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The observation that large drawdowns are outliers suggests that a special mechanism
may be responsible for large crashes. We develop a simple model with heterogeneous
interacting agents which follow technical and fundamental trading rules to determine
their orders. Although the chartists are optimistic most of the time, they panic if prices
drop sharply. Our main finding is that the selling impact due to a panic attack may be
so large that it directly leads to the next panic attack. Such behavior generates temporal
correlation in prices, i.e., causes large drawdowns.
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1. Introduction

According to the efficient market hypothesis, prices always reflect their fundamental

values [3]. A crash thus has to correspond to a really bad shock. However, thorough

ex-post analysis of crashes are in many cases inconclusive as to what this dramatic

piece of new information might have been [10, 13]. Inspecting major financial mar-

kets, Johansen and Sornette [7] conclude that more than 50% of the crashes occur

endogenously due to market instabilities.

Johansen and Sornette [6] argue that large market drops are outliers. They de-

fine a drawdown as a persistent decrease in the price over consecutive days. For

instance, three successive daily losses of 1% represent a drawdown of around 3%.

The concept of drawdowns has the potential to capture correlation in price changes.

For symmetric distributions of price variation, starting from a positive return, the

probability to have X successive negative returns is 0.5X . Although independence

between successive returns is usually remarkably well verified, Johansen and Sor-

nette [6] find that large drops occur more often than predicted by an exponential

distribution. Extreme drawups are less pronounced.
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The aim of this paper is to develop a model with heterogeneous interacting

agents that mimics the aforementioned observation. Our model is inspired by the

chartist-fundamentalist approach which has proven to be quite successful in explain-

ing the stylized facts of financial markets, such as fat tails or volatility clustering.

Contributions by Brock and Hommes [1], Cont and Bouchaud [2], Lux and Marchesi

[8] and Farmer and Joshi [4] demonstrate that price dynamics are at least partially

caused by an endogenous nonlinear law of motion. Although the news arrival pro-

cess has an impact on the dynamics, it is not its sole driving force.

We consider two types of investors. While fundamentalists bet on mean rever-

sion, chartists extrapolate past price changes into the future to predict prices. In

general, the mood of chartists is optimistic. The combination of trend extrapolation

and optimism stimulates bubbles. But the mood of the chartists turns into panic

if the price drops more than a given percentage. Since the chartists then aggres-

sively submit selling orders, a panic attack may last some periods during which the

market crashes. Our model matches the stylized fact of drawdowns quite well.

The paper is organized as follows. In the next section, we briefly repeat the con-

cept of drawdowns and drawups. In Sec. 3, we present a simple model of interacting

heterogeneous agents and discuss its dynamic properties. The last section concludes

the paper.

2. Drawdowns and Drawups

Most economists agree that prices do not always reflect their fundamental values.

Detecting a bubble, however, is difficult since market fundamentals are unobserv-

able. Taking a pragmatic view, Johansen and Sornette [5] identify a bubble as a

succession of three events: (1) a preceding period of increasing prices, (2) a sharp

price peak, and (3) a fast price decrease following the peak over a time interval

much shorter than the accelerating period.

The first panel of Fig. 1 shows daily quotes of the Dow Jones Index between

1901 and 2000. The two panels in the second line contain two of the most fa-

mous bubbles. The left-hand side plots the evolution of the Dow Jones Index from

the beginning of 1928 to the end of 1929. The right-hand side presents the same

for the years 1986 and 1987. The stylized bubble pattern is clearly visible. Of

course, bubbles do not always end that dramatically, they may also deflate more

slowly.

Johansen and Sornette [6] define a drawdown as a persistent decrease in the

price over consecutive days. A drawdown is thus the cumulative loss from the last

maximum to the next minimum of the price. Symmetrically, a drawup is defined

as the change between a local minimum to the following maximum. The distri-

bution of drawdowns measures whether successive drops influence each other, i.e.,

whether temporal correlation exists. If prices follow a random walk, then successive

price variations should be uncorrelated. Indeed, price changes are highly random.

For instance, the autocorrelation function of the returns, displayed in the third panel
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Figure 1: The dynamics of the Dow Jones Index. The first panel shows daily quotes for the Dow Jones 

Index from 1901-2000 (25034 observations). The left-hand (right-hand) side of the second panel contains 

the same data for the years 1928-1929 (1986-1987). The third panel displays the autocorrelation function 

of the returns for the first 100 lags (with 95 percent confidence bands). The bottom two panels present the 

number of times a given level of price run has been observed (left: drawdowns, right: drawups). The solid 

line depicts the fit of a stretched exponential distribution. 
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Fig. 1. The dynamics of the Dow Jones Index. The first panel shows daily quotes for the Dow
Jones Index from 1901–2000 (25,034 observations). The left-hand (right-hand) side of the second
panel contains the same data for the years 1928–1929 (1986–1987). The third panel displays the
autocorrelation function of the returns for the first 100 lags (with 95% confidence bands). The
bottom two panels present the number of times a given level of price run has been observed (left:
drawdowns, right: drawups). The solid line depicts the fit of a stretched exponential distribution.
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of Fig. 1, is not significant for almost all lags. But that may not be the case in

extreme situations such as during a crisis.

