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Abstract

This paper explores the steady-state properties and the dynamic behavior of a gener-

alization of the classical cobweb model. Under fairly general demand and cost functions,

producers form naïve expectations about future prices and select their output so as to max-

imize expected profits. Unlike the traditional setup, producers have the choice between

two markets, and tend to enter that which was more profitable in the recent past. Such

a switching process implies time-varying aggregated supply schedules, thus representing a

further source of nonlinearity for the dynamics of prices. Analytical investigations and the

numerical simulation of a particular case with linear demand and supply indicate that such

interactions may destabilize otherwise stable markets and generate complex dynamics.
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1 Introduction

Cobweb models describe the price dynamics in a market of a nonstorable good that takes one

time unit to produce. Such a setup is, for instance, typical for agricultural markets. Due to

the production lag, producers form price expectations and undertake production decisions one

time period ahead, based on current and past experience. Within the early cobweb model

of Ezekiel [1], producers simply form naïve expectations, and demand and supply schedules

are linear. Despite such a simple setup, this model provides a qualitative explanation for the

cyclical tendencies observed in many commodity markets.1 Nevertheless, the basic model has

only a pedagogical value, and the possible range of dynamic outcomes is basically restricted to

either dampened or exploding oscillations around the equilibrium price.

In the last twenty years, the growing popularity of nonlinear dynamics in economic analysis

has brought about a renewed interest in cobweb models, and the basic setup has been extended

or modified so as to include various nonlinear elements. In particular, Chiarella [6], Day [7] and

Hommes [8], [9] consider nonlinear demand and supply curves together with different adaptive

expectations schemes. Brock and Hommes [10], Goeree and Hommes [11], Branch [12] and

Chiarella and He [13] assume that agents switch between different available prediction rules,

depending on certain fitness measures. Risk aversion and time-varying second moment beliefs

are introduced into the basic setup by Boussard [14] and Chiarella et al. [15].

By assuming sufficiently general demand and supply functions, the present paper also belongs

to this stream of research, albeit extending the model in a different direction. We take into

account the fact that producers are able to manufacture different goods. For instance, farmers

may decide to expand the production of wheat if they intend to reduce (or abandon) their

production of rye. As a result, simple cobweb markets become linked from the supply side.2

To make matters as simple as possible, we consider a situation in which producers can choose

between one of two markets. The producers’ choice, which depends on how profitable the

two markets were in the recent past, is updated over time. The more successful market will

consequently be selected by more producers than its counterpart. Since the number of producers

in a market varies over time, the supply schedule turns out to be state-dependent. Analytical
1Note that actual commodity price fluctuations are characterized by a strong cyclical component (see, e.g. [2]).

Moreover, both empirical evidence ([3], [4]) and laboratory cobweb experiments ([5]) suggest that agents rely on
simple strategies to predict prices.

2A number of authors have analyzed interdependent cobweb economies for substitute or complement goods,
linked from the demand side (e.g. [16], [17]).

2



and numerical tools prove that this simple nonlinear interaction mechanism has the potential

to destabilize otherwise stable stationary states, and to produce complex price dynamics even if

the other parts of the cobweb model are specified in a linear manner.

The structure of the paper is as follows. In Section 2, we present a model with two interacting

cobweb markets. In Section 3, we reduce the model to a 4-dimensional discrete-time nonlinear

dynamical system, derive analytical results about the steady state and its local stability prop-

erties (3.1), and provide a numerical example of complex price fluctuations around an unstable

steady state (3.2). Section 4 concludes the paper.

2 Model

We consider two markets, called markets X and Z. At the beginning of each period, producers

select the market they wish to enter. Given a fixed number N of producers, the proportions

entering markets X and Z at time step t are denoted asWX,t andWZ,t = 1−WX,t, respectively.

An individual producer either supplies quantity SX,t or SZ,t. Hence, the total supply in the

two markets is NWX,tSX,t, NWZ,tSZ,t, respectively. Market clearing occurs in every period,

implying that

DX,t = NWX,tSX,t, DZ,t = NWZ,tSZ,t, (1)

where DX,t and DZ,t denote the demand for goods X and Z, respectively. All other parts of

the model are specified by extending the classical cobweb setup, based on the assumption of

profit-maximizing producers3 endowed with naïve expectations, to fairly general demand and

cost functions. Let us now describe our assumptions in detail.

Consumer demand for each good is a strictly decreasing function of its own current market

price (PX,t or PZ,t)

DX,t = DX(PX,t), DZ,t = DZ(PZ,t), (2)

with D0X , D
0
Z < 0.

The producers’ supply is a strictly increasing function of the expected price. Let us denote by

CX(SX,t) and CZ(SZ,t) the cost functions of goods X and Z, respectively, and assume positive

and strictly increasing marginal costs, C 0X , C
0
Z > 0, C

00
X , C

00
Z > 0. For each good (here we omit

subscripts X and Z), the optimal supply St for period t is determined in period t− 1 by solving
3A related study ([18]) assumes that producers maximize expected utility of wealth, thus focusing explicitly

on the role of risk aversion.
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maxSt Et−1(πt), i.e.

max
St
[StEt−1(Pt)− C(St)], (3)

where πt = PtSt−C(St) represents profit4 in period t, and Et−1 denotes the conditional expecta-
tion operator. From the first-order condition of (3), under naïve expectations5, Et−1(Pt) = Pt−1,

the supply of a single producer is therefore either SX,t or SZ,t, where

SX,t = GX(PX,t−1), SZ,t = GZ(PZ,t−1) (4)

and where GX(·) := (C 0X)
−1 (·), GZ(·) := (C 0Z)

−1 (·) denote the (strictly increasing) inverse
marginal cost functions. The market clearing conditions (1) thus yield the laws of motion of the

two prices, i.e.

