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This note explores the consequences of nonlinear price impact functions on price dy-
namics within the chartist–fundamentalist framework. Price impact functions may be
nonlinear with respect to trading volume. As indicated by recent empirical studies, a
given transaction may cause a large (small) price change if market depth is low (high).

Simulations reveal that such a relationship may create endogenous complex price fluc-
tuations even if the trading behavior of chartists and fundamentalists is linear.
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1. Introduction

Interactions between heterogeneous agents, so-called chartists and fundamental-

ists, may generate endogenous price dynamics either due to nonlinear trading rules

or due to a switching between simple linear trading rules.1,2 Overall, multi-agent

models appear to be quite successful in replicating financial market dynamics.3,4

In addition, this research direction has important applications. On the one hand,

understanding the working of financial markets may help to design better invest-

ment strategies.5 On the other hand, it may facilitate the regulation of disorderly

markets. For instance, Ehrenstein shows that the imposition of a low transaction

tax may stabilize asset price fluctuations.6

Within these models, the orders of the traders typically drive the price via a

log–linear price impact function: buying orders shift the price proportionally up

and selling orders shift the price proportionally down. Recent empirical evidence

suggests, however, that the relationship between orders and price adjustment may

be nonlinear. Moreover, as reported by Farmer et al., large price fluctuations occur

when market depth is low.3,7 Following this observation, our goal is to illustrate a

novel mechanism for endogenous price dynamics.

We investigate — within an otherwise linear chartist–fundamentalist setup — a

price impact function which depends nonlinearly on market depth. To be precise, a
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given transaction yields a larger price change when market depth is low than when

it is high. Simulations indicate that such a relationship may lead to complex price

movements. The dynamics may be sketched as follows. The market switches back

and forth between two regimes. When liquidity is high, the market is relatively

stable. But low price fluctuations indicate only weak trading signals and thus the

transactions of speculators decline. As liquidity decreases, the price responsiveness

of a trade increases. The market becomes unstable and price fluctuations increase

again.

The remainder of this note is organized as follows: Sec. 2 sketches the empirical

evidence on price impact functions. In Sec. 3, we present our model, and in Sec. 4,

we discuss the main results. The final section concludes the paper.

2. Empirical Evidence

Financial prices are obviously driven by the orders of heterogeneous agents. How-

ever, it is not clear what is the true functional form of price impact. For instance,

Farmer proposes a log–linear price impact function for theoretical analysis while

Zhang develops a model with nonlinear price impact.8,9 His approach is backed up

by empirical research that documents a concave price impact function. According

to Hasbrouck, the larger is the order size, the smaller is the price impact per trade

unit.10 Kempf and Korn, using data on DAX futures, and Plerou et al., using data

on the 116 most frequently traded US stocks, find that the price impact function

displays a concave curvature with increasing order size, and flattening out at larger

values.11,12 Weber and Rosenow fitted a concave function in the form of a power

law and obtained an impressive correlation coefficient of 0.977.13 For a further theo-

retical and empirical debate on the possible shape of the price impact function with

respect to the order size, see Gabaix et al., Farmer and Lillo, and Plerou et al.14–16

But these results are currently challenged by an empirical study which is cru-

cial for this note. Farmer et al. present evidence that price fluctuations caused by

individual market orders are essentially independent of the volume of the orders.7

Instead, large price fluctuations are driven by fluctuations in liquidity, i.e., varia-

tions in the market’s ability to absorb new orders. The reason is that even for the

most liquid stocks there can be substantial gaps in the order book. When such a gap

exists next to the best price — due to low liquidity — even a small new order can

remove the best quote and trigger a large price change. These results are supported

by Chordia, Roll and Subrahmanyam, who also document that there is considerable

time variation in market wide liquidity and by Lillo, Farmer and Mantenga, who

detect that higher capitalization stocks tend to have smaller price responses for the

same normalized transaction size.17,18

Note that the relation between liquidity and price impact is of direct importance

to investors developing trading strategies and to regulators attempting to stabilize

financial markets. Farmer et al. argue, for instance, that agents who are trying

to transact large amounts should split their orders and execute them a little at
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a time, watching the order book, and taking whatever liquidity which is available

as it enters.7 Hence, when there is a lot of volume in the market, they should

submit large orders. Assuming a concave price impact function would obviously

lead to quite different investment decisions. Ehrenstein, Westerhoff and Stauffer

demonstrate, for instance, that the success of a Tobin tax depends on its impact on

market depth.19 Depending on the degree of the nonlinearity of the price impact

function, a transaction tax may stabilize or destabilize the markets.

