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Preface

My dissertation is based on three essays, unpublished to date, that have been
written in a format suitable for publication in professional journals. It is
not unheard of in our field to literally bind up three such essays and preface
them with a more or less coherent story that explains why they are fitting
pieces in a larger scheme. I have decided against such practice in favor of a
monograph style, which, on one hand, should make the presentation of my
distributional theory more accessible to readers who are not familiar with
the concept of statistical equilibrium.

On the other hand, the monograph style will hopefully result in a more
elegant presentation of the main ideas. Since all three essays are closely
related but specifically geared towards journal publication, the presentation
would be repetitive and even redundant if the essays were simply placed in
sequential order. I believe nobody enjoys reading three introductions that
explain the same concepts three times over, differing only in length and the
degree of detail.

At the core of my dissertation is a theoretical model that explains the
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power law distribution of wealth as the statistical equilibrium outcome of
a system with many heterogeneous agents who face an aggregate wealth
constraint with respect to the average rate of growth. The second essay, a co-
authored effort with Carolina Castaldi, deals with the empirical calibration
of the theoretical model, including the estimation of the power law exponent
for the years 19962002 from a named subset of the wealthiest individuals
in the United States. The third essay reviews the formal concept underlying
statistical equilibrium analysis, known as the mazimum entropy principle,
with the aim of extending the statistical equilibrium theory of distribution
beyond the power law tail. The vast majority of individuals in an economy—
who often account for only half of total wealth—are usually described by a
Gamma, law, which has different economic implications from the viewpoint
of statistical equilibrium analysis.*

I have rearranged and modified some parts of these essays in order to
best represent the involved ideas as a coherent body of thought. Quite
obviously I cannot claim to have provided a general or complete theory (if
there ever is such a thing) of wealth distribution in statistical equilibrium—
hence the “Towards” in the dissertation title. Yet I would like to believe
that the fundamental or most elementary principles of distributional theory

in statistical equilibrium have been worked out here.

!The essay titles are, in the order mentioned here, A Statistical Equilibrium Model of
Wealth Distribution; Turnover Activity and Wealth Mobility; and Do We All Face the
Same Constraints?
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Chapter 1

Brief Taxonomy and Stylized

Facts of Wealth Distribution

The economic sources of wealth are income, inheritance, and the revaluation
of assets or liabilities. Savings are a theoretical accounting tool, essentially
describing the mediation from income flows to the stock of wealth.

The economic uses of wealth are expressed in the composition of wealth
portfolios and break down into five broad categories: (i) cash and savings
accounts; (ii) financial assets like bonds, stocks, and their derivatives; (iii)
real estate, held either for investment purposes or in the form of owner-
occupied housing; (iv) retirement provisions like pension accounts and life
insurance plans; and (v) stakes in private or unincorporated businesses.

How, or whether, human capital might influence an agent’s flow of in-

come or her investment decisions will both remain unanswered questions
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here. Our concept of wealth only requires the sources and uses of wealth to
fulfill an accounting identity in order to be logically consistent. Hence we
will not theorize about causal relationships among the involved accounting
categories in the subsequent analysis. One implication of such an approach
to the concept of personal wealth is that we cannot make any statements
about human capital wealth in particular, nor about the individual destinies
of agents in general. It is rather the distribution of the measured accounting
level of wealth that we want to explain.

Unfortunately, personal wealth data cannot be measured with high ac-
curacy. Surveys of household wealth, personal estate tax—and in some
countries that levy them—wealth tax data, individual investment income
data, as well as independent estimates on a subset of very wealthy named
individuals (e.g. compiled by Fortune and Forbes Magazine in the US or The
Sunday Times in the UK) all suffer from shortcomings that are discussed and
summarized in [7]. Nevertheless, a clear qualitative picture emerges from
household survey data regarding the composition of wealth. According to
Wolff [46, 47], the composition of US marketable wealth! has remained fairly
stable over the last two decades, with roughly two thirds of household wealth
stemming from owner-occupied housing (30 percent gross value), other real
estate (15 percent gross value), and business equity (20 percent). Finan-

cial securities make up 15 percent of total household wealth, matched in

!Common accounting definitions of wealth, all of which exclude the concept of human
capital wealth, are given in Appendix A.
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size by the share of total deposits—i.e. checking and saving accounts, time
deposits, money market funds, and CDs—and retirement accounts. The
remaining share in total wealth, amounting to roughly 5 percent, is com-
posed of various assets, including net equity in personal trusts, precious
metals, royalties, jewelry, antiques etc. Individually, none of these items are
of significant magnitude.

Central to our analysis, however, is not the relatively unchanging com-
position of total wealth but the composition of wealth by wealth class. The
very wealthy hold most of their wealth in financial assets and investment real
estate while the not-so-wealthy hold theirs primarily in the form of owner-
occupied housing, deposits, and pension and life insurance plans [7, 41]. To
give a numerical illustration, Wolff [46] calculates that in 1989 the top one
percent of US wealth holders had 52 percent of their wealth invested in
investment real estate and unincorporated businesses, 29 percent in tradi-
tional financial securities, 11 percent in liquid assets and only 8 percent in
owner-occupied housing. In contrast, the bottom 80 percent of households
held 63 percent of their wealth in the form of owner-occupied housing, 21
percent in the form of liquid assets, 10 percent in real estate and business
equity, and only 6 percent in traditional financial assets. Folbre [12] esti-
mates that in the same year the richest one percent of the US population
held 45 percent of all nonresidential real estate, 62 percent of all business
assets, 49 percent of all publicly held stock, and 78 percent of all bonds.