PX,t = D
−1
X (NWX,tGX(PX,t−1)) , (5)

and

PZ,t = D
−1
Z (NWZ,tGZ(PZ,t−1)) , (6)

where D−1X (·) and D−1Z (·) denote the (strictly decreasing) inverse demand functions.
Obviously, in the case of constant proportions, WX,t = WX , WZ,t = WZ = 1 −WX , the

two markets evolve independently, each driven by a first-order linear difference equation. In this

case, steady state prices PX and PZ are determined implicitly as follows

PX = D
−1
X

¡
NWXGX(PX)

¢
, PZ = D

−1
Z

¡
N(1−WX)GZ(PZ)

¢
. (7)

For each good6, denote by (P l, Pu), 0 ≤ P l < Pu ≤ +∞, a price interval over which both demand
and supply functions, D(P ) and G(P ), are strictly positive and satisfy the above assumed

monotonicity properties. Assume also:

lim
P→P l

[D(P )−NG(P )] > 0, lim
P→Pu

D(P ) = 0. (8)

Together with continuity and strict monotonicity of D(P ) and G(P ), conditions (8) ensure that

a unique solution P ∈ (P l, Pu) to each of equations (7) exists for any W , 0 < W < 1, that is, a
4Profit πt is regarded as a random variable in period t− 1.
5Note that naïve expectations entail a supply response lag, i.e. the supply in period t depends on the realized

price in period t− 1.
6Again, we omit subscripts X and Z.
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unique steady state exists for any fixed distribution of producers over the two markets.7

The unique steady state of each independent market is locally asymptotically stable under

a certain relation between the slopes of its demand and total supply schedules. Denoting the

steady-state aggregate supply of goods X and Z, respectively, by S
A
X := NWXGX(PX), S

A
Z :=

N(1 −WX)GZ(PZ), the local asymptotic stability of steady-state prices of the two markets

requires

¯̄̄
(D−1X )

0(SAX)NWXG
0
X(PX)

¯̄̄
< 1,

¯̄̄
(D−1Z )

0(SAZ)N(1−WX)G
0
Z(PZ)

¯̄̄
< 1. (9)

Since (D−1X )
0(SAX) = 1/D0X(PX), (D

−1
Z )

0(SAZ) = 1/D0Z(PZ) by inverse function rule, the local

stability conditions (9) take the familiar form in terms of ratios between slopes¯̄̄̄
¯NWXG

0
X(PX)

D0X(PX)

¯̄̄̄
¯ < 1,

¯̄̄̄
¯N(1−WX)G

0
Z(PZ)

D0Z(PZ),

¯̄̄̄
¯ < 1. (10)

As is well known from the classical cobweb setup, converging price paths display temporary

up-and-down oscillations around the long-run equilibrium price.

Time-varying, state-dependent proportions of producers, however, result in endogenous in-

teractions between markets X and Z. The producers are boundedly rational in the sense that

they tend to select the market which would have been more profitable for them in the last pe-

riod. Assuming a high number of producers, fractions WX,t and WZ,t can be determined via a

discrete choice model (see, e.g. [10]), i.e.

WX,t =
exp(fπX,t−1)

exp(fπX,t−1) + exp(fπZ,t−1)
, WZ,t =

exp(fπZ,t−1)
exp(fπX,t−1) + exp(fπZ,t−1)

, (11)

where πX,t−1 = PX,t−1SX,t−1 −CX(SX,t−1), πZ,t−1 = PZ,t−1SZ,t−1 − CZ(SZ,t−1) denote realized
profits of the two markets in period t− 1. Parameter f ≥ 0 is called the intensity of choice, and
measures how sensitive the mass of producers is to selecting the most profitable market. For

f = 0 , the agents do not observe any profit differentials between the two markets. As a result,

WX,t =WZ,t =W = 1
2 for any t, and we obtain a fixed-proportion model, with producers evenly

distributed across two independent markets. On the other hand, the higher f is, the larger the

proportion of producers who select the market that performed better in the previous period, for

any observed profit differential. In the extreme case f →∞, all producers in each period enter
7This is the case, for instance, for the linear specifications used in the numerical simulation in Section 3.2.
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the market with the higher realized profit in the previous period.8

Of course, both naïve price expectations and the ‘logistic’ choice of a market are very specific

(and simplifying) assumptions. Nonetheless, the latter represents a very common assumption

in the literature on evolutionary learning (see, e.g. [10], and references therein), whereas naïve

expectations are assumed within the present paper only in order to stick to the classical cobweb

setup, and to focus on the mere effect of interaction. A further simplification in our setup

concerns the cost of switching between markets, which is assumed to be zero here for reasons of

analytical tractability.9

3 Dynamical system

By substituting (11) into (5) and (6), one obtains a system of two nonlinear second-order dif-

ference equations in the prices.10 The system can be rewritten as a 4-D dynamical system

in the state variables PX , PZ , SX , SZ . Let us introduce the difference of proportions11 Ωt

:= WX,t −WZ,t. This can be rewritten as Ωt = tanh
h
f
2 (πX,t−1 − πZ,t−1)

i
, with −1 < Ωt < 1,

where Ωt → 1 corresponds to WX,t → 1 and Ωt → −1 corresponds to WZ,t → 1. The resulting

4-D nonlinear dynamical system is thus the following:

PX,t = FX(PX,t−1, PZ,t−1, SX,t−1, SZ,t−1) = D−1X

µ
N

2
(1 + Ωt)GX(PX,t−1)

¶
, (12)

PZ,t = FZ(PX,t−1, PZ,t−1, SX,t−1, SZ,t−1) = D−1Z

µ
N

2
(1− Ωt)GZ(PZ,t−1)

¶
, (13)

SX,t = GX(PX,t−1), (14)

SZ,t = GZ(PZ,t−1), (15)

8An alternative interpretation of proportions WX,t and WZ,t could be in terms of composition of the supply
by one representative farmer. This producer would then only adjust the output mix without moving completely
across markets.

