefore optimistically buy (pessimistically sell)
currencyH as long as the exchange rate is high (low). Fundamentalists seek to
exploit misalignments using a nonlinear trading rule. As long as the exchange
rate is close to its fundamental value, fundamentalists are relatively cautious,
but the greater the mispricing, the more aggressive they become.

(4) Finally, PH
t DHA

F;t represents the demand for currency H generated by stock

market orders from A to H , and symmetrically PA
t D

AH
F;t is the demand for

currency A generated by stock market orders from H to A: the latter is

2 The demand for stock is given in real units.
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converted into an amount of currency H of opposite sign, via the reciprocal
exchange rate 1

St
.

By specifying all of the demand terms in (1)–(3), we obtain a three-dimensional
dynamical system with the following structure

8̂
ˆ̂<
ˆ̂̂:

PH
tC1 D GH .PH

t ; St /;

StC1 D GS .PH
t ; St ; P

A
t /;

PA
tC1 D GA.St ; P

A
t /:

(4)

In particular, for cH D cA D 0 the structure of the system (4) simplifies into
three independent dynamic equations,PH

tC1 D GH .PH
t /, StC1 D GS .St /,PA

tC1 D
GA.PA

t /, of which that for exchange rate S is nonlinear (of cubic type), whereas
the two stock prices PH and PA evolve linearly. More interestingly, for cA D 0 but
cH > 0 the system is of the type

8̂̂
<̂
ˆ̂̂:

PH
tC1 D GH .PH

t ; St /;

StC1 D GS .PH
t ; St /;

PA
tC1 D GA.PA

t /;

(5)

that is to say,PA decouples from the system, whereasPH and S co-evolve in a two-
dimensional nonlinear dynamical system. Both such lower-dimensional subcases
were analyzed in detail in Tramontana et al. (2009). The main findings of such an
analysis are summarized in the following section.

3 Summaries of the 1D and 2D Models

In this section, we recall the main results regarding the simplified, lower-dimensional
subcases analyzed in Tramontana et al. (2009).

3.1 One-Dimensional Case

In the absence of interactions, cHDcAD0, each market evolves as a one-dimensional
dynamical system. Stock markets are represented by simple linear equations and in
each of them the unique fundamental steady state is globally stable, at least for rea-
sonable values of the price and demand adjustment parameters. The law of motion
of the foreign exchange market is nonlinear, determined by iteration of a cubic map,
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with three fixed points: namely, two non-fundamental steady states, say P1 and P2,
relative to each of the two unimodal branches of the cubic map, surrounding an
unstable fundamental steady state (O). The map is symmetric with respect to the
fundamental value, which is why the bifurcations involving P1 and P2 are synchro-
nized. The bifurcation analysis with respect to parameter e highlighted the route to
chaotic bull and bear dynamics of the model. The (synchronized) period-doubling
bifurcations of P1 and P2, followed by the usual cascade of flip bifurcations and
the homoclinic bifurcations of the two steady states, lead to the coexistence of two
symmetric intervals (aroundP1 and P2, respectively), each characterized by chaotic
dynamics (in the sense of chaos of full measure on an interval). Due to the nonin-
vertibility of the map, within this range of values of parameter e the basins of the
two coexisting attractors have a disconnected structure, each being made up of an
infinite sequence of intervals which alternate on the real line with that of the com-
peting attractor. For higher values of parameter e, the two attractors and their basins
merge together via a homoclinic bifurcation of the fundamental steady state O .
After this point, the exchange rate dynamics, previously confined to below or above
the fundamental value, depending on the initial condition, wanders within a unique
chaotic interval around the fundamental steady state, alternating bull and bear mar-
ket episodes in an unpredictable manner. A final bifurcation then occurs when the
unique attractor touches the border between its basin and the basin of infinity, B1,
after which the generic trajectory is divergent.

A crucial tool for the bifurcation analysis, strictly associated with the nonin-
vertibility of the map, is represented by the critical points (local extrema and their
iterates), which are at the boundary of chaotic intervals, and their contacts with the
unstable steady states.

