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We use a modified Cont–Bouchaud model to explore the effectiveness of trading breaks.
The modifications include that the trading activity of the market participants depends
positively on historical volatility and that the orders of the agents are conditioned on the
observed mispricing. Trading breaks, also called circuit breakers, interrupt the trading
process when prices are about to exceed a pre-specified limit. We find that trading breaks
are a useful instrument to stabilize financial markets. In particular, trading breaks may
reduce price volatility and deviations from fundamentals.
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1. Introduction

After the stock market crash of October 1987, many stock markets have imposed

circuit breakers in order to curb speculative activity (for comprehensive surveys

see, e.g., France et al.,1 Harris,2 Kim and Yang3). Such regulatory mechanisms halt

the trading process for a given period of time when the market price reaches a

pre-specified level. During that time period — regulators often argue — nervous

market participants have the opportunity to cool off and to reevaluate the state of

the market. Afterwards, trading resumes as usual.

While policy makers seem to be optimistic with respect to the working of trading

breaks, many economists are pessimistic. In efficient markets, for instance, asset

prices are said to reflect all available information, and prices change only in response

to relevant new information. Fama4 therefore argues that high volatility per se is

not necessarily a bad thing for the economy, as long as the volatility comes from
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a rational response to changes in fundamental values. Fama warns that trading

breaks may lead to a delayed price discovery process and to volatility spillover

since necessary immediate price corrections are transferred to subsequent days.

However, the efficient market hypothesis has recently been challenged by new

behavioral finance theories. In particular, models with heterogeneous interacting

agents seem to catch some key characteristics of financial markets quite well. For in-

stance, Kirman,5 Palmer et al.,6 Brock and Hommes,7 Lux and Marchesi8 or Farmer

and Joshi9 develop models in which the price dynamics is influenced through the

activity of boundedly rational speculators (and does not solely depend on exoge-

nous news). Complicated endogenous dynamics may arise due to nonlinear trading

strategies, switching between trading strategies and markets, or social interactions

such as herding behavior. One reason why these models may be regarded as quite

powerful is that they have the potential to generate bubbles and crashes, excess

volatility, fat tails for the distributions of returns, uncorrelated returns and volatil-

ity clustering. These features are also observed in real financial markets (Mantegna

and Stanley,10 Lux and Ausloos11).

The goal of this paper is to use a modified Cont–Bouchaud model to further

explore the effectiveness of trading breaks. Cont and Bouchaud12 develop a model

that explicitly takes into account interactions between market participants through

imitation and/or communication. Their model is able to generate uncorrelated re-

turns and fat tails for the distribution of returns. The Cont–Bouchaud approach

has been extended in various ways (see, e.g., Stauffer13). Here we follow two in-

teresting suggestions. First, we incorporate a fundamental value and thus agents

may condition their buying and selling decision on the observed mispricing in the

market (as in Chang and Stauffer14). Second, the activity of the traders is corre-

lated with past price volatility (as in Stauffer and Jan15), meaning that when price

volatility increases (decreases) more (less) traders are active (inactive). As a result,

the modified Cont–Bouchaud model has furthermore the potential to produce bub-

bles and crashes, excess volatility and volatility clustering, thus mimicking some

important stylized facts of financial markets. What happens if regulators impose

trading breaks in such an environment? Our Monte-Carlo study reveals that trad-

ing breaks have the power to reduce both volatility and mispricing. Only when the

maximum allowed price change is set very low, prices may lose their ability to track

fundamental values.

As pointed out in the survey of Kim and Yang,3 pure empirical results conflict

about the success of trading breaks and the validity of some of the methodologies

used in the past is questionable. One obvious problem of empirical studies is that

circuit breakers are rarely triggered in reality (price changes of 5% occur, but not

very often) and thus it is difficult to obtain sufficient evidence to evaluate their

effectiveness. Simulations studies — such as ours — allow us to generate as many

observations as needed. In addition, one may control all kinds of shocks and measure

variables precisely. This avenue of research has also been followed by Westerhoff.16,17

Using low-dimensional nonlinear models with interacting technical and fundamental
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traders, he finds that trading breaks may stabilize financial markets. To be on

the safe side, however, different behavioral finance models should be applied. The

usefulness of the Cont–Bouchaud model with respect to policy analysis has recently

been demonstrated by Ehrenstein18 and Ehrenstein et al.
19 where it is shown that

the imposition of transaction (Tobin) taxes has most likely a stabilizing impact on

financial market dynamics.

The reminder is organized as follows. In Sec. 2, we sketch the main building

blocks of our model. In Sec. 3, we present and discuss our results. The last section

concludes and points out some extensions for future work.

2. A Modified Cont Bouchaud Model

Following Stauffer,13 we put the Cont–Bouchaud model on a L ∗ L square lattice.

In our case, we set L = 31. Each site of the lattice is occupied randomly, with

probability p, by a trader, and left empty with probability (1 − p). Traders which

are nearest neighbors form clusters (as usual in percolation theory), and for p close

to some percolation threshold pc = 0.5927, an infinite cluster exists besides many

finite clusters (the largest cluster is, however, ignored). Each remaining cluster acts

together in trading, that means that all traders within a cluster simultaneously

either buy (with probability a), sell (also with probability a), or are inactive (with

probability (1 − 2 ∗ a). The traded amount is proportional to the cluster size. The

log of the price is adjusted with respect to the excess demand. If buying exceeds

selling, the price goes up and if selling exceeds buying, the price goes down. Since

log price changes of the Cont–Bouchaud model may be large integers, we have to

normalize the returns. This is done with the help of the parameter maxwin. Suppose

that maxwin = 0.2, then the return that would occur when all clusters are active

and trade in the same direction is set to 0.2 (such a situation only rarely occurs).