9Note that high switching costs might have a considerable impact on the dynamics. With regard to such costs,
parameter f could be interpreted not only as the ‘intensity of choice’ but also, in terms of the original ‘discrete
choice’ model, as a quantity inversely related to the variance of the distribution of the switching cost (see, e.g.
[19]). For instance, a low value of f would imply that a substantial fraction of producers changes only if the profit
differential is quite high as compared to the average cost of switching. We thank a referee for pointing this out
to us.
10Note that πX,t−1 (πZ,t−1) depends on both PX,t−1 and PX,t−2 (PZ,t−1 and PZ,t−2).
11The same change of variable is used, e.g. in [10]. Note that from WZ,t = 1 −WX,t, it follows that WX,t =

(1 +Ωt)/2, WZ,t = (1−Ωt)/2, and that Ωt = 2WX,t − 1 = 1− 2WZ,t.
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where

Ωt = Ω(PX,t−1, PZ,t−1, SX,t−1, SZ,t−1) = tanh
·
f

2
(πX,t−1 − πZ,t−1)

¸
, (16)

πX,t−1 = PX,t−1SX,t−1 − CX(SX,t−1), πZ,t−1 = PZ,t−1SZ,t−1 −CZ(SZ,t−1). (17)

The Propositions in the following subsection characterize the (unique) steady state of the

dynamical system (12)-(15), in terms of the stationary distribution of producers. Moreover, they

establish a number of analytical results on local asymptotic stability, and analyze the impact of

the assumed interaction mechanism, compared to the case of markets in isolation.

3.1 Steady state and local stability

We use an overbar to denote steady-state quantities. In particular, Ω :=WX −WZ represents

the stationary “distribution” of producers across markets. The existence and uniqueness of

the steady state of the dynamic model (12)-(15), as well as its characterization in terms of

distribution of producers, are stated in the following

Proposition 1

(i) The dynamical system (12)-(15) admits a unique steady state q∗ = (PX , PZ , SX , SZ).

(ii) The steady-state “distribution” of producers across markets, Ω, is positive (negative)

and increases (decreases) with parameter f if and only if the difference between the steady-state

profits of the independent markets X and Z, in the case of no switching (f = 0), is positive

(negative).

Proof : see Appendix A

According to Proposition 1, the market that will attract a higher proportion of producers

in equilibrium is that which would be more profitable in the absence of interaction (i.e. in the

case f = 0). This confirms our intuition. Furthermore, the producers’ steady-state proportion

in such a market depends positively on the intensity of choice f . Note that, even when adopting

very simple specifications of demand and cost functions, the steady state cannot be computed

analytically, as is also clear from the proof in Appendix A.

The next Proposition and the subsequent Corollaries provide general results on the stability

properties of the steady state and highlight further connections to the case of isolated markets.
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Proposition 2

(i) The steady state q∗ of the dynamical system (12)-(15) is locally asymptotically stable

(LAS) in the region of the space of parameters where the following inequality is satisfied

γX (1 + fδX) + γZ (1 + fδZ) < min[1 + γXγZ(1 + f(δX + δZ)), 2], (18)

where

γX :=

¯̄̄̄
¯N(1 + Ω)G0X(PX)2D0X(PX)

¯̄̄̄
¯ , γZ :=

¯̄̄̄
¯N(1− Ω)G0Z(PZ)2D0Z(PZ),

¯̄̄̄
¯ , (19)

δX :=
(1− Ω)S2X
2G0X(PX)

, δZ :=
(1 + Ω)S

2
Z

2G0Z(PZ)
, (20)

and the loss of stability can only occur via a Flip bifurcation.

(ii) For parameters in the ‘stability region’ (18), the following conditions are necessarily

satisfied ¯̄̄̄
¯N(1 + Ω)G0X(PX)2D0X(PX)

+
f

2

N(1− Ω2)S2X
2D0X(PX)

¯̄̄̄
¯ < 1, (21)¯̄̄̄

¯N(1− Ω)G0Z(PZ)2D0Z(PZ)
+
f

2

N(1−Ω2)S2Z
2D0Z(PZ)

¯̄̄̄
¯ < 1. (22)

Proof : see Appendix B

The second part of Proposition 2 makes it possible to compare the stability domain (18)

of the complete model with two ‘reference’ cases, both characterized by a fixed distribution of

producers across markets. In the first case (discussed in Corollary 3), the fixed distribution

(WX ,WZ) is exactly the same as the steady-state distribution of the model with endogenously

varying fractions.12 The second case (Corollary 4) is obtained by setting f = 0 in the dynamical

system (12)-(15), which results in a model with no switching and producers splitting evenly

between markets X and Z.

Corollary 3 For a given f > 0, condition (18) is more restrictive, for the slopes of the de-

mand and (individual) supply curves in each market, than the local stability conditions of the

corresponding fixed-proportion model.

Proof : see Appendix C
12We thank one of the referees for encouraging us to compare stability conditions of the complete model with

the constant proportion case in Corollary 3.
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Corollary 4 Let X (Z) be the market with higher steady-state profit under the no-switching

case (f = 0). Then, under broad conditions on the slopes of demand and supply curves, the

stability of the complete model with switching (f > 0) requires the stability of the ‘independent’

market X (Z) in the absence of switching.

Proof : see Appendix C

Corollaries 3 and 4 deserve further comments. As already mentioned, Corollary 3 compares

stability results stated in Proposition 2 with the case of two decoupled markets with fixed

proportions of suppliers equal to those who are active at the steady state of the coupled model.