The richest 10 percent of families held 80 percent of all nonresidential real
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estate, 91 percent of all business assets, 85 percent of all stocks, and 94 per-
cent of all bonds. Except for a slight deviation in the figure for bonds held
by the top one and top ten percent of households, Wolff’s data are identical
to Folbre’s. In addition, he shows that the bottom 90 percent of wealth
holders account for 64 percent of all principal residences, 55 percent of the
value of life insurances, 40 percent of deposits, and 38 percent of the value
of pension accounts [46]. In the UK, evidence from estate data confirms the
qualitative picture observed in the US [41].

The relevant stylized fact for our model will be the pronounced difference
of portfolio compositions between the very wealthy and the rest. Different
households are subject to different economic processes that govern their pos-
sibilities of accumulating personal wealth. We want to argue that the vast
majority of households engages in a ‘life cycle’ type of saving in order to
provide them with housing and financial claims that will ensure their eco-
nomic viability beyond working age. Hence, their wealth will be roughly
proportional to earned income, describing an additively driven process de-
signed to realize a return in the distant future. In contrast, the very wealthy
accumulate their riches mainly by re-investing returns in financial assets and
speculative real estate. Wealthy households seek to realize returns through-
out their lifetime, thereby accumulating wealth in multiplicative fashion.

Thus it is not surprising that we observe two different functional forms
that describe the distribution of wealth. The upper tail of wealth distribu-

tions displays remarkable regularity in the functional form of a power law,
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typically covering the richest three to five percent of households and some-
times accounting for over half of total wealth [1, 10, 30, 42, 45]. The riches
of the remaining 95 percent of the population with positive wealth—the ‘left
part’ of the distribution—are typically Gamma distributed [6, 10, 35].

Walrasian theory cannot explain this regularity endogenously since wealth
enters exogenously in the form of endowments. Markets will not change the
distribution of wealth because exchange takes place exclusively at equilib-
rium prices, which ensures that the value of a chosen consumption bundle
will equal the value of the endowment.

Economic models based on intertemporal maximization plans of hetero-
geneous agents also have difficulties reproducing the observed distribution
of wealth, particularly when it comes to the upper tail.? In contrast, models
from probability theory [4, 29, 31, 32, 37] provide insights into why a vari-
able should be distributed according to a power law—but they often lack
a clear relationship to economic theory.® We will develop an alternative
probabilistic theory of the power law distribution of wealth in Chapter 3—a,
probabilistic theory that is firmly rooted in the “economics” of the stylized
facts we just reviewed. Before doing so, we study some elementary prop-
erties of the statistical equilibrium methodology in the next chapter, which
will also prove useful in Chapter 6, where we discuss extensions of the theory

to account for the Gamma distribution of wealth.

?Quadrini and Rios-Rull [36] provide a survey of the literature.
3See Brock [3] and Gabaix [15] for critical assessments.



Chapter 2

The Concept of Statistical
Equilibrium and Some Useful

Formal Results

Market economies consist of a large number of heterogeneous agents whose
interactions produce aggregate consequences—possibly unintended and reg-
ularly unforseen—that feed back into agents’ behavior and the environment
they interact in. The vast amount of information in such a complex system
does not allow us to explain the distribution of wealth by tracing the micro-
scopic fate of all agents. The concept of statistical equilibrium [13, 14] ac-
knowledges this difficulty from the start and consequently curbs its method-
ological ambition to more modest levels, being content with describing the

statistical properties of aggregate outcomes as a probability distribution of
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economic agents over possible outcomes.

The mathematical formalism underlying statistical equilibrium is known
as the mazimum entropy principle. Building on entropy concepts from sta-
tistical mechanics and information theory, Jaynes [21] generalized the prin-
ciple of entropy maximization into a theory of probabilistic inference that
has found numerous applications across the natural and social sciences [23].
Based on the premise of exclusively incorporating knowledge that has been
given to us and scrupulously avoiding probabilistic statements that would
imply more information than we actually have, the maximum entropy princi-
ple derives probability distributions from known moment constraints. Virtu-
ally all known distributions—discrete as well as continuous—can be derived
from the maximum entropy principle [22].

Let us denote the number of theoretically admissible values of our vari-
able of interest x by ¢ = 1,...,2; then the maximum entropy principle
prescribes to maximize (informational) entropy H = — ). p; log p; subject
to the natural constraint ) ,p; = 1 and m < n observed moment con-
straints ), pigr(z;) = gk for all k = 1,...,m. Applying Lagrange’s mul-
tiplier technique yields probability distributions of the generic form p; =
Z YAy ) exp(=A1g1(z5) — - .o — Amgm(z5)), where Z(Aq,...,\p) =
Yoiexp(—=Agi(zi) —. .. — Amgm(zs)) is the partition function that normalizes
the distribution and Ay, ..., A, are the Lagrange multipliers chosen so as to
satisfy the moment constraints, which is the case when gy = —0log Z/0\g

for all k = 1,...,m. Concavity of the objective function and linear (or a
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convex set of) constraints ensure that the resulting probability distribution
is unique and attained at a global entropy maximum, while the exponential
form of the generic distribution admits only positive probabilities so that
we do not have to incorporate non-negativity constraints explicitly into the
variational problem.