3.2 Two-Dimensional Case

By introducing a partial connection between stock markets A and H (namely, by
allowing investors from countryA to trade in countryH ), the latter turns out to coe-
volve with the foreign exchange market (whereas market A is still decoupled from
the system). As a result, we have a system of two coupled equations, one linear
and one nonlinear. In particular, in the nonlinear equation for the exchange rate we
also have a feedback from stock market H , which makes the dynamics even more
intricate. One difference with the one-dimensional case is that now a unique steady
state exists for small values of e. Another difference is that the symmetry property
is lost. Apart from this, in the two-dimensional case we still observe the same mul-
tiple steady state structure (when e is large enough) and a similar sequence of local
and global bifurcations. More precisely, we highlighted the homoclinic bifurcations
that involve the saddle equilibria P1 and P2 first (albeit now in an asynchronous
manner) and then the fundamental equilibrium O . Due to this sequence of bifurca-
tions (also called interior and exterior crises in Grebogi et al. (1983), the system
has a transition across different dynamic scenarios: from coexisting attracting bull
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and bear chaotic regions, to the disappearance of one of them, to the merging of
the two regions into a unique wider chaotic area. The resulting dynamic outcome is
a coupled bull and bear market behavior of stock price H and the exchange rate,
which may switch across different regions of the two-dimensional phase space with
apparently random behavior. In all cases, the bifurcation mechanisms are basically
due to contacts3 between invariant sets – such as stable manifolds of saddles – and
the boundary of chaotic attractors, the latter being made up of portions of critical
curves of the noninvertible two-dimensional map (see Mira et al., 1996). Finally,
also the bifurcation leading to the disappearance of the unique chaotic attractor is
similar to that of the one-dimensional case. Such a two-dimensional analysis has
been largely carried out with the help of numerical simulation and graphical visual-
ization. In particular, the tool of the critical curves has suggested how the basins of
attraction may acquire a disconnected structure.

4 Analysis of the 3D Model

In this section we deal with the complete three-dimensional model, mainly with
the help of numerical simulation. Our analysis will show that the dynamic phe-
nomena highlighted in Tramontana et al. (2009) also persist in the full model, and
can be detected and understood by extending the approach and techniques used in
the lower-dimensional cases to a three-dimensional setup. In particular, we are also
able in the full model to detect and explain the sequence of local and global bifur-
cations that determine the transition between different dynamic regimes: namely,
from a unique attracting fundamental equilibrium to coexistence of attracting non-
fundamental equilibria, to more complex coexisting attractors, up to the homoclinic
bifurcations which bring about a regime of bull and bear market fluctuations,
first established by Day and Huang (1990) in a one-dimensional setup, character-
ized by apparently random switches of prices across different regions of the phase
space.

In the full model, stock market traders from countries A and H are allowed
to trade in both markets, i.e. cH > 0 and cA > 0. In this case, the two stock
prices and the exchange rate are all interdependent, and the model has the complete
structure (4). The system (4), expressed in deviations4 from fundamental values,
x D .PH � FH /, y D .S � F S / and z D .PA � FA/, is represented by a map
T W R3 ! R

3 that takes the following form:

3 Following Mira et al. (1996) we call contact bifurcation any contact between two closed invariant
sets of different kinds. A contact bifurcation may have several different dynamic effects, depending
on the nature of the invariant sets.
4 Although we work with deviations, in all the following numerical experiments we have checked
that original prices never become negative.
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T W

8̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂:

xtC1 D xt � aH Œ.bH C cH /xt C cH �Hyt �;

ytC1 D yt � d
	
cH .xt C FH /.xt C �Hyt /

CcA
zt C FA

yt C F S

�
�A

yt

F S .yt C F S /
� zt

�
� eyt C fy3

t



;

ztC1 D zt � aA

	
.bA C cA/zt � cA�A

yt

F S .yt C F S /



:

(6)

The model is not tractable analytically. Apart from the fundamental fixed point,
say O D .0; 0; 0/, whose existence can be immediately checked, we cannot solve
explicitly for the coordinates of further possible non-fundamental equilibria, nor
can we obtain easily interpretable analytical conditions for their existence. A brief
discussion of the steady states is provided in the following subsection.