Such a comparison is quite natural and provides an explicit intuition of why two markets that

are stable when considered in isolation can be destabilized once suppliers are allowed to switch

between them. In the standard cobweb model (with no switching), an increase in the market

clearing price triggers an increase in supply by farmers who are active in that market, which,

in turn, decreases the market clearing price. As a consequence, the supply in the next period

declines, leading to an immediate increase in the price, and so on. For suitable ranges of the

slopes of demand and supply schedules, these oscillating prices converge to a steady state. Things

may be different if farmers can switch between the two markets. If the system is perturbed from

the steady state by increasing the price in one market, this does not only increase the supply of

the active farmers, but also attracts new producers into that market. An otherwise stable cobweb

market may thus be destabilized because supply becomes more sensitive to market prices. This

additional effect is captured, e.g. for market X, by the second term on the left-hand side in

equation (21), whereas the first term is related to the change in supply by active farmers, as in

the fixed-proportions model (see equation (10)).

Corollary 4 focuses on the role of parameter f , and compares stability condition (18) of the

full model (with f > 0) with the limiting case of zero intensity of switching (f = 0). The latter

results in two decoupled markets with uniform distribution of producers (Ω = 0), and stability

condition (18) (as well as necessary condition (21)-(22)) reduces to¯̄̄̄
¯N G0X(P

0
X)

2D0X(P
0
X)

¯̄̄̄
¯ < 1,

¯̄̄̄
¯N G0Z(P

0
Z)

2D0Z(P
0
Z)

¯̄̄̄
¯ < 1, (23)
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where P
0
X and P

0
Z denote steady state prices in the case f = 0, implicitly defined by equations

(33) in Appendix A.13 Comparison with such a case is less straightforward than before, because

an increase of parameter f changes both the location and the stability properties of the steady

state. However, also from this perspective, the necessary condition (21)-(22) highlights the

possible destabilizing impact of the assumed interaction mechanism. Consider, for instance, the

case of linear demand and supply (developed in detail in the next section), where |G0X/D0X | and
|G0Z/D0Z | are constant.14 According to Corollary 4, in order for the steady state of the complete
model to be stable, the slopes of demand and (individual) supply curves in markets X and Z

must be such that at least the ‘more profitable’ market is stable, when considered in isolation.

Moreover, if, e.g. X is the market with higher steady-state profit in the absence of interaction,

condition (21) is more restrictive, for the slopes of demand and supply curves in market X,

than stability condition (23) for the isolated market X.15 A similar reasoning applies to market

Z. Finally, numerical simulation reveals that the necessary stability condition (21)-(22) will be

violated whenever (23) holds, but the ratios |G0X/D0X | and |G0Z/D0Z | are large enough, and this
occurs irrespective of which of the two markets is more profitable at the steady state in isolation.

This is often the case even with low values of such ratios, as shown in the next section. This

fact is obviously related to the impact of the switching parameter f > 0.

Overall, our results on local stability show that interactions between cobweb markets, arising

when agents are allowed to select the most profitable alternative, cannot stabilize two otherwise

unstable markets. Rather, under a wide range of circumstances, they tend to destabilize oth-

erwise stable markets. This point is further developed in the following section, where we carry

out a numerical example with two connected ‘linear’ cobweb markets.

3.2 Interactions and price fluctuations

The example proposed and discussed in this section is based on the following linear specification

of the demand functions

DX,t = (aX − PX,t)/bX , DZ,t = (aZ − PZ,t)/bZ ,
13Obviously, conditions (23) are nothing but conditions (10) with WX =WZ = 1/2.
14The following discussion applies, however, to far more general cases. See Appendix C.
15This results directly from a comparison of (23) with (21) and the fact that Ω > 0 in this case. See also

Appendix C.
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where aX , aZ , bX , bZ > 0. It also assumes quadratic cost functions, i.e.

CX(SX) = cXSX +
dX
2
S2X , CZ(SZ) = cZSZ +

dZ
2
S2Z ,

where cX , cZ ≥ 0, dX , dZ > 0, so that (individual) supply curves turn out to be linear, too, and
are expressed as

SX,t = (PX,t−1 − cX)/dX , SZ,t = (PZ,t−1 − cZ)/dZ . (24)

In the following, we assume aX > cX , aZ > cZ . Demand and supply curves of the two goods

are thus strictly positive (and strictly monotonic) over the price ranges cX < PX < aX , cZ <

PZ < aZ , respectively. Based on the discussion of the fixed-proportion case in Section 2, one

can check that a unique steady state price PX ∈ (cX , aX), PZ ∈ (cZ , aZ) exists in market X,
Z, respectively, for any fixed distribution of producers over the two markets.

Turning to the model with state-dependent proportions, by setting gX := (NbX)/2, gZ :=

(NbZ)/2, the laws of motion (12)-(13) for prices are specified as follows

PX,t =
aXdX − gX(1 +Ωt)(PX,t−1 − cX)

dX
, PZ,t =

aZdZ − gZ(1−Ωt)(PZ,t−1 − cZ)
dZ

. (25)

The dynamical system thus consists of equations (25) and (24), where

Ωt = tanh

½
f

2
[πX,t−1 − πZ,t−1]

¾
= tanh

½
f

2

·
(PX,t−1 − cX)SX,t−1 − dX

2
S2X,t−1 − (PZ,t−1 − cZ)SZ,t−1 +

dZ
2
S2Z,t−1

¸¾
.