The continuous case proceeds almost analogously because the Euler-
Lagrange equation of the Calculus of Variations [5] tells us that the solu-
tion to an extremal problem of the form [ dzF[z, f(z), f'(z)], where F is a
known function, corresponds to 0F/df(z) —d[0F/0f'(z)]/dz = 0. Since the
Lagrangian of the continuous maximum entropy program does not involve
f'(z) the constrained maximization problem can be solved with the regular
method of Lagrange multipliers. In passing to the continuous case as the
limit of the discrete case, however, we encounter a technical difficulty: in
order to keep the entropy results invariant with respect to a change of vari-
ables we need to introduce an “invariance measure” m(z) in the objective
function, which now becomes H® = — [, dzf(z)log[f(x)/m(z)], where R
is the support and f(z) the probability density of z, and m(z) is propor-
tional to the limiting density of discrete points. If we transform z, say, by
measuring wealth in euros instead of dollars, both f(z) and m(z) transform
in the same way to the effect that all parameters of the maximum entropy
distribution remain unchanged.

In the absence of any moment constraints the continuous maximum en-

tropy distribution will be proportional to m(z) so that we can interpret it as
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the prior distribution expressing ‘complete’ ignorance. The question which
prior best represents such a state of complete ignorance has divided proba-
bility theorists for over two centuries now, and we do not have the ambition
to add anything to this discourse.! We notice in passing two ways around
the philosophical dilemma, of continuous maximum entropy distributions.
First, if it is sensible to express the variable of interest as a ratio we avoid
the problem of choosing a particular prior altogether. Second, in the spirit
of Laplace, discrete entropy maximization prescribes to regard the uniform
distribution as the best representation of a state of ‘complete’ ignorance.
A uniform prior will work even in the continuous case but only on a finite
support. For an infinite interval, Kapur [22] argues that taking a constant
prior “[...Jmeans using an improper prior distribution which will be justified
if the posterior maximum entropy probability distribution is a proper distri-
bution.” In spite of the measure issue, the general properties and intuition of
entropy maximization carry over from the discrete case. Maximizing H¢ sub-
ject to [pdxf(z) =1 and [, dzgr(z)f(x) =gk for all k = 1,...,m leads to
a probability density f(z) = Z7'(A1,..., Am)m(z) exp(— "\ Akgr(z)) with
the partition function Z(Ay,...,A\p) = [ dzm(z)exp(— Y, Aegr(z)).

But making sound probabilistic statements from limited information
does not exhaust the methodological scope of statistical equilibrium. Ac-

cording to Jaynes’ concentration theorem [21] the distribution of maximum

'The interested reader may consult a series of articles by Jaynes [19, 21, 20] that deal
extensively with questions of what the appropriate choice of m(z) should be.
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entropy is not only ‘most likely’ in the combinatorial sense of being achiev-
able in the largest number of ways—but the overwhelming majority of pos-
sible distributions compatible with our constraints will have entropy very

2 Thus inference from observed constraints to re-

close to the maximum.
sulting frequency distribution becomes exceptionally robust and vice versa:
suppose our variable of interest is distributed with a specific functional form;
then the concentration theorem assures us of the extreme improbability that
constraints other than those implied by the maximum entropy principle are
responsible for the observed outcome, and probability distributions and ag-
gregate constraints become two sides of the same coin.

Statistical equilibrium presents a potent tool for the analysis of large
complex systems, but its descriptive and predictive ability is contingent on
the model incorporating all relevant constraints that produce the observable
regularities in the system. We will argue in Chapter 3 why decentralized in-
vestment activity of wealthy households, who are constrained by the growth
rate of wealth, leads to a power law distribution of wealth. Recent evidence
on the UK distribution of wealth [10] illustrates that the power law distri-
bution covers roughly the top 5% of households while the remaining 95% of
the population supposedly show exponentially distributed wealth. A multi-

plicative constraint alone cannot explain the observed regularity across all

2Jaynes’ concentration theorem can even quantify ‘the overwhelming majority’ of pos-
sible cases because it shows that (twice the number of observations multiplied by) the
entropy difference among feasible distributions will be distributed over the set of feasible
distributions as Chi-squared with degrees of freedom equal to the number of theoretically
possible outcomes minus the number of constraints minus one.
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households and we should determine, at least in principle, which constraint
will result in an exponential distribution.

It is well known that an arithmetic mean constraint in the maximum
entropy program leads to the exponential distribution [14, 21, 22], while a
logarithmic mean constraint results in a power law [22, 23]. But what hap-
pens in a system simultaneously constrained by arithmetic and logarithmic
means? Suppose wealth z can take on a continuum of values on R = [0, 00)
and that all households would face additive as well as multiplicative con-
straints. Then the statistical equilibrium distribution of wealth will be given

by the solution to the following maximum entropy program,

I]rcl(%cH = —/Rd:vf(x) log f(z) (2.1)

subject to

/ def(z) =1, 2.2)
R
/ dzf(z)r =z, (2.3)
R
/ dzf(z)logz = logz. (2.4)
R
The associated Lagrangian is L = H—\( [ dz f(z)—1)—p( [, dz f(z)z—

z)—v( [ dz f () log z—log ) and implies the first order condition dL/df (x) =

—(log f(z)+1) — A —puz —vlogz = 0. Solving for f(x) and determining the
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partition function from the natural constraint (2.2) we have

e BT =V

flz) = m. (2.5)
R

The gamma function is defined as I'(a) = [, dze “z* !; by letting z =
pz, so that dz = pdz, we can express the partition function [ pdze MY
as pv~! Jpdze?27" = p?~IT'(—=v + 1). Finally, we define v = —v + 1 and

thus obtain the well-known gamma, distribution for x

flz) = Ifz':') e HEgYL (2.6)

If only (2.3) was prescribed, the maximum entropy distribution would

be

f(z) =pe (2.7)

while if (2.4) alone was given, the resulting distribution would be

with m > 0 as the minimum value of x.