3. The Model

Following Simon, agents are boundedly rational and display a rule-governed

behavior.20 Moreover, survey studies reveal that financial market participants rely

strongly on technical and fundamental analysis to predict prices.21,22 Chartists typ-

ically extrapolate past price movements into the future. Let P be the log of the

price. Then, their orders may be expressed as

DC
t = a(Pt − Pt−1) , (1)

where a is a positive reaction coefficient denoting the strength of the trading. Ac-

cordingly, technical traders submit buying orders if prices go up and vice versa. In

contrast, fundamentalists expect the price to track its fundamental value. Orders

from this type of agent may be written as

DF
t = b(F − Pt) . (2)

Again, b is a positive reaction coefficient, and F stands for the log of the fundamental

value. For instance, if the asset is overvalued, fundamentalists submit selling orders.

As usual, excess buying drives the price up and excess selling drives it down so

that the price adjustment process may be formalized as

Pt+1 = Pt + At(wDC
t + (1 − w)DF

t ) , (3)

where w indicates the fraction of chartists and (1 − w) the fraction of fundamen-

talists. The novel idea is to base the degree of price adjustment A on a nonlinear

function of the market depth.23 Exploiting that given excess demand has a larger

(smaller) impact on the price if the trading volume is low (high), one may write

At =
c

(|wDC
t | + |(1 − w)DF

t |)d
. (4)

The curvature of A is captured by d ≥ 0, while c > 0 is a shift parameter.

For d = 0, the price adjustment function is log–linear.1,3 In that case, the law

of motion of the price, derived from Eqs. (1)–(4), is a second-order linear difference

equation which has a unique steady state at

Pt+1 = Pt = Pt−1 = F . (5)
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Rewriting Schur’s stability conditions, the fixed point is stable for

0 < c <















1

aw
for w >

b

4a + b
,

2

b(1 − w) − 2aw
else .

(6)

However, we are interested in the case where d > 0. Combining Eqs. (1)–(4) and

solving for P yields

Pt+1 = Pt + c
wa(Pt − Pt−1) + (1 − w)b(F − Pt)

(|wa(Pt − Pt−1)| + |(1 − w)b(F − Pt)|)d
, (7)

which is a two-dimensional nonlinear difference equation. Since Eq. (7) precludes

closed analysis, we simulate the dynamics to demonstrate that the underlying struc-

ture gives rise to endogenous deterministic motion.

4. Some Results

Figure 1 contains three bifurcation diagrams for 0 < d < 1 and w = 0.7 (top),

w = 0.5 (central) and w = 0.3 (bottom). The other parameters are fixed at a = b =

c = 1 and the log of the fundamental value is F = 0. We increase d in 500 steps.

In each step, P is plotted from t = 1001–1100. Note that bifurcation diagrams are

frequently used to illustrate the dynamic properties of nonlinear systems.

Figure 1 suggests that if d is small, there may exist a stable equilibrium. For

instance, for w = 0.5, prices converge towards the fundamental value as long as d

is smaller than around 0.1. If d is increased further, the fixed point becomes un-

stable. In addition, the range in which the fluctuations take place increases too.

Note also that many different types of bifurcation occur. Our model generates the

full range of possible dynamic outcomes: fixed points, limit cycles, quasi periodic

motion and chaotic fluctuations. For some parameter combinations coexisting at-

tractors emerge. Comparing the three panels indicates that the higher the fraction

of chartists, the less stable the market seems to be.