Simple computations provide the coordinates PX , PZ , SX , and SZ of the unique steady state,

as well as steady-state profits, namely

PX =
aXdX + gX(1 +Ω)cX

dX + gX(1 + Ω)
, PZ =

aZdZ + gZ(1− Ω)cZ
dZ + gZ(1− Ω)

,

SX =
PX − cX
dX

=
aX − cX

dX + gX(1 + Ω)
, SZ =

PZ − cZ
dZ

=
aZ − cZ

dZ + gZ(1−Ω)
,

πX =
dX(aX − cX)2

2
¡
dX + gX(1 + Ω)

¢2 , πZ =
dZ(aZ − cZ)2

2
¡
dZ + gZ(1− Ω)

¢2 ,
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where steady-state ‘distribution’, Ω, is defined implicitly by

Ω = tanh

(
f

2

"
dX(aX − cX)2

2
¡
dX + gX(1 + Ω)

¢2 − dZ(aZ − cZ)2
2
¡
dZ + gZ(1−Ω)

¢2
#)

.

Our simulation analysis16 is based on a parameter selection outside the stability domain (18). It

illustrates our analytical results and shows that the model can produce complex price movements.

These are driven by both the basic cobweb mechanism and the nonlinear switching behavior of

the producers. Parameters are set as follows: aX = aZ = 20, cX = cZ = 0, dX = dZ = 10,

gX = 1.5, gZ = 5, f = 0.375. In the absence of interactions (i.e. if f = 0, Ω = 0), the steady-

state profits of the independent markets would be π0X ' 15.123, π0Z ' 8.889, respectively. It

then follows from Proposition 1 that Ω > 0 (i.e. WX > 50%) at the steady state for any f > 0,

and that Ω (as well as WX) is an increasing function of f . Note also that¯̄̄̄
¯N2 G0X(P

0
X)

D0X(P
0
X)

¯̄̄̄
¯ = gX/dX = 0.15,

¯̄̄̄
¯N2 G0Z(P

0
Z)

D0Z(P
0
Z)

¯̄̄̄
¯ = gZ/dZ = 0.5,

i.e. in the case of no switching (f = 0), the steady states of the two independent markets

would both be globally asymptotically stable. However, the steady state of the coupled system

is LAS only for f < fFlip ' 0.093311 (where fFlip denotes the Flip-bifurcation value for the

intensity of choice parameter), as can be computed numerically from (18). Beyond this threshold,

interactions destabilize the cobweb markets via a supercritical17 Flip bifurcation.

For f = 0.375, the first three panels of figure 1 show time series for the price in market X,

the price in market Z, and the proportion of producers in market X, respectively. As can be

seen, prices fluctuate in both markets in an intricate manner around their long-run equilibrium

values; the same holds for the producers’ distribution across markets.

––– Figure 1 goes about here –––

In a stylized way, the dynamics evolves as follows. Suppose that some producers switch from

the less to the more profitable market. In the less profitable market, the total supply decreases

and the price increases. In the other market, the opposite occurs: the total supply increases and
16The analysis of the system is obviously restricted to ‘feasible’ orbits, i.e. such that aX > PX,t > cX ,

aZ > PZ,t > cZ for any t.
17The existence of an attracting two-cycle just outside the stability domain, when f is close to the Flip-

bifurcation value, can be detected numerically and is also revealed by the bifurcation diagrams in figure 2. Thus
we claim numerical evidence about the supercritical nature of the Flip bifurcation.
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the price decreases. Combined, these two effects may reverse the profit differential again, causing

some producers to stream back to the other market. This pattern may repeat itself, albeit in a

complicated manner. Under this particular parameter selection, price movements occur along

an apparently strange18 attractor: the bottom panels of figure 1 represent the projections of the

attractor in planes PX , PZ and PX , SX , respectively.

The producers’ sensitivity to profit differentials, i.e. the intensity of choice parameter f ,

plays a crucial role in driving the evolution of prices: higher f in general increases the amplitude

of the fluctuations of prices and distribution of producers across markets, and determines a

transition to complex behavior. This is revealed by the bifurcation diagrams given in figure

2, which display the typical period-doubling bifurcation sequence leading to chaotic dynamics.

Moreover, starting from about f = 0.578 a period-three cycle emerges. The nature of this

cycle highlights the extreme effects that are brought about by the reversal of profit differentials,

when parameter f is large enough: from the second panel of figure 2 we observe that, at two

of the three periodic points, the proportion of producers in market X is about 100%, whereas

at the remaining point almost all producers have entered market Z. This implies that basically

all market participants switch from one market to the other within one time step. One may

argue that this is not very realistic, i.e. one may conclude that f is presumably not larger

than 0.7 in reality, at least for demand and supply parameters similar to those used in our

example. Additional simulations (not displayed in the paper) reveal that the period-three cycle

also remains intact for much larger values of f .

––– Figure 2 goes about here –––

The numerical example illustrated in figures 1 and 2 can be regarded as representative of the

dynamic behavior of the model and its dependence on the ‘intensity of choice’ f : qualitatively

similar results can be easily obtained under a variety of configurations for the parameters, and

under different specifications of demand and supply functions.
18 In fact, the phase space representation in figure 1 only allows us to conclude that the attractor ‘appears’ to

be strange. We have, however, estimated the Lyapunov exponent and the correlation dimension for this particular
simulation run. The Lyapunov exponent is 0.45 and the correlation dimension is 1.23. This strengthens numerical
evidence for chaos and strange attractors.
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4 Concluding remarks

If the price of a commodity decreases, the cobweb scenario predicts that suppliers will reduce

their output. However, it does not explore what they will do in such a case as an alternative.

Motivated by this observation, this paper investigates an extension of the basic cobweb setup,

where it is assumed that in each period producers can select between one of two products

(markets), based on realized profits. If a market was relatively profitable, it attracts more

producers and the total supply increases. As a consequence, interactions arise between markets

for the two products, which may lead to a nonlinear system even starting from the linear cobweb

model. In order to focus on the role played by such interactions, we stick to the classical

cobweb world as far as possible, by assuming downward-sloped demand curves and strictly

increasing (individual) supply schedules, as well as naïve expectations. To model interactions, we

introduce a ‘logistic’ switching mechanism, commonly adopted in the literature on evolutionary

learning. Analytical investigation and numerical simulation of the model indicate that such

market interactions add to the cyclical component of commodity prices represented by the

classical cobweb behavior. Such interactions can destabilize otherwise globally/locally stable

equilibria of two cobweb markets considered in isolation. Moreover, complex dynamic scenarios

may emerge, even in the case where original independent markets behave linearly, particularly

when agents react more sensitively to profit differentials.