The first modification is to include a fundamental value which is assumed to

follow a random walk. As in Chang and Stauffer,14 the probabilities to buy and

to sell are no longer equal but depend on the mispricing in the market: If the log

of the price P is above its log fundamental value F (the market is overvalued),

then the probability to sell is higher than the probability to buy. To be precise,

the probability to sell is no longer a but (1 + ε ∗ (P − F )) ∗ a, and the probability

to buy is (1 − ε ∗ (P − F )) ∗ a. The parameter ε is positive and the buy and sell

probabilities are restricted between 0 and 1. Within our model, prices may thus

deviate from fundamentals, but this mechanisms also implies a mean reversion

pressure: Overvaluation creates excess selling and undervaluation creates excess

buying.

With the second modification, we relate the activity level of the traders to past

changes in price volatility (similar to Stauffer and Jan15). This means that in calm

periods the traders become lazy whereas in turbulent periods they act more hectic.

This is implemented as follows: When price volatility increases, the activity level

a increases and when price volatility decreases, the activity level a decreases. The
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evolution of a is limited within [0.02, 0.5]. Note that the total number of traders

remains constant. Trading breaks are implemented as follows: After the orders of

the traders have been collected, we first compute a new hypothetical price. If we

observe that this price violates the imposed price limit, it will be reset to the limit.

Suppose, for instance, that regulators have imposed a price limit of 3% and that

the current price is 100. If the new hypothetical price is computed as 105, it will

be reset to 103. Obviously, this affects the volatility (which is in this time step 3%)

and thus also the activity level of the traders (since their impact depends on past

observed volatility). The next section discusses how such trading breaks may affect

the price dynamics.

3. Some Monte Carlo Results

Figure 1 shows how volatility (defined as average absolute return) and distortion

(defined as average absolute distance between log prices and log fundamental val-

ues) react to an increase in the maximal allowed price change. These so-called price

limits are varied between 0 and 3% in small discrete steps. Each time, volatility

and distortion are computed from a very large number of observations. The re-

sults are presented for 9 different parameter combinations (from bottom to top: (1)

ε = 0.05, maxwin = 0.1, (2) ε = 0.075, maxwin = 0.15, (3) ε = 0.1, maxwin = 0.2,

(4) ε = 0.125, maxwin = 0.25, (5) ε = 0.15, maxwin = 0.3, (6) ε = 0.175,

maxwin = 0.35, (7) ε = 0.2, maxwin = 0.4, (8) ε = 0.225, maxwin = 0.45

and (9) ε = 0.25, maxwin = 0.5). As can be seen, the sharper the price limit

becomes, the lower is the volatility. The relation between price limits and distor-

tion is nontrivial. First the distortion decreases, but after reaching a minimum

value it starts to increase again. Taking our estimates literally, we see that trading

breaks may considerably decrease price fluctuations and deviations from fundamen-

tal values.

What is going on in our artificial financial market? Note first that trading breaks

always have a direct effect on the price dynamics. If, for instance, the maximal

allowed price change is 2%, then there will be no price change larger than 2%. But

within our model, trading breaks also have an important indirect effect. Since the

activity of the traders positively depends on the evolution of past price volatility,

they will become less active/hectic when extreme price changes are excluded. A

lower activity level furthermore decreases volatility and most likely distortions.

However, trading breaks should be used with caution. When the maximal allowed

price change is too restrictive, prices do not track their fundamental values any

more. Hence, financial markets need some price flexibility, but maybe not full price

flexibility. What is remarkable is that the results presented here are quite close to

the results presented in Westerhoff,16,17 despite the fact that two distinct modeling

approaches are used. This may give rise to be optimistic about the effectiveness of

trading breaks.
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Fig. 1. The impact of trading breaks on volatility (top) and distortion (bottom) for different
parameter settings. Volatility is multiplied with 10−5 and distortion with 10−2.

4. Conclusions

Many regulators of financial markets hope that trading halts reduce price volatility

by giving traders an opportunity to cool of and think before they act, though there

is no proof that a mandatory trading halt makes stampeding traders in fact calm

down. To the contrary, advocates of the efficient market hypothesis argue that

trading breaks only lead to a delayed price discovery and to volatility spillover. We

use a modified Cont–Bouchaud model to explore this issue and find that trading
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breaks may have the potential to stabilize financial markets. Only when the price

variability is extremely restricted, prices stop following their fundamentals and

mispricing increases.

Let us finally point out two avenues for future research. First, it would be

interesting to investigate different order matching mechanisms. In our approach,

trading is interrupted when prices reach their limit and all left orders are not

executed (i.e., they are canceled). Within a limit order book mechanism, some of the

orders may survive for some time and have an impact on the future price dynamics.

Second, traders may react strategically to price limits. For liquidity reasons, traders

may submit orders in advance when prices are close to the limit. This may then

push prices indeed to the limit.
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