The dotted line in the bottom left-hand (right-hand) panel of Fig. 1 shows the

cumulative distribution of drawdowns (drawups). Following Johansen and Sornette

[6], the solid line represents the null hypothesis taken as a stretched exponential

function. To be precise, the cumulative stretched distribution is fitted as

LogN(x) = Log A − B|x|z , (1)

where x denotes drawdowns (drawups) and A stands for the total number of draw-

downs (drawups). When z < 1(z > 1), N(x) is a stretched exponential (super

exponential). The pure exponential results for z = 1.

In a very extensive study incorporating quotes for various stock indices, com-

panies and currencies, Johansen and Sornette [6, 7] ascertain that approximately

98% of the distribution of drawdowns is well represented by the null hypothesis,

while the 2% largest drawdowns are outliers. Clearly, they occur at a significantly

larger rate than suggested by the null hypothesis. The bottom panels illustrate this

finding for the Dow Jones Index. Up to drawdowns of around 10%, the stretched ex-

ponential distribution delivers a good representation of the data. Drawdowns above

10%, however, break away from the fitted line. The evidence for drawups is similar,

yet somewhat weaker.

3. The Model

We regard agents as boundedly rational in the sense of Simon [11]. Not only is in-

formation in general incomplete, but market participants also have a limited ability

to analyze the available information. Although agents are not fully rational, they

strive to do the right thing. As indicated by many laboratory experiments, agents

display a rule-governed behavior [12, 15]. Moreover, questionnaires conducted by,

e.g., Taylor and Allen [14] reveal that market professionals rely on technical and

fundamental analysis to determine their orders. Since our goal is to replicate the

phenomenon of bubbles and crashes within a simple setting, we limit ourselves to

two types of speculators: chartists and fundamentalists.

Let us turn to the properties of the model. The fundamental value of the asset

increases smoothly over time. To be precise, the log of the fundamental value F in

period t + 1 is given as

Ft+1 = Ft + η , (2)

where η denotes a constant growth rate.

The price of the asset is determined on an order driven market. These orders

reflect the information flow in the market and thus the evolution of the traders’

opinions and moods. The price variation is controlled by the net order size, defined

as the number of buying orders minus the number of selling orders. Prices increase

if the net order size is positive and vice versa. Following Farmer and Joshi [4], the
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difference in the log of price S between tomorrow and today is proportional to the

net order size

St+1 = St + αM (ωDF

t + (1 − ω)DC

t ) + δt , (3)

where αM is a positive scale parameter to normalize the order size. Transactions of

fundamentalists DF and chartists DC are weighted by their market shares ω and

(1 − ω), respectively. The noise term δ, which is normally distributed with mean

zero and constant variance σδ , comprises all remaining elements that may have

an impact on the price but are not captured within our model (e.g., pure noise

traders).

Fundamental trading first requires an estimation of the value of the asset. In

practice, criteria such as price-earnings or price-dividend ratios may be used for

this task. The estimation of the fundamental value of a firm is then compared with

its actual price. For instance, if the price is smaller than the fundamental value,

a buying opportunity is identified since the trader expects that the market will

soon realize that the asset is underpriced compared to its real value. To simplify

matters, agents are assumed to be able to compute the fundamental value of an

asset correctly. The orders of the fundamentalists are formalized as

DF

t = αF (Ft − St) , (4)

where αF is a positive reaction coefficient. Note that the impact of fundamentalists

tends to bring the price back to its fundamental value.

Chartists derive trading signals out of past price movements. One of the most

popular trading strategies is the moving average rule which extrapolates past price

trends into the future [9]. Accordingly, if prices go up (down), chartists submit

buying (selling) orders. The orders of chartists are written as

DC

t = αC(St − St−λ) +

{

+o St − St−1 > −τ

−π St − St−1 < −τ
, (5)

where αC is a positive reaction coefficient of the trend extrapolation rule. The time

horizon of the technical trading rule is λ. The novel idea of (5) is represented by

the regime switching expression. Chartists are optimistic most of the time, but

they panic if prices decrease by more than the threshold value τ . In the optimistic

regime, chartists buy the additional amount o of the asset, whereas in the pessimistic

regime, they sell the additional amount π of the asset. We assume that π > o.a

The law of motion of the asset price, obtained by combining (2)–(5), is a non-

linear stochastic difference equation. Since the solution precludes closed analysis,

aTraders regularly rely on stop-loss orders in order to limit their risk. Note that such pro-
gram/computer trading, which is often assigned a prominent role for amplifying a crash, is con-
sistent with (5).
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we proceed with numerical analysis. We use the following parameter setting:

η = 0.0002 , αM = 1 , ω = 0.5 , σδ = 0.01 , αF = 0.001 , αC = 0.005 ,

λ = 3 , o = 0.002 , π = 0.06 , τ = 0.03 .

Let us briefly interpret the main coefficients. The dynamics are calibrated to

daily data. Hence, the fundamental value grows by approximately 5% per year.