To check the robustness of endogenous motion, Fig. 2 presents bifurcation dia-

grams for 0 < a < 2 (top), 0 < b < 2 (central) and 0 < c < 2 (bottom), with the

remaining parameters fixed at a = b = c = 1 and d = w = 0.5. Again, complicated

movements arise. While chartism seems to destabilize the market, fundamentalism

is apparently stabilizing. Naturally, a higher price adjustment destabilizes the mar-

ket as well. Overall, many parameter combinations exist which trigger complicated

motion.a

aTo observe permanent fluctuations only small variations in A are needed. Suppose that A takes
two values centered around the upper bound of the stability condition X, say X − Y and X + Y ,
depending on whether trading volume is above or below a certain level Z. Such a system obviously
not only produces nonconvergent but also nonexplosive fluctuations for arbitrary values of Y and
Z.
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Fig. 1. Bifurcation diagrams for 0 < d < 1 and w = 0.7 (top), w = 0.5 (central) and w = 0.3
(bottom). The other parameters are fixed at a = b = c = 1. The parameter d is increased in
500 steps. For each value of d, P is plotted from t = 1001–1100. The log of the fundamental value
is F = 0.

Let us explore what drives the dynamics. Figure 3 shows the dynamics in the

time domain for a = 0.85, b = c = 1, and d = w = 0.5. The first, second and third

panels present the log of the price P , the price adjustment A and the trading volume

V for 150 observations, respectively. Visual inspection reveals that the price circles

around its fundamental value without any tendency to converge. Nonlinear price

adjustment may thus be an endogenous engine for volatility and trading volume.

Note that when trading volume drops the price adjustment increases and price

movements are amplified. However, the dynamics does not explode since a higher

trading volume leads again to a decrease in the price adjustment.
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Fig. 2. Bifurcation diagrams for 0 < a < 2 (top), 0 < b < 2 (central) and 0 < c < 2 (bottom),

with the remaining parameters fixed at a = b = c = 1 and d = w = 0.5. The bifurcation
parameters are increased in 500 steps. For each value, P is plotted from t = 1001–1100. The log
of the fundamental value is F = 0.

Finally, Fig. 4 displays the price (top panel) and the trading volume (bottom

panel) for 5000 observations (a = 0.25, b = 1, c = 50, d = 2 and w = 0.5). As

can be seen, the dynamics may become quite complex. Remember that trading vol-

ume increases with increasing price changes (orders of chartists) and/or increasing

deviations from fundamentals (orders of fundametalists). In a stylized way, the dy-

namics may thus be sketched as follows: suppose that trading volume is relatively

low. Since the price adjustment A is strong, the system is unstable. As the trading

becomes increasingly hectic, prices start to diverge from the fundamental value.
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Fig. 3. The dynamics in the time domain for a = 0.85, b = c = 1, and d = w = 0.5. The first,
second and third panels show the price P , the price adjustment A and the trading volume V for
150 observations, respectively. The log of the fundamental value is F = 0.
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Fig. 4. The dynamics in the time domain for a = 0.25, b = 1, c = 50, d = 2 and w = 0.5. The
first (second) panel displays the price P (the trading volume V ) for 5000 observations. The log of
the fundamental value is F = 0.



September 30, 2004 14:53 WSPC/141-IJMPC 00645

1012 F. H. Westerhoff

At some point, however, the trading activity has become so strong that, due to

the reduction of the price adjustment A, the system becomes stable. Afterwards, a

period of convergence begins until the system jumps back to the unstable regime.

This process continually repeats itself but in an intricate way.

5. Conclusions

When switching between simple linear trading rules and/or relying on nonlinear

strategies, interactions between heterogeneous agents may cause irregular dynamics.

This note shows that changes in market depth also stimulate price changes. The

reason is that if market liquidity goes down, a given order obtains a larger price

impact. For a broad range of parameter combinations, erratic yet deterministic

trajectories emerge since the system switches back and forth between stable and

unstable regimes.
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