The framework provided by this model could be developed in a number of directions. First,

it could be adopted to investigate interdependencies on the demand side19. For instance, in the

case of more general demand functions with positive cross price elasticities (substitute goods),

an increase in the supply of one commodity would decrease prices of both commodities and may

therefore dampen the interaction effect somehow. It would then be interesting to assess the net

effect of demand and supply interdependencies.

Second, the possible impact of the costs of switching resources from one market to the other

should be taken into account. This could be done by directly introducing switching costs (as in

[10]), or by assuming a kind of inertia in the switching mechanism. With the latter approach,

only a fraction of individual agents decide to reconsider their market choice at each time step.

Applications can be found in [20] and in [21]. Preliminary simulations of our model confirm our

intuition that inertia does exert a stabilizing impact on the dynamics.
19Dieci and Westerhoff [18] provide a preliminary discussion of the case where the two goods are complements,

or substitutes, in a related model based upon linear demand and supply.
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Third, our framework might be useful to establish connections with certain experimental

literature. Contributions which seem relevant to the paper include [22] and [23]. The former

studies an experiment where suppliers have to choose repeatedly between two different locations

to supply their commodity, and resulting dynamic patterns for quantities supplied reveal cyclical

fluctations similar to those presented here. The latter investigates a coordination game dealing

with a similar type of problem. The theoretical model advanced here might contribute to

explaining some of the experimental results from those papers. Also the ‘El Farol bar problem’

([24]) and the ‘minority game’ ([25]) seem to be related to the model studied in the present

paper.

Fourth, an important question is the extent to which the cyclical and even chaotic dynamics

generated by the model depend on the assumption of naïve (or, more generally, adaptive) ex-

pectations. A more general perspective should take into account, for instance, the role played

by forward-looking agents, along the lines of [26].

Fifth, the model proposed here may also be relevant from a policy perspective. It is obvious

that policy makers planning stabilization schemes in one market should pay great attention to

the way in which they will influence the overall system of interacting markets. The effect of

different types of regulatory interventions on our results would be an interesting question for

future research.
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Appendix A: Proof of Proposition 1

(i) Assume that a steady state exists. Steady-state prices and quantities, PX , PZ , SX , SZ ,

and steady-state profits, πX and πZ , must then satisfy the following set of conditions20:

PX = D
−1
X

µ
N

2
(1 + Ω)GX(PX)

¶
, PZ = D

−1
Z

µ
N

2
(1− Ω)GZ(PZ)

¶
, (26)

SX = GX(PX), SZ = GZ(PZ), (27)

πX = PXSX − CX(SX), πZ = PZSZ − CZ(SZ), (28)

where Ω represents the stationary “distribution” of producers across markets, satisfying

Ω = tanh

·
f

2
(πX − πZ)

¸
. (29)

Due to equation (29) it will not be possible, in general (except in the case f = 0), to solve for

stationary values explicitly, even under simple specifications of DX , DZ , CX , CZ . In order to

show that a steady state does exist and is unique, it is convenient to treat Ω as parametric, first,

and to regard equilibrium prices (26), quantities (27), and profits (28) as functions of stationary

distribution Ω, similarly to the fixed-proportion case discussed in Section 2 (see equation (7)). In

particular, by our assumptions on demand and supply curves, equilibrium prices PX = PX(Ω)

and PZ = PZ(Ω) are uniquely defined implicitly as functions of Ω (−1 < Ω < 1) by conditions
(26), whereas steady-state quantities and profits are functions of Ω via PX and PZ . We can

then compute the derivatives of πX(Ω) and πZ(Ω). First of all, we obtain

dπX

dΩ
=
dPX

dΩ

£
SX +G

0
X(PX)(PX − C 0X(SX))

¤
=
dPX

dΩ
SX ,

where the latter simplification is possible because SX = GX(PX) := (C 0X)
−1(PX). In a similar

manner, one obtains
dπZ

dΩ
=
dPZ

dΩ
SZ .

Furthermore, differentiation of implicit functions PX(Ω) and PZ(Ω) yields

dPX

dΩ
= − (D−1X )

0(SAX)N2 GX(PX)

(D−1X )0(S
A
X)

N
2 (1 + Ω)G

0
X(PX)− 1

= −
N
2 GX(PX)

N
2 (1 +Ω)G

0
X(PX)−D0X(PX)

,

20Such conditions are obtained by imposing (PX,t−1, PZ,t−1, SX,t−1, SZ,t−1) = (PX,t, PZ,t, SX,t, SZ,t) =
(PX , PZ , SX , SZ) in equations (12)-(17).
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and
dPZ

dΩ
=

(D−1Z )
0(SAZ)

N
2 GZ(PZ)

(D−1Z )0(S
A
Z)

N
2 (1− Ω)G0Z(PZ)− 1

=
N
2 GZ(PZ)

N
2 (1−Ω)G0Z(PZ)−D0Z(PZ)

,

where

S
A
X :=

N

2
(1 + Ω)GX(PX), S

A
Z :=

N

2
(1− Ω)GZ(PZ)

are total quantities supplied in the two markets at the steady state, and where (D−1X )
0(SAX) =

1/D0X(PX), (D
−1
Z )

0(SAZ) = 1/D0Z(PZ) by inverse-function differentiation rule. Since D
0
X < 0,

D0Z < 0, G
0
X > 0, G

0
Z > 0, it follows that for any Ω

dPX

dΩ
< 0,

dPZ

dΩ
> 0,

dπX

dΩ
< 0,

dπZ

dΩ
> 0, (30)

and therefore
d

dΩ
(πX − πZ) < 0. (31)

This proves that the right-hand side of (29) - denoted by ψ(Ω) - is a strictly decreasing function

of Ω.