4.1 Fixed Points and Multistability

By imposing the fixed point condition to (6), we obtain the following system of
equations �

bH C cH
�
x C cH �Hy D 0; (7)

cH
�
x C FH

� �
x C �H

�
C cA zC FA

y C F S

�
�A y

F S .y C F S /
� z

�
� eyCfy3 D 0;

(8)�
bA C cA

�
z � cA�A y

F S .y C F S /
D 0: (9)

We observe from (7) and (9) that any steady state must belong to both the plane
of equation:

y D � x

qH
(10)

and the surface of equation

z D qA y

.y C F S /
; (11)

where

qH WD cH�H

bH C cH
I qA WD cA�A

.bA C cA/F S
:

This implies that when the steady state exchange rate is above the fundamental
value (y > 0), steady state price A is then above the fundamental value (z > 0),
whereas steady state price H is below the fundamental value (x < 0), and vice
versa. From now on, we will label the region y > 0, z > 0, x < 0 as the bull region
and region y < 0, z < 0, x > 0 as the bear region. By substituting (10) and (11) into
(8), we are able to express condition (8) in terms of the steady state (deviation of)
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price H only, as follows:

x

	
f

.qH /3
x2 C bHx C

�
bHFH � e

qH

�
CM.x/



D 0; (12)

where

M.x/ WD bAqHqA q
HF SFA � x.qA C FA/

.qHF S � x/3 :

Therefore, besides the fundamental solution x D 0, further possible solutions
are the roots of the expression in square brackets in (12). Note that for cA D 0, and
therefore qA D 0 andM.x/ D 0, the x-coordinates of further possible steady states
are the solutions of a quadratic equation, and their existence was discussed in detail
in Tramontana et al. (2009).5

In contrast, if cA > 0, it becomes impossible to solve (12) analytically. When
cA is small enough, we may expect a steady state structure qualitatively similar to
that of the two-dimensional subcase cA D 0, with two further steady states initially
appearing simultaneously in the bull region, via saddle-node bifurcation.6

However, if cA is large enough, as is the case of the following numerical exper-
iments, as we shall see, it is difficult to detect the appearance of further equilibria
and their initial location with respect to the fundamental. We remark that the ana-
lytical investigation of the local stability properties of fundamental fixed point
O D .0; 0; 0/ is also a difficult task. The Jacobian matrix evaluated at O is
given by

J.O/ W

2
66664

1 � aH .bH C cH / �aHcH�H 0

�dcHFH 1 � d
	
cHFH�H C cAF A�A

.F S/3
� e



dcAF A

F S

0
aAcA�A

.F S/2
1 � aA.bA C cA/

3
77775

(13)

and its eigenvalues (which are roots of a third-order polynomial) cannot be solved
for explicitly. Nor can we write down tractable analytical conditions for the eigen-
values to be smaller than one in modulus. We shall now study the local and
global bifurcations via numerical investigation, supported by our knowledge of
the model behavior in the simplified, two-dimensional case. In fact, as we shall
see, the analysis performed in Tramontana et al. (2009) provides important guide-
lines for understanding the dynamic phenomena occurring in this more complex
three-dimensional model.

With the parameter setting used in following numerical simulations (as well as
with other similar constellations of parameters) we do not observe the appearance
of the non-fundamental equilibria via saddle-node bifurcation. Instead, a pitchfork

5 Moreover, in this case, in which market A decouples from the system, (11) reduces to z D 0.
6 This is also confirmed by numerical simulations.
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bifurcation of the fundamental steady state seems to occur, leading to the appearance
of two new stable equilibria, one in the bull region and one in the bear region, at
the same parameter value at which the fundamental becomes unstable.7 The situ-
ation resulting from the local bifurcation of the fundamental steady state is in any
case qualitatively the same as for the two-dimensional subcase. That is, the phase
space is shared amongst the basins of attraction of two non-fundamental equilib-
ria, separated by the stable set of the (saddle) fundamental steady state. From now
on, the bifurcation sequences involving the two coexisting equilibria (or, more gen-
erally, the two coexisting attractors) follow paths similar to those observed in the
two-dimensional model, albeit involving stable and unstable manifolds in higher
dimensions. In this paper we confirm and strengthen almost all of the results of
the two-dimensional case, albeit via numerical simulations only. We shall describe
various kinds of homoclinic bifurcations, following the same scheme of the study
carried out in Tramontana et al. (2009).