The groups of chartists and fundamentalists are equal in size. The technical trading

rule operates with a lag of three time steps. Finally, the chartists panic if the price

decreases by more than 3%.

4. Simulation Analysis

Figure 2 illustrates the dynamics of the model in the same way as Fig. 1 portrays

the dynamics of the Dow Jones Index. The first panel shows again the evolution of

the asset price in the time domain (25,000 observations). In addition, the straight

line represents the development of the fundamental value. Due to the optimistic

mood of the chartists, the asset is overvalued most of the time. The two panels in

the second line of Fig. 2 exemplify the phenomenon of bubbles and crashes within

our model (500 observations). In both cases, we observe a price increase over some

time, followed by a sharp price decrease. Remember that this is the typical behavior

of bubbles and crashes, as sketched by Johansen and Sornette [5].

The trajectory of the asset price appears as a random walk. Indeed, the auto-

correlation function of the returns, plotted in the third panel of Fig. 2, suggests

the absence of predictability. But predictability does exist. The bottom left-hand

panel demonstrates that large drawdowns occur too frequently to be in harmony

with the stretched exponential distribution. Put differently, large price decreases

are not random but display transient correlation. Overall, the features of Figs. 1

and 2 appear similar.

Does our model significantly produce large drawdowns? The panels of Fig. 3

show the log cumulative distribution of 20 simulation runs. Each simulation run

contains 25,000 observations. All panels are based on the same seed of random

variables. The first panel is computed with the parameter setting of Sec. 3. Visual

inspection reveals that all simulation runs possess the property of temporal correla-

tion. However, large drawups are more in agreement with the stretched exponential

distribution.

Within the second panel, we set αC and o equal to zero. Still, we observe a large

number of strong crashes, yet not as many as in the previous panel. The main reason

for this is that selling orders generated by the technical trading rule accelerate

the price decrease so that the threshold value is more likely to be crossed. If this

mechanism is missing, temporal correlation is weaker. Furthermore, the optimistic

behavior of the chartists tends to shift the asset price above its fundamental value.

The stronger the asset is overvalued, the more selling orders are submitted by the

fundamentalists.
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Figure 2: The dynamics of the artificial price. The first panel shows the artificial price, where the 

straight line indicates the fundamental value (25000 observations). The left-hand (right-hand) side of the 

second panel contains the same data for the period 10750-11250 (23600-24100). The third panel displays 

the autocorrelation function of the returns for the first 100 lags (with 95 percent confidence bands). The 

bottom two panels present the number of times a given level of price run has been observed (left: 

drawdowns, right: drawups). The solid line depicts the fit of a stretched exponential distribution. 

Parameter setting as in section 3. 
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Fig. 2. The dynamics of the artificial price. The first panel shows the artificial price, where the
straight line indicates the fundamental value (25,000 observations). The left-hand (right-hand)
side of the second panel contains the same data for the period 10,750–11,250 (23,600–24,100). The
third panel displays the autocorrelation function of the returns for the first 100 lags (with 95%
confidence bands). The bottom two panels present the number of times a given level of price run
has been observed (left: drawdowns, right: drawups). The solid line depicts the fit of a stretched
exponential distribution. Parameter setting as in Sec. 3.
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Figure 3: Drawdowns and drawups. The panels show the number of times a given level of price run has 

been observed. The results are plotted for 20 simulation runs, each containing 25000 observations. First 

panel: parameter setting as in section 3. Second panel: parameter setting as in section 3, but α
C
 =ο = 0. 

Third panel: parameter setting as in section 3, but 0=! . All panels are based on the same seeds of 

random variables. 
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Fig. 3. Drawdowns and drawups. The panels show the number of times a given level of price
run has been observed. The results are plotted for 20 simulation runs, each containing 25,000
observations. First panel: parameter setting as in Sec. 3. Second panel: parameter setting as in
Sec. 3, but α

C = o = 0. Third panel: parameter setting as in Sec. 3, but π = 0. All panels are
based on the same seeds of random variables.

The time series of the third panel are again calculated with the parameter set-

ting of Sec. 3, but now π = 0. Without panic attacks, the model does not generate

drawdowns. In fact, trend extrapolation and optimism alone do not suffice to pro-

duce temporal correlation. Our model therefore suggests that panic attacks are an

important mechanism for transient bursts of dependence in successive returns.

5. Conclusions

We propose a simple behavioral model of interacting heterogeneous traders to ac-

count for the fact that large drawdowns are outliers. As detected by Johansen and
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Sornette [6, 7], the bulk of the drawdowns and drawups are very well fitted by the

exponential model, which is a natural assumption for independently distributed

price changes. But the largest price runs occur much too frequently, indicating

transient correlations.

The main finding of our paper is as follows: The selling pressure due to a panic

attack, triggered by a sharp price drop, may decrease the price so severely that

the traders begin to panic again. Trend-extrapolating trading rules amplify this

process. The dynamics of a crash are therefore at least partially endogenous.

Persistencies in the price process not only affect portfolio management — they

may are also consequential to the overall stability of the financial system. A good

understanding of the working of financial markets may help the construction of

more stable and efficient markets. We hope that the mechanism explored in this

paper adds to the body of knowledge.
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