Notice that the Gamma probability density reduces to the exponential
density if v = 1 because the definition of «y then implies v = 0 such that
there is no multiplicative constraint in the first place. Thus we see how

pronounced the difference among maximum entropy distributions will be
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Figure 2.1: Exponential probability
density function with scale y = 1/3,
and hump-shaped Gamma density
functions with identical scale y =
1/3 and different shape parameters
v =2 and v = 3 (thick curve).
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Figure 2.2: Inverse cumulative dis-
tribution functions of the exponen-
tial and Gamma distribution (thick
curve). The inset shows the tail
behavior of the inverse Gamma vs.
the inverse power law; both graphs
are on double-logarithmic scale.

depending on whether the constraints (2.3) and (2.4) are simultaneously

or separately present. Figure 2.1 illustrates the marked difference among

the respective probability densities. Yet the cumulative distributions of the

Gamma and exponential laws, shown in Figure 2.2, are very similar.

In contrast, the behavior of the inverse cumulative Gamma distribution

will be governed by the exponential term for large values of x so neither the

Gamma nor the exponential law are capable of producing the ‘fat’ tail of a

power law distribution, as illustrated in the inset of Figure 2.2.

We are now in a position to tackle the power law distribution of wealth

in the next chapter, with slightly more rigorous attention to detail as well

as with more economic content in the maximum entropy formalism.



Chapter 3

Statistical Equilibrium
Theory of the Power Law

Distribution of Wealth

We recall from Chapter 1 that wealth consists of the current value of assets
a household owns minus the current value of liabilities it services, and that
the economic sources of wealth are income, inheritance, and the revaluation
of assets or liabilities. In the case of very wealthy households that make
up the power law tail, income mostly flows from financial assets, rents,
and business operations. Savings are mediating between income and asset
acquisition. The economic uses of wealth are expressed in the composition
of wealth and lead to the notion of a household’s wealth portfolio. A complex

set of market interactions determines the value of different components in

14
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the portfolios and, thereby, the distribution of wealth.

The underlying complexity introduces an enormous amount of informa-
tion, making it impractical to model the distribution of wealth by tracing
the fate of individual portfolios. We can, however, observe a well-defined av-
erage growth in the whole economy that constrains the growth of individual
portfolios. Each portfolio has a characteristic return factor, corresponding
to a portfolio’s gross return over a given period. This cumulative return fac-
tor can be thought of as a combination of different rates of return accruing
to the different uses of the portfolio. Under the assumption that at some
initial point in time we start out with an egalitarian distribution of wealth,
where each household enjoys the same level of wealth, it follows that return
factors and wealth levels will be proportional. Differences in the return fac-
tors that each of the portfolios achieve are thus responsible for differences
in wealth.

We take the position that differences in return factors are first and fore-
most the result of decentralized investment activity per se, and not of indi-
vidual skill and ability, nor the inheritance of a family dynasty. That does
not mean factors like human capital wealth, inheritance, personal ability,
lucky streaks (or, for that matter, losing streaks) are excluded from the
analysis. All such factors are part of the general environment leading to the

1

statistical equilibrium outcome.” To paraphrase the methodological view

'Though individual determinants of a household’s fortune cannot be separately iden-
tified in our model, all such factors are at least in principle included in the characteristic
return factor.
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underlying the field of “complexity science”—as popularized in [2, 44]—our
model considers aggregate properties of the economy as being caused by the
very process of aggregation.

Competitive markets ensure a tendency towards a uniform rate of return
for activities with the same risk. We interpret the uniformity in the sense
that returns to wealth will be different in absolute terms while tending to
be proportional to the size of the wealth portfolio, so that the rate of return
is independent of the size of the portfolio.?

Since different activities bear different risks, however, individual port-
folios will ultimately experience different realizations of risky prospects.
The realization of a portfolio’s return factor will depend on the number of
turnovers that occur. A turnover reflects a household’s decision to change
the composition of its portfolio, by either changing the weights of existing
components or by including components previously not held.

Formally, the model builds on Jaynes’ [21] mazimum entropy program
that we introduced in the previous chapter, and on Foley’s [13] economic
interpretation of the program as a statistical equilibrium of markets. When
the number of wealthy households is large, combinatorial factors can lead to
statistical regularities in the distribution of wealth. The wealth distribution

that can be achieved in the largest number of ways while satisfying the ag-

*Wolff [46, 47] documents systematic differences in return factors between the rich and
the rest. We justify the assumption of uniform rates of return by pointing out that we are
only concerned with the upper tail of the wealth distribution, where households display
similar compositions of their portfolios, primarily investing in financial assets and real
estate.
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gregate growth constraint is the statistical equilibrium or maximum entropy
wealth distribution®

An arithmetic mean constraint in the maximum entropy program leads
to the (Gibbsian) exponential distribution.* Basically, our model establishes
the power law distribution as the outcome of the maximum entropy program
under a logarithmic mean constraint. A logarithmic scale expresses propor-
tionality; the idea that intervals of proportionate extent are responsible for
the emergence of power laws dates back to Champernowne’s [4] model of in-
come distribution. More recently, Levy and Solomon [29] have developed a
generalization of Champernowne’s Markov chain model. They demonstrate
that a power law emerges from a less restrictive stochastic process, only
requiring it to be multiplicative—even if the process is not stationary or if
the transition probabilities of the process change over time. Starting from a
stochastic difference equation for wealth w;(¢ + 1) = yw;(t), where the mul-
tiplicative factor v has an arbitrary distribution P(vy) with finite support,
Levy and Solomon [29] prove that the ergodic distribution of w will converge
to a power law.’