Our base parameter selection is the following:aH D 0:41, bH D 0:11, cH D 0:83,
FH D 4:279, �H D 0:3, d D 0:35, f D 0:7, F S D 6:07 (which are the same param-
eters used in the simulations in Tramontana et al. (2009), enabling a direct com-
parison), aAD 0:43, bAD 0:21, cAD 0:9, �AD 0:36 and F AD 1:1. In order to
sufficiently distinguish the model from the two-dimensional case studied in Tra-
montana et al. (2009) (where cA is zero), we have chosen a value of cA that is
much further away from zero, and even higher than cH . Bifurcations similar to
those described below are observed with several other parameter constellations.
The numerical analysis performed in the Appendix shows that O loses stability
when one eigenvalue becomes equal to 1 at e ' 0:125. We argue that this corre-
sponds to a pitchfork bifurcation, because we observe the simultaneous appearance
of two further equilibria, which we denote as P1 (in the bear region) and P2 (in
the bull region). Figure 1 shows the asymptotic dynamics in the three-dimensional
phase space for increasing values of e. We can see that the fundamental fixed point
is unstable and that two new stable fixed points exist. The stable fixed points are
located on opposite sides with respect to plane yD 0 (i.e. S DF S ), as shown in
Fig. 1a. Since only one eigenvalue of J.O/ becomes larger than 1, while two other
eigenvalues are real and still smaller than one in absolute value, the fundamental
equilibrium is a saddle with a one-dimensional unstable manifold (made up of two
branches, connecting O with P1 on one side and O with P2 on the opposite side),
while the stable set W s

O of the origin is a two-dimensional manifold, which sepa-
rates the two basins of attraction of the two coexisting fixed points. In other words,
the frontier of the basins of attraction of P1 and P2, say B1 and B2, respectively,
includes surfaceW s

O .
Moreover, it is easy to see that divergent behavior is also possible, so that the

basin of divergent trajectories, B1, also exists (and will be involved in the final
bifurcation, as we shall see below). The structure of the basins after the appearance

7 We remark that this is just numerical evidence, and we cannot exclude the existence of a sequence
similar to that described for the 2D model (i.e. a Saddle-Node bifurcation immediately followed
by a Transcritical), occurring in a very narrow range of parameter e.
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Fig. 1 Coexisting attractors for increasing values of parameter e and other parameters according to
our base selection. In (a), e D 0:89, the attractors are two stable fixed points P1 and P2. In (b), e D
2:43, there is coexistence of the stable fixed point P2 and a stable 2-cycle. In (c), e D 3:576,
one chaotic attractor (blue, in the bear region) consists of a unique piece (after the homoclinic
bifurcation of the fixed point P1) while the other chaotic attractor (red, in the bull region) is made
up of two disjoint pieces, on opposite sides with respect to the fixed point P2. In (d), e D 4:1841,
both have become one-piece attractors, and the light grey one approaches the stable set of the
fundamental fixed point in the origin. The boxes are centered in O and the range of all axes is
Œ�3;C3�

of the two new attractors is shown in Fig. 2, where a cross section of a plane through
the fundamental fixed pointO D .0; 0; 0/ is considered. The value of the parameter
is e D 0:89, as in Fig. 1a, and two attracting fixed points coexist. In the cross section,
the different grey tonalities belong to different basins of attractions. We denote in
grey the basin of the fixed point P1 (in the bear region). The basin of fixed point P2

(in the bull region) is light grey, while points generating divergent trajectories, and
thus belonging to the basin B1, are shown in dark grey.
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Fig. 2 Cross section along a plane through the fundamental fixed point O D .0; 0; 0/. The value
of parameter is e D 0:89, as in Fig. 1a. The box is centered inO and the range of axes is Œ�3;C3�
for all state variables. In the cross section, different colors denote different basins of attractions.
Basin B1 of the fixed point P1 is in grey, basin B2 of the fixed point P2 is in light grey, basin B1

is in dark gray

As already conducted in Tramontana et al. (2009) of our study, we analyze the
sequence of bifurcations occurring when parameter e is increased. We first show
a bifurcation diagram of the asymptotic behavior of state variable y as a func-
tion of parameter e. The diagram (Fig. 3) highlights how a sequence of bifurcations
very similar to those observed in the two-dimensional case also occurs in the three-
dimensional case and, as expected, in an asynchronous manner (because in the full
model, as well as in the two-dimensional subcase studied in Tramontana et al., 2009,
there is no symmetry with respect to the origin). In Fig. 3a, the initial condition is
taken close to the fixed point P1, while in Fig. 3b the starting point is close to the
other fixed point P2. The global bifurcations first involve the attractor associated
with equilibrium P1 (in blue) and then that associated with P2 (in red).