The stationary distribution Ω, in turn, is determined endogenously by equation (29), which

can be rewritten as

ψ(Ω)− Ω = 0. (32)

Since −1 < tanh(y) < 1 for any y, one obtains 1 > ψ(−1) > ψ(1) > −1. It follows that equation
(32) admits a unique solution in the interval [−1, 1]. This proves that a unique steady state
exists.

(ii) Coming to the sign of Ω, note first that Ω = 0 when f = 0 (independent markets) and

that the steady-state profits in this case are given by

π0X := P
0
XGX(P

0
X)− CX(GX(P 0X)), π0Z := P

0
ZGZ(P

0
Z)−CZ(GZ(P 0Z)),

where P
0
X and P

0
Z are implicitly defined, respectively, by

D−1X

µ
N

2
GX(P

0
X)

¶
− P 0X = 0, D−1Z

µ
N

2
GZ(P

0
Z)

¶
− P 0Z = 0. (33)

Assume now f > 0 and note that, from (30), πX < π0X and πZ > π0Z for Ω > 0, whereas the

reverse inequalities hold for Ω < 0. From (29), Ω has the same sign of the steady-state profit
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differential, πX−πZ , since tanh(y) R 0 for y R 0. It follows that (29) cannot hold with π0X ≤ π0Z

and Ω > 0, i.e Ω > 0 ⇒ π0X > π0Z . Similarly one can check that (29) cannot be satisfied with

π0X > π0Z and Ω ≤ 0, i.e. π0X > π0Z ⇒ Ω > 0. Therefore Ω > 0 ⇔ π0X > π0Z . In a similar

manner, it can be proven that Ω < 0⇔ π0X < π0Z .

With regard to the dependence of Ω on the ‘intensity of choice’ parameter f , we set

Γ(f,Ω) := tanh

·
f

2
(πX − πZ)

¸
− Ω ,

where πX and πZ are defined by (28). Again from (29), rewritten as Γ(f,Ω) = 0, one obtains

dΩ

df
= −

∂Γ
∂f

∂Γ
∂Ω

,

where
∂Γ

∂f
=

·
1− tanh2

µ
f

2
(πX − πZ)

¶¸
1

2
(πX − πZ),

∂Γ

∂Ω
=

·
1− tanh2

µ
f

2
(πX − πZ)

¶¸
f

2

µ
d

dΩ
(πX − πZ)

¶
− 1.

Due to (31), the partial derivative
∂Γ

∂Ω
is negative for any Ω, from which it follows that

dΩ

df
has

the same sign of
∂Γ

∂f
, i.e. of the steady-state profit differential (πX − πZ). The latter quantity,

in turn, has the same sign of Ω. Therefore

dΩ

df
R 0⇐⇒ Ω R 0.

Finally, for f = 0 (in which case Ω = 0), one gets

dΩ

df

¯̄̄̄
f=0

=
1

2
(π0X − π0Z).

It follows that if π0X > π0Z (π0X < π0Z), steady-state distribution Ω is a strictly increasing

(decreasing) function of parameter f , for f ranging from zero to infinity.
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Appendix B: Proof of Proposition 2

(i) The Jacobian matrix at the steady state (denote it by J) can be rewritten as a function of

steady-state distribution Ω. Note first that J has the following lower block triangular structure

J =

 A 0

C 0

 ,
where A, C, are two-dimensional blocks, while 0 denotes the two-dimensional null matrix. A

null block occupies the upper right corner because FX and FZ , defined by (12) and (13), depend

on SX,t−1 and SZ,t−1 only via Ωt (as defined in eq. (16)), where ∂Ω/∂SX , ∂Ω/∂SZ include the

factors (PX −C0X(SX)), (PZ −C0Z(SZ)), respectively. The latter quantities vanish at the steady
state, due to (27) and the fact that GX := (C 0X)

−1, GZ := (C0Z)
−1. Furthermore, block A can

be written as follows

A =

 N(1+Ω)

2D0
X(PX)

h
G0X(PX) + (1− Ω)f2S

2
X

i
− N
2D0

X(PX)

f
2 (1− Ω

2
)SXSZ

− N
2D0

Z(PZ)

f
2 (1−Ω

2
)SXSZ

N(1−Ω)
2D0

Z(PZ)

h
G0Z(PZ) + (1 + Ω)

f
2S

2
Z

i
 .

The reason for this simplified form is that the partial derivatives of Ω with respect to the state

variables include the factor
h
1− tanh2

³
f
2 (πX − πZ)

´i
, which becomes equal to

³
1− Ω2

´
at the

steady state, where Ω = tanh
h
f
2 (πX − πZ)

i
, according to (29).

The structure of J implies that two eigenvalues are zero, whereas the remaining eigenvalues

are those of the two-dimensional matrix A. In order to simplify the notation, define aggregate

quantities γX , γZ , δX , δZ according to (19)-(20), and denote by Tr and Det the trace and the

determinant of A, namely:

Tr = − [γX (1 + fδX) + γZ (1 + fδZ)] < 0,

Det = γXγZ (1 + fδX) (1 + fδZ)− γXγZf
2δXδZ = γXγZ [1 + f(δX + δZ)] > 0.

From the characteristic polynomial of A, P(λ) := λ2 − Tr λ+Det, it can be seen that

Tr2 − 4Det = [γX (1 + fδX)− γZ (1 + fδZ)]
2 + 4f2γXγZδXδZ ≥ 0 (34)

and therefore the eigenvalues of A are real.