The key to their proof lies in the logarithmic scale of wealth, so that

31t should be understood implicitly by now that generic terms like ‘wealth distribution’
or ‘households’ strictly refer to the upper tail of the distribution.

“Kapur and Kesavan [22, 23] present numerous applications of the maximum entropy
program under different constraints taken from the natural and social sciences. Foley [13]
provides an economic example where the Gibbsian exponential distribution (of commodity
prices) arises from an arithmetic mean constraint (such that excess demand for commodi-
ties equals zero).

5The ratios of the midpoints of Champernowne’s intervals are rates of return, very
similar to Levy and Solomon’s [29] multiplicative factor ~y.



CHAPTER 3. THEORY OF THE POWER LAW TAIL 18

the particular shape of P(y) will not influence the ergodic distribution of
wealth as a power law. Instead of assuming an arbitrary distribution of
return factors, our model treats all return factors as equally likely and then
determines the distribution of wealth that can be achieved in the largest
number of ways while meeting the aggregate growth constraint. But it does
not matter whether we assume an arbitrary distribution, or whether we
assume return factors to be equally likely and then mix them in the most
disorganized fashion: in both models, the power law distribution depends
on the logarithmic scale of wealth.

Where our model differs from theirs, however, is in the exponent that
characterizes the statistical properties of the power law distribution. As far
as the distribution of wealth is concerned, we can interpret the magnitude of
the characteristic exponent as a measure of inequality: the greater the expo-
nent in absolute value, the more equal the distribution of wealth; the closer
to unity the exponent of the cumulative distribution function, the more un-
equal the distribution [1, 25, 42].5 Economic policy aimed at influencing the
degree of inequality would have to ask which economic forces determine the
characteristic exponent of the wealth distribution. Levy and Solomon’s [29]
characteristic exponent depends on an exogenous lower bound of the distri-
bution. From the viewpoint of economic theory, an arbitrary lower bound

carries little in the way of relevant information. In addition to a minimum

81f the characteristic exponent is less or equal to unity, the power law distribution is
degenerate because it has infinite mean. Correspondingly, the density function will be
degenerate if the characteristic exponent is smaller or equal to two.
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wealth level, the statistical equilibrium exponent depends on the aggregate
rate of growth in wealth portfolios, as well as on the average number of

turnovers that occur during the period.

I Economic Foundations

We conceptualize the economy as a set K = {1,..., K} C N of economic
activities or investment opportunities. For all k € K, let V¥(t) denote the
time t value of economic activity k, and for all h € {1,...,n}, n < oo, let
a’,i(t) denote the position of household h in activity k, with the interpretation
that af(t) > 0 indicates a long position at time ¢ (k is an asset) and af(t) < 0
a short position (k is a liability). Obviously, af () = 0 allows for the absence
of activity k in the portfolio of household h.

The value of the wealth portfolio of household h at time ¢, denoted wy,(t),
follows from the household’s combination of the K different activities in the

economy

wa(t) = af(VFE)  Vhe{l,...,n}.
keK

Changes in the value of a household’s portfolio are either the result
of a revaluation of economic activities, or of changes in the behavior of the
household—expressed as changes in the household’s positions. Traditionally,
we think of savings as the principal component determining wealth. Since
our model conceptualizes wealth from its uses, savings are implicitly included

in the above formulation.
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Notice that we are not putting forward a specific theory of portfolio
choice here. Instead, our model starts from the weak assumption that we ob-
serve a well-defined macroscopic average—the logarithmic mean—and that
agents change the composition of their wealth portfolios over time. To mea-
sure changes in portfolio composition, we introduce the concept of an average
number of turnovers in the economy.

Suppose for the moment that there is an ‘initial’ period %3, where the
portfolio starts out with an amount w (¢). The fictional device of an initial
period serves to conceptualize the value of a wealth portfolio in terms of an
average return factor per turnover rp directly proportional to the observed
wealth level. A turnover describes a change in the household’s position
during the observational period tg to ¢t. Let T} (to, t) designate the number
of elements where af(ty) # af(t) for all k € K, that is to say Tj(to,)
gives the number of changes in the composition of household h’s portfolio
between period ty and t. Moreover, let the economy start with an egalitarian
distribution of wealth at o, where wy, (to) = wp for all h € {1,...,n}, and
designate T' = ), T'(to,t)/n to be the average number of turnovers in the

economy. Suppressing the time index for notational simplicity we have that

wp, = wo ! (3.1)

so wealth levels and return factors will be directly proportional for all house-

holds.
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A formulation in terms of return factors allows us to interpret differences
in wealth as differences in the returns each portfolio achieves over the pe-
riod %y to . Though returns in absolute terms will be different they should
be proportional to the size of the portfolio if the economy is competitive.
In other words, wealthier and poorer portfolios will face the same prospec-
tive rates of return, which does not exclude the possibility that different
portfolios ultimately experience different realizations of risky prospects. We
express proportionality in return factors with a logarithmic scale of wealth,
log w.

At the same time, we can also interpret the logarithmic scale as incor-
porating the growth dynamics of wealth in the sense of a geometric mean.”

Denote the number of households with wealth w; by n; and define p; = n;/n

to express the logarithmic mean logw as

logw = sz'(?") log (wo riT) =logwy+ T Zpi(r) logr; . (3.2)
- .