4.2 Homoclinic Bifurcation of Equilibria P1 and P2

As noted above, after their appearance, both locally stable fixed points undergo
a cascade of flip bifurcations (in an asynchronous manner), leading to chaos (see
Figs. 3 and 1). In particular, in Fig. 1c we can see that the attracting set in the bull
region (in red) is still made up of two disjoint pieces, located on opposite sides with
respect to the unstable fixed point P2, while the second attractor, located in the bear
region (in blue), is already a one-piece chaotic attractor. Although we do not have
the coordinates of the unstable fixed points P1 and P2, we can state that in this
case (Fig. 1c) fixed point P1 is already homoclinic, at least on one side, because
it belongs to the invariant chaotic area (and it is probably located on its bound-
ary, as it occurs in the 2D model), while the fixed point P2 is not yet homoclinic
(because it is not jet included in the chaotic area), although it will be involved later
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Fig. 3 Bifurcation diagrams of y vs. parameter e, ranging from 0 to 5:5. The range of e is sub-
divided into different intervals. In interval A the only attractor is the fundamental equilibrium O .
Its pitchfork bifurcation occurs at e ' 0:125, after which two new stable equilibria appear. In
(a) the initial condition is close to the fixed point P1, in (b) it is close to P2. In interval B we
observe a complete route to chaos for each fixed point. The homoclinic bifurcation of P1 occurs
at e1.BC/ ' 3:56, which results in the one-piece chaotic attractor in light grey. The homoclinic

bifurcation of P2 occurs at e1.BC/ ' 3:6, leading to the one-piece chaotic attractor in dark grey.
In interval C there is coexistence of two one-piece chaotic attractors. The upper bound of interval
C corresponds to a homoclinic bifurcation of the origin. In (a) the light grey chaotic attractor dis-
appears at the first homoclinic bifurcation of the origin, which occurs at e1.CD/ ' 4:185, so that

for any e in interval D (e1.CD/ < e < e2.DE/) the unique attractor is the dark grey one. The second

homoclinic bifurcation of the origin occurs at e2.DE/ ' 4:3 and leads to an explosion of the chaotic
attractor into a wider region (in grey). This unique chaotic attractor exists up to its final bifurcation
at ef ' 5:03
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(i.e. for larger e) in a homoclinic bifurcation, causing the reunion of the two pieces
of chaotic attractor around P2. Figure 1d indeed shows the situation existing after
both the first homoclinic bifurcations of equilibria P1 and P2 have occurred.

In the bifurcation diagram in Fig. 3 we plot the asymptotic behavior of the state
variable y, as e varies in the range Œ0; 5:5�. In the interval of values of e denoted by
A, the only attracting set is the fundamental equilibriumO . Its pitchfork bifurcation
occurs at e ' 0:125, after which we have the appearance of two further stable
equilibria. In (a) the initial condition is taken close to the fixed point P1, while in
(b) it is taken close to the fixed point P2. The fixed points are stable up to their flip
bifurcation, which occurs for P1 first, and then for P2. In the interval denoted by B
we observe the typical route to chaos for each fixed point, and the parameter values
e1

.BC /
and e2

.BC /
are the homoclinic bifurcation values of P1 and P2, respectively,

at which the reunion of two pieces into one single chaotic attractor takes place.
In the proposed example, we first observe this bifurcation in the bear region, at
e1

.BC /
' 3:56 (leading to the one-piece chaotic attractor in blue), and then in the

bull region, at e2
.BC /

' 3:6 (leading to the one-piece chaotic attractor in red).
The coexistence of two disjoint attractors in the bull and bear regions is coupled

with an increase of complexity in the structure of the related basins of attraction B1

and B2. An example is shown in Fig. 4: in (a) we show the two disjoint attractors
and in (b) a cross section through the origin shows the basins in different colors. B1,
in pink, is the locus of initial points converging to the chaotic attractor in blue, and
B2, in orange, is the locus of points converging to the chaotic attractor in red, while
the gray points belong to basin B1. Note that the basins are now disconnected:
within the region that approximately coincides with basin B1 of Fig. 2 there are now
also points belonging to basin B2 and to B1; at the same time, points belonging
to basin B1 and to B1 are now located in the region previously belonging to basin
B2 in Fig. 2. This phenomenon is again due to contact bifurcations of the basins of
attraction with critical sets (critical surfaces, in this three-dimensional case). That
is, denoting by J.x; y; z/ the Jacobian matrix of the map (6) and by SC�1 the locus