The region of local asymptotic stability of the steady state is defined, in general, by the
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following set of inequalities in the plane Tr, Det.

1− Tr +Det > 0, 1 + Tr +Det > 0, 1−Det > 0. (35)

As is well known, (35) provides a necessary and sufficient condition for both eigenvalues

to be inside the unit circle of the complex plane (see, e.g. [27]). If the inequalities (35) are

simultaneously satisfied for a given parameter configuration, and boundary 1− Tr+Det = 0 is
crossed when a critical parameter is varied, then one of the two eigenvalues becomes larger than

+1 (which may result, for instance, in a saddle-node bifurcation). Similarly, crossing boundary

1 + Tr + Det = 0 entails a bifurcation with one eigenvalue equal to −1 (Flip bifurcation),
while along boundary Det = 1 the eigenvalues are complex conjugate with unit modulus (and

crossing the boundary results in a Neimark-Sacker bifurcation). However, for the particular case

at hand, where Tr < 0 and Det > 0, the first inequality in (35) is always true, which rules out

the possibility of a bifurcation of the first type discussed above. Moreover, we know that the

eigenvalues are real for any selection of parameters, due to (34), which excludes the possibility

of Neimark-Sacker bifurcation. Therefore, by taking into account the additional restrictions

discussed above, the stability region (35) reduces to

Tr > −2, 1 + Tr +Det > 0, (36)

as can be easily checked.21 The two inequalities in (36) can be rewritten, respectively, as

γX (1 + fδX) + γZ (1 + fδZ) < 2, (37)

[1− γX (1 + fδX)][1− γZ (1 + fδZ)] > f
2γXγZδXδZ , (38)

or in the equivalent form (18), and stability can generically be lost only via a Flip bifurcation

when one of the eigenvalues exceeds −1, which violates (38).22

(ii) Since (38) implies [1−γX (1 + fδX)][1−γZ (1 + fδZ)] > 0, the two inequalities (37)-(38)
together imply

γX (1 + fδX) < 1, γZ (1 + fδZ) < 1 , (39)
21Note that condition −2 < Tr < 0, together with the fact that eigenvalues are real (Tr2 − 4Det ≥ 0), implies

in particular Det < 1.
22The case in which stability is lost by violation of condition Tr > −2 (i.e. (37)) is nongeneric. Moving from

the interior of the stability region in the plane (Tr, Det), the violation of such a condition can only occur through
point (−2, 1), which implies the simultaneous violation of condition 1 + Tr +Det > 0 (i.e. condition (38)).
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or equivalently, using the original parameters, (21)-(22). The latter therefore represents a nec-

essary condition for local asymptotic stability.

Appendix C: Proof of the Corollaries

In order to prove Corollary 3, note that in the constant-proportion model with NWX =

N(1 + Ω)/2 producers in market X and NWZ = N(1− Ω)/2 producers in market Z, the local
stability conditions of the two markets are given by (10), or equivalently

γX < 1, γZ < 1. (40)

It is clear that, for f > 0, the local stability condition (37)-(38) of the full model implies (40),

via (39). In contrast, if (40) is satisfied (both markets are stable in the related fixed-proportion

model) but γX , or γZ are large enough, necessary condition (39) for the stability of the complete

model will be violated.

In order to prove Corollary 4, note first that the necessary stability condition (39) (or equiv-

alently (21)-(22)) further implies the following inequality to hold at the steady state of the

complete model: ¯̄̄̄
¯N2 (1 + Ω)G0X(PX)D0X(PX)

¯̄̄̄
¯ < 1. (41)

Suppose, without loss of generality, that π0X > π0Z , i.e. market X has a higher steady-state

profit in the absence of switching and independent markets (f = 0). Then Proposition 1 ensures

that Ω > 0 for any f > 0. Therefore, it follows from (30) that P
0
X := PX(0) > PX , where

P
0
X (defined by (33)) denotes the steady state price in market X in the absence of switching

(f = 0 and Ω = 0). If demand and (individual) supply curves in market X are such that the

ratio |G0X/D0X | between their slopes decreases or remains constant when the price changes from
PX to P

0
X , namely if ¯̄̄̄

¯G0X(P
0
X)

D0X(P
0
X)

D0X(PX)
G0X(PX)

¯̄̄̄
¯ ≤ 1, (42)

then (41) implies ¯̄̄̄
¯N2 G0X(P

0
X)

D0X(P
0
X)

¯̄̄̄
¯ < 1,

i.e. the condition for stability of the isolated market X. Condition (42) is satisfied, for instance,

when demand and supply are linear or concave, as well as for a number of cases where demand
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is convex.23 A symmetric reasoning holds for the case where π0X < π0Z , and therefore Ω < 0.

In other words, for a broad class of demand and supply curves, the local stability of the steady

state of the full model with interacting markets cannot subsist without stability of at least one

of the two markets, namely, that which would be more profitable at the steady state, in the case

of zero intensity of switching.

23Moreover, condition (42) is only sufficient, and the implication stated by Corollary 4 may still be true under
more general demand and supply curves.
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Figure captions

Figure 1

The first three panels show the price in market X, the price in market Z, and the distribution

of producers in the time domain. The parameter setting is as in Section 3.2. The bottom two

panels show the dynamics in phase space, after omitting a long transient phase (10000 iterations),

by means of projections of the attractor on plane PX , PZ and on plane PX , SX , respectively.

Figure 2

Bifurcation diagrams versus parameter f . The first panel represents the price in market X,

whereas the second panel displays the proportion of producers in market X after omitting a

transient of 10000 iterations. The parameter is increased in 1000 discrete steps, in the range

[0, 0.7]. The remaining parameters are as in figure 1.
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