2

A logarithmic mean by itself has no time dimension. We can think of
two different time scales, one being the passage of accounting time, the other
being the passage of turnovers. The value of portfolios at the end has to be
the same, regardless of which time scale we employ. We cannot observe r;,
the return factor per turnover, since in practice we do not know how many

turnovers have occurred. What we can observe is the return factor per year,

"The logarithmic mean is equivalent to a weighted geometric mean where we interpret
the weights as probabilities.
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denoted R, so that we can express the logarithmic constraint as
logw = logwy + T logr = logwy + Llog R,

where L = t — ¢ is the calendar time that has elapsed since the (mythi-
cal) initial state. As we will argue in Section IV, the use of two different
time scales allows us to resolve the conceptual issue of a ‘zero period’ and
the absolute lapse of time. The growth constraint of aggregate wealth in

equation (3.2) thus reads

I
flogR = Zpi(r) logr; . (3.3)

It is important to notice that we are no longer summing over households
but over the number of theoretically possible wealth levels w; for all 1 € N.
In order to ensure that each of the n households is assigned to some wealth
level for all i+ € N, we have the additional constraint that ), n; = n, or,

equivalently

>_pilr) =1. (3.4)

Except for the notion of a turnover, we are neither making assumptions
about the evolution of household behavior nor about the evaluation of eco-
nomic activities, nor about whether valuation and individual behavior are
interdependent. The growth constraint (3.3) reduces the enormous complex-

ity of asset valuation and individual behavior to the observation of a single
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economy-wide average growth in household wealth. Hence, as it stands so
far, our model is drastically under-determined in the sense that we can con-
ceive of a large number of wealth distributions that are consistent with (3.3)
and the natural constraint (3.4). Which probability distribution should we

choose in the absence of any further information?

II Maximum Entropy Wealth Distribution

A feasible wealth distribution obeys (3.3) and (3.4). It will clearly remain
feasible if we interchange households that enjoy the same wealth level w;(¢)
since doing so does not change the distribution. In the absence of any
further information, Laplace’s “principle of insufficient reason” prescribes
to regard each theoretically possible wealth level or return factor as equally
likely. Then the likelihood of observing any particular wealth distribution
is proportionate to the number of ways that distribution can be achieved by
permuting economically indistinguishable households, meaning households
that achieve the same return factor in their wealth portfolio.

The number of ways n households can be assigned to C categories,
with n. households assigned to category c is the multiplicity of the assign-
ment [13], M[{n.}] = n!/ni!---n!---nel. Stirling’s approximation for large
n implies Inn! = —n 4+ nlnn, which upon substitution into the logarithm
of the multiplicity yields the entropy H of a distribution, n™! In M[{n.}] ~

— ZCC:1 “eln®e = H [{%}] From a statistical point of view, the rationale
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behind maximizing entropy is that the distribution that can be achieved in
the largest number of ways is the most likely distribution to be observed.
The mazimum entropy program [21] maximizes entropy H [{p;}] subject
to the natural constraint (3.4) and a finite number of moment constraints.
In our case, we are dealing with the single logarithmic constraint (3.3) that

we interpreted as the average growth rate of wealth in the upper tail

lﬁjai( H [{pz Z pz log pz (3'5)

subject to

sz logTz = —logR,

ZPi(T) =1

We can think of the maximum entropy program as assigning a probabil-
ity distribution based on the premise of using only information we have and
strictly avoiding use of any additional information [21, 23].% If an entropy-
maximizing wealth distribution exists, it is unique [13, 21] because the ob-
jective function (3.5) is strictly concave and the constraints define a convex
set. The maximum entropy program yields the proof of a similar theorem

by Levy and Solomon [29].

81t is easily verified that maximizing entropy H subject to the natural constraint results
in the uniform distribution—a modern formulation of the principle of insufficient reason.
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Theorem 1 (Power laws are logarithmic Boltzmann laws). For all
positive return factors r; there exists (A*, ) € R? such that the optimal
solution to the mazimum entropy program under a logarithmic growth con-

straint is a power law distribution of wealth

pi(r) =2 (3.6)

where
Z r: " =exp(A\j)

is the partition function that normalizes the probability distribution p}(r).

Proof. If return factors are not concentrated in a single point, i.e. for any
constant ¢ > 0, r; # ¢ for at least one ¢, the nondegenerate constraint qual-
ification of the optimization program is satisfied and there exists a char-
acteristic ezponent \* and a normalizing multiplier A\j = 1 + p* such that
(pj, A", Ap) is a critical point of the associated Lagrangian. This Lagrangian

is

L——
Llpi; A p) = H = A sz Jlogri — log R

—ulzpz 1].

The first order conditions, which, given the strict concavity of H, are nec-

essary as well as sufficient to characterize the critical point, imply

pi(r) = exp (=X§) exp (=X* log ;) = exp (=A§) 77
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From (3.4) we then obtain exp (A\j) = Z (\*), resulting in the power law

pi(r) =1,/ Z (\). O

Theorem 1 says that the most disorderly mixing of return factors leads
to a power law distribution of wealth. To paraphrase Foley’s [13] metaphor
of markets as probability fields over transactions, the statistical equilibrium
wealth distribution defines a probability field over return factors from avail-
able combinations of investment opportunities. The most decentralized in-
vestment activity of households forms the conceptual basis of the maximum
entropy distribution of wealth.

The entropy formalism “hesitates” to assign an enormously large return
factor to a portfolio because it thereby reduces the degrees of freedom in
the remaining assignments of return factors that have to meet the growth
constraint. However, statistical equilibrium does by no means exclude the
possibility of such extreme outcomes, it merely attaches a very low proba-
bility to them according to the power law distribution. While the statistical
equilibrium distribution cannot “name” a particular household in the dis-
tribution, it specifies an exact functional relationship that describes the fate

of all households above the minimum wealth level.

Corollary 1. The number of theoretically feasible return factors r; does not

influence the functional form of the wealth distribution.