Fig. 4 Coexisting attractors at e D 4:1841. The boxes are centered in O and the range of axes
is Œ�3;C3�. In (b) a plane through the origin O is shown, along which different colors denote
different basins of attraction, as in Fig. 2
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of points defined by the equation det J.x; y; z/ D 0, this set plays the same role
of the critical points xm�1 and xM�1 in the one-dimensional map corresponding to the
subcase cH D cA D 0, and to the critical curve LC�1 in the two-dimensional map
corresponding to cA D 0, both analyzed in Tramontana et al. (2009). The image of
SC�1 under map T gives a surface, SC WD T .SC�1/, which is responsible for the
contact bifurcations of the basins of attraction. In the 3D phase space this critical
surface SC separates regions of points with a different number of rank-1 preimages.
When basin B1 (or basin B1) touches the critical surface SC and then crosses it, a
portion of the basin, say H 0, enters a region of the phase space whose points have a
higher number of preimages, thus leading to the appearance of new portions of the
basin. Such portions consist of the region (volume) T �1.H 0/, located around the
critical surface SC�1, and of its further preimages.

4.3 Homoclinic Bifurcation of the Fundamental Equilibrium O

The coexistence of two attractors located in two disjoint bull and bear regions ends
at the first homoclinic bifurcation of the origin. The section of the basins of attrac-
tions in Fig. 4b shows that the chaotic attractor in the bear region, colored blue, is
very close to the boundary of its basin B1. Moreover, we know that the frontier of
the two basins B1 and B2 includes the two-dimensional stable set W s

O of the funda-
mental fixed point O , which is now a set with a complex structure. Thus, from the
closeness of the chaotic area to the origin we can argue that in the parameter situa-
tion shown in Fig. 4b we are already very close to this first homoclinic bifurcation
of the origin (while the second one is due to the other chaotic attractor, which is still
far from the origin).

At the fixed point itself the stable set W s
O is a surface tangent to the plane gener-

ated by the eigenvectors associated with the two stable eigenvalues of the Jacobian
matrix J.O/. A portion of this plane (tangent at the origin to the surface W s

O ) is
shown in Fig. 5, at e D 4:1841 (same parameter value as in Fig. 4). At this value the

Fig. 5 Coexisting attractors
for e D 4:1841 (as in Fig. 4)
and a portion of the plane
through the origin O , tangent
to the stable set W s

O
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eigenvalues of the Jacobian matrix J.O/ are given by �1 D 2:1725, �2 D �0:5341
and �3 D 0:5216. The eigenvectors associated with eigenvalues �2 and �3 (less than
1 in modulus), say v2 and v3, respectively, are given by

v2 D
0
@�0:6066�0:769
�0:2017

1
A ; v3 D

0
@�0:2582�0:2836
�0:9235

1
A

and the tangent plane is generated by these two vectors. We can see that in Fig. 5
the tangent plane is already crossed by the chaotic attractor in blue. This means that
we are not far from the parameter value at which a contact with surfaceW s

O occurs.
Since one branch of the unstable set W u

O of the origin tends to the chaotic attractor,
the contact of the chaotic attractor with the stable set of the origin is also a contact
between the unstable set W u

O and the stable set W s
O , leading to the first homoclinic

bifurcation of the fixed pointO .
After the contact, the stable and unstable sets have infinitely many transverse

intersections. However, the chaotic set associated with the origin is not observ-
able in the asymptotic dynamics. In fact, as a result of this bifurcation we have
the disappearance of the chaotic attractor in the bear region. That is, the previ-
ous light grey chaotic attractor has now turned into a chaotic repeller, which also
includes homoclinic trajectories on one side of the origin. We recall that a contact
bifurcation causing the disappearance of a chaotic attractor always lives a chaotic
repeller in its place in the phase space. This chaotic repeller is formed by all the
unstable cycles previously existing in the chaotic set, and the related stable sets, or
insets (see Mira et al., 1996 for further details). Thus although in Fig. 6a we observe
only one attractor on one side of the stable set of the origin, we know that on the

Fig. 6 (a) Unique chaotic set in the bull region, at e D 4:208, after the first homoclinic bifurcation
of the fundamental equilibrium O . (b) Unique chaotic set covering both the bull and bear regions,
at e D 4:761, after the second homoclinic bifurcation of the fundamental equilibrium O . Boxes
are centered in O and the range of axes is Œ�3;C3�
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other side a chaotic repeller exists, and its existence may be put in evidence when
a contact between the existing chaotic attractor and the origin occurs (at another
homoclinic bifurcation of the origin). We may observe the chaotic repeller via the
long chaotic transient of trajectories starting from initial conditions in the old B1

area: they remain in the old region for several iterations before converging to the
chaotic set in the bull area.