Proof. The functional form of the first order conditions in Theorem 1 is not

affected by the number ¢ of feasible return factors. O
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IIT Characteristic Exponent of the Wealth Distri-

bution in Statistical Equilibrium

Using the statistical equilibrium distribution in the growth constraint (3.3),

we obtain a parametric solution for A

L— dlog Z () 1 Y
?logR = = Z(N) ;ri log 7;.

Since, however, the characteristic exponent of a power law carries all rele-
vant information about the statistical properties of the distribution, we are
interested in an explicit solution for A\. Thus we consider a continuum of pos-
sible return factors 7 € W = [rmin, 00), where rmin designates the minimum
return factor to which the power law distribution applies. The conceptual
tool of a ‘zero period’ relates return factors and wealth levels in a one-to-one
correspondence, hence (minimum) wealth levels and (minimum) return fac-
tors should be understood as synonyms. We should keep in mind, though,
that wealth levels are of different dimensionality than return factors, raising
questions about empirical calibration that we take up in Chapter 5.

The “cost” of gaining analytical tractability through a continuous version
of the maximum entropy program comes in the form of an additional measure
that will keep the continuous entropy measure invariant with respect to a
rescaling of variables. We provide the intuition why such a measure would

become necessary in Appendix B, where we also derive the general condition
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for the invariance of the entropy measure under a logarithmic constraint.
Moreover, we argue why introducing the new measure does not alter our
results qualitatively.” Hence, we continue here with the continuous analog
to the familiar discrete entropy program. Unless stated otherwise, all results

are derived under the following assumption.
Assumption 1 The power law distribution has finite mean, i.e. A > 2.

As before, we denote return factors without the time index simply as 7.

The maximum entropy program then takes the form

max 7 () == | 1 (r)log f(r)dr (37)
subject to
/ L
f(r)logrdr = ?logR (3.8)
w

/ frdr = 1. (3.9)
w

Lemma 1 (Continuous wealth distribution). The continuous statistical
equilibrium distribution of wealth remains a power law,
A* - ]. —\*

fi(r) = —xFil

min

(3.10)

®The simplest—maybe most elegant—argument why we do not have to introduce the
measure is that we derive the distribution of return factors: measuring wealth in, say,
euros instead of dollars does not affect the scale of return factors.
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Proof. From the Euler-Lagrange equation of the calculus of variations we

know that the solution to an extremal problem of the form

| Flo (@), (@),

where F' is a known function, corresponds to 0F/df(z) — ﬁaF/[”)f'(w) =0.

The Lagrangian of the continuous maximum entropy program

L= H[f(r)] - A (/Wf(T) logrdT> —u (/Wf(r) dr — 1)

does not involve f'(r), therefore our problem is analogous to the discrete

case and reduces to

* * * L—s= * _
s [ 0oe ) =3 (770 togr - ZgR) —u(7°(r) - 1)] <o

where, as usual, 0L/OX* = 0 and OL/0p* = 0 reproduce the constraints.
Again, let A\j =1+ p*. Then the first order condition with respect to f*(r)
implies f*(r) = r—* exp (—\§). As before, the partition function follows

from the natural constraint (3.9),

° . AL AL
*) — * _ — _ min
Z(A):exp()\o)—/rminr dr = Y rmin_A*_l
Substitution completes the proof. O

Lemma 1 enables us derive the central proposition of our theory, which
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identifies the components that determine the characteristic exponent of the

statistical equilibrium distribution of wealth.

Proposition 1 (Characteristic exponent in statistical equilibrium).

The characteristic exponent of the statistical equilibrium distribution obeys
I —1
A* = <flogR — log ’I‘min) + 1. (3.11)

Proof. We integrate by parts and use L’Hopital’s rule to obtain

A+ AR 1
/W r~ " logrdr = ;:m_ 1 [log Tmin T+ ﬁ] )

which upon substitution in (3.8) yields (3.11). O

Proposition 1 identifies the three determinants of the characteristic ex-
ponent: the average growth rate of wealth, the average number of turnovers,
and the minimum wealth level to which the power law distribution applies.
One particularly nice feature of the statistical equilibrium theory of wealth
distribution is its ability to unify economic concepts like turnover activ-
ity and average growth with the earlier result of Levy and Solomon [29]
on the minimum wealth level as the determinant of the characteristic ex-
ponent. Drigulescu and Yakovenko [10] show that the empirically observed

wealth distribution changes its functional form at a particular wealth level.'0

1% According to [10], the wealth distribution changes from an exponential shape to a
power law for the top five percent of households in the US as well as in the UK.
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Though the statistical equilibrium theory presented here concerns only the
upper tail, it is noteworthy that it explicitly allows for the dependence of
the distribution on the minimum wealth level at which the nature of the
distribution changes. What exactly determines the minimum wealth level
from a theoretical point of view, however, remains an open question at this

point.

IV Interpretation and Policy Implications

The final step in the theoretical analysis of the distribution of wealth has
to address the issue of how to connect the entropy-derived power law dis-
tribution to the empirically observed distribution. After all, the length of
observation L remains arbitrary in the derivation of Proposition 1 and there-
fore also in (3.10). In order to interpret (3.10) as the actual distribution we

have to make one more assumption.
Assumption 2 L and T are both large but their ratio is stable.

Then we can use Lemma 1 as a good approximation to the actual distribution
because the arbitrariness in L will not matter. The following remark is a

direct consequence of Assumption 2.

Remark 1. The choice of an initial period ¢y has no influence on the power

law distribution of wealth.