For this reason, the interval labelled C in Fig. 3a (where two one-piece chaotic
attractors coexist) ends with the first homoclinic bifurcation of the origin, which
occurs at e1

.CD/
' 4:185, when the chaotic attractor in the bear region disappears

and the generic initial condition in that region then converges to the dark grey attrac-
tor, in the bull region. Similarly to the two-dimensional case, a range of values of
the parameter e exists such that the chaotic attractor located (approximately) in
the region S >F S (y > 0), colored dark grey, becomes the only attractor in the
phase space (see Fig. 6a). From the asymptotic behavior, shown in Fig. 6a, we can-
not observe the chaotic repeller, which we know exists. The chaotic repeller will
again be observable after the second homoclinic bifurcation of the origin, which
occurs at e2

.DE/
' 4:3, leading to an explosion of the chaotic attractor into a wide

region of the phase space, as shown in Fig. 6b.
From Fig. 6a we can see that the tongues of the dark grey chaotic set increasingly

approach the fundamental fixed point, and thus we are very close to the second
homoclinic bifurcation ofO . This bifurcation involves a contact between the branch
of W u

O that converges to the chaotic attractor in the bull region and the surface
representing the stable set W s

O . The result of this bifurcation is an explosion of
the chaotic set (which includes both the previous chaotic attractor and the previous
chaotic repeller), as shown in Fig. 6b.

This brings about a major change of the dynamics. Whatever the initial condi-
tion is (from either the bear or the bull region), the trajectory will wander in both
regions, jumping from one to the other after an unpredictable number of iterations.
An example of the resulting fluctuations of the state variables is given in Fig. 7.
The dynamics we obtain are much more intricate than those observed in Day and
Huang (1990). The reason for this is that there is a feedback process from the foreign
exchange markets on the stock markets and from the stock markets on the foreign
exchange market. The first feedback process generates endogenous dynamics in the
stock markets, where otherwise no dynamics would be observable.

The second feedback process may be interpreted as deterministic noise impacting
on the evolution of the exchange rate. Also, the three markets demonstrate excess
volatility and endogenous bubbles and crashes.

4.4 Final Bifurcation

After the above-described second homoclinic bifurcation of the origin, the region
of the phase space covered by the chaotic dynamics becomes wider as parameter e
increases. The oscillations of the trajectories increase in amplitude, and we approach
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Fig. 7 Trajectories of the state variable x (deviation of stock price PH from the fundamental price
FH ), y (deviation of the exchange rate S from the fundamental exchange rate F S ), z (deviation of
stock price PA from the fundamental price FA), obtained at e D 4:75

a catastrophic situation, after which trajectories will be mainly divergent. In Fig. 3
this bifurcation is revealed by the existence of a unique attractor, colored grey, which
covers both chaotic regions and exists up to its final bifurcation at ef ' 5:03. The
final bifurcation is again given (as in the one- and two-dimensional cases studied
in Tramontana et al., 2009) by a contact of the chaotic attractor with the frontier of
its basin of attraction. We recall (see Mira et al., 1996) that a contact between an
invariant set and the basin of divergent trajectories always leads to a final bifurca-
tion, because the invariant set will no longer exist after the contact, and almost all the
points whose trajectory was previously trapped into the invariant set will then have
divergent trajectories. In our example this is shown in Fig. 8 where, for a specific
value of e close to the final bifurcation, we represent the attractor in black and its
basin of attraction in light grey.8 Dark gray points, as usual, denote points belonging

8 For a better visualization, the region of the three-dimensional phase space represented in Fig. 8
also includes a set of points that are not economically meaningful (the bottom part of the cube and
of the related sections), but the attractor and the contacts that give rise to the final bifurcation all
belong to the economically relevant zone.
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Fig. 8 Chaotic attractor at e D 5:02 and four different sections of the three-dimensional phase
space through planes of equation y D k. The dark gray points belong to B1 and thus generate
divergent trajectories; the light grey points belong to the basin of attraction of the attracting set (in
black). The bottom part of each section corresponds to initial conditions that have no economic
relevance (z < �FA), included only for better visualization of the basins. The contacts occur in
the meaningful region

to basin B1. Figure 8 shows four different sections with planes of equation y D k.
In the first hyperplane (at y D 3:8), the boundary between the light and dark gray
points is a simple line, and this section is still far from the chaotic attractor. In the
second cross section (at y D 2:95), the boundary has become more complex, and
the attractor is crossed: the section of attractor belonging to the plane, still inside
the light grey area, is close to the frontier, in the points indicated by an arrow. In the
third section (at y D 1), the attractor again appears a long distance from the border
of the basin. Finally, the last section (at y D �1:4) again suggests that a portion of
the attractor is close to the frontier, in the points indicated by the arrow.

The contact between two invariant sets of different nature (the chaotic attractor
and the frontier of its basin) leads to the final bifurcation, which will leave a chaotic
repeller instead of the chaotic attractor. That is, after this final bifurcation the model
is no longer meaningful, as the generic trajectory in the phase space is a divergent
trajectory (maybe after a long chaotic transient). The chaotic repeller survives in a
set of zero measure, almost inaccessible, and includes all of the unstable fixed points
and cycles, as well as all of their stable sets.
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5 Conclusions

In this paper we have furthered the study of a dynamic model started in Tramontana
et al. (2009), where two stock markets are linked with each other due to the trad-
ing activity of foreign investors. Connections occur through the foreign exchange
market, where demand for currencies, and consequent exchange rate adjustments,
are generated partly by international stock market transactions and partly by the
trading activity of heterogeneous foreign exchange speculators. The model results
in a three-dimensional nonlinear dynamical system, which is able to generate the
typical bull and bear dynamic behavior already detected and discussed by Day
and Huang (1990) in a one-dimensional financial market model with fundamen-
talists and chartists. The previous study was mainly devoted to the derivation of
the model and a thorough analysis of its dynamic behavior in simplified one- and
two-dimensional cases, corresponding to situations in which the three markets are
at least partially disconnected, due to restrictions to the trading activity of foreign
investors.

This present paper is focused on the dynamic behavior of the complete three-
dimensional model. We have presented a study of the full model carried out mainly
by numerical simulation and graphical visualization, suitable to reveal contact bifur-
cations between invariant sets of different nature. Following the road map provided
by the analysis performed in Tramontana et al. (2009), and taking advantage of
the techniques employed in the 1D and 2D cases, we have seen that the homo-
clinic bifurcations also occur in this complete model. Thus, as expected, also in
the 3D case it turns out that the typical bull and bear dynamics – with seemingly
random switches of stock prices and exchange rates across different regions of the
phase space – result from a sequence of global bifurcations involving both the non-
fundamental steady states and the fundamental equilibrium of the model. Our results
thus extend such dynamic mechanisms, which provide a simplified yet intrigu-
ing explanation for the emergence of bubbles and crashes in financial markets, to
higher-dimensional setups.

Appendix

Given the parameters selection used in this work (i.e. aH D 0:41, bH D 0:11,
cH D 0:83, FH D 4:279, �H D 0:3, d D 0:35, f D 0:7, F S D 6:07, aA D 0:43,
bA D 0:21, cA D 0:9, �A D 0:36, FA D 1:1), from (13) the Jacobian matrix of the
three-dimensional map evaluated at the fixed point O D .0; 0; 0/ becomes

J.O/ W
2
4 0:6146 �0:10209 0

1:2430495 0:6265274C 0:35e 0:057084
0 0:003781256 0:05227

3
5
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so that we look for the necessary and sufficient conditions for O to have all the
eigenvalues less than one in modulus, roots of the characteristic polynomial

�3 C A1�
2 CA2�C A3 D 0;

where
A1 D �1:7638� 0:35e;
A2 D 0:9067C 0:398055e;
A3 D �0:1348� 0:1124e:

Following Farebrother (1973) the eigenvalues of the polynomial given above have
to satisfy the following conditions (equivalent conditions can be found in Gandolfo,
1980, Yury’s conditions in Elaydi, 1970 and Okuguchi and Irie, 1990):

.i/ 1CA1 C A2 C A3 > 0;

.i i/ 1 �A1 C A2 � A3 > 0;

.i i i/ 1 �A2 C A1A3 � .A3/
2 > 0;

.iv/ A2 < 3:

In our case condition .i/ is satisfied for e < 0:125 (approximate value). Condition
.i i/ becomes 3:8053C 0:8605e > 0 and is obviously satisfied for positive values
of e. Condition .i i i/ is satisfied for e < 3:3096 and e > 3:54, while condition .iv/
is satisfied for e < 5:258821. Starting from values of the parameter e positive and
close to 0 and increasing its value, the first condition which is violated is .i/, so that
e D 0:125 is the bifurcation value at which the fixed point loses stability.
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