Changes in the distribution of wealth are reflected through changes in the

characteristic exponent; A provides information about the degree of inequal-
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ity in the economy, with a higher A representing a more equal distribution
of wealth [1, 25, 42]. Relevant policy prescriptions for lowering the degree of
inequality in an economy thus have to address the issue of how to increase
the absolute value of A\. From Proposition 1 we can single out the ratio of
turnovers per observational period and the average growth of wealth as the
economic determinants of the distribution of fortunes. In terms of economic

theory, Proposition 1 leads to two trade-offs.

Remark 2. The faster average wealth grows in the upper tail, the more
unequal is the maximum entropy distribution of wealth. The influence of
turnovers on inequality depends on whether average growth is positive or

negative.

Proof. We consider the partial derivatives of the statistical equilibrium char-

acteristic exponent with respect to turnovers and the average rate of growth,

ON* 1 (L— P
= — | ! -1 min 1 )
T T2 (T og R —logr ) og R
ON* L -2
—— = — [ =log R —10g "min L/T.
dlog R (T & & ) /

Since turnovers are positive, the partial derivative with respect to average
growth is always negative. If the growth rate is positive, more turnovers
lead to a more equal distribution of wealth; for a negative growth rate, more

turnovers imply a more unequal distribution. We say that the economic
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problem is not well defined if 7" = 0 or log R = 0. O

Regarding the trade-off between growth and wealth inequality, the last
remark carries a somewhat similar flavor to Meade’s [33] inherent conflict
between income equality and productive efficiency in an economy. With
respect to turnover activity, the distribution of fortunes will be more equal,
ceteris paribus, the more agents “reshuffle” their portfolios. Uni-directional
statements about wealth inequality in the upper tail are therefore not trivial
because they depend on the magnitude of the effects of faster growth versus
increased turnover activity.

A remaining and important question regarding the interpretation of the
model is whether wealth levels (and their corresponding return factors) are
measured in real or nominal terms. Does inflation matter for the degree of

inequality in statistical equilibrium?

Remark 3. Inflation, understood as a change of scale, has no distributional

consequences in statistical equilibrium.

Proof. Denote the inflation rate during the length of observation by p > 0.
Since the characteristic exponent measures inequality, we have to establish
how p affects A\* in Proposition 1. Suppose the notation there refers to
real magnitudes and we adjust return factors for inflation by multiplying
them with (14 p); then log [rmin(1 4+ p)] = 10g rmin + log(1 + p) and, because
all portfolios face the same inflation rate, we can also write log R(1 + p) =

log R + log(1 + p). The term log(1 + p) cancels out in (3.11), leaving the
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characteristic exponent unchanged. O

We should clarify Remark 3 by re-iterating the crucial assumptions in
our proof. First, we assumed that inflation will not affect the turnover rate.
Second, we assumed that all economic uses are subject to the same inflation
rate, thereby interpreting inflation as a change of scale that affects all port-
folios equally. Viewed from a different perspective, the latter assumption
ensures that the relative location of the minimum return factor adjusts so
as to exactly offset the increase in the nominal growth rate. Of course the
situation would be quite different if, for whatever reason, inflation changed
the ‘demarcation line’ between the two distributional regimes disproportion-
ately. But regardless of how we define inflation, the statistical equilibrium
model has the desirable property that mere changes of scale will have no

effect on the characteristic exponent.

V  Summary of Theoretical Results

A power law is—in a powerful combinatorial sense—the most likely distribu-
tion in a system where the logarithmic mean is the only relevant constraint.

In contrast to the ergodic approach of Levy and Solomon [29], our statis-
tical equilibrium model of wealth distribution determines the characteristic
exponent not only from a lower bound but also from two other variables
that are economically more relevant: the average rate of growth and the

average number of changes in the composition of wealth portfolios. Statis-
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tical equilibrium predicts trade-offs between the two variables on one side
and distributional equality on the other. The higher the rate of growth, the
less equal the power law distribution of wealth. Turnovers, coupled with
a positive growth rate of wealth, have an egalitarian influence on the tail
distribution of wealth.

So far we only dealt with the theoretical properties of our model. To
judge the empirical merit of the statistical equilibrium model, we would have
to check whether the equality in (3.11) holds in practice. That will only be
possible if we have data for all variables in Proposition 1: the characteris-
tic exponent, the average rate of growth of wealth (within the power law
tail, not over the entire population), the minimum return factor, and the
average number of turnovers. At least in principle the first three should be
observable, whereas privacy issues render observation of turnovers extremely
unlikely. If we cannot test the quantitative accuracy of our model directly
because we do not observe turnovers, and assuming that we do have in fact
information about the other three variables, we should ask which turnover
activity our model implies. We take up this question, along with other issues
regarding the calibration of the model, in Chapter 5. Meanwhile we focus
our attention on the characteristic exponent of the power law distribution
in the next chapter, elaborating how to estimate the characteristic exponent
from Lorenz data, but also estimating the characteristic exponent directly

from a subset of the wealthiest individuals in the United States.



Chapter 4

Empirical Investigations Into

the Power Law Tail!

The characteristic exponent of the power law distribution should be the
‘most robustly observable’ parameter among the three needed to calibrate
the statistical equilibrium model in the upper tail. We first extract the
exponent from Lorenz data in the next section, also briefly sketching the
historic magnitudes of the exponent for a small sample of western countries.
In the second section, we estimate the exponent directly from seven recent
Forbes 400 lists of the wealthiest US citizens, and finally we use the same

data set to conduct a simple mobility analysis.

!The sections dealing with estimation of the characteristic exponent from
the Forbes 400 data, as well as the mobility analysis, have been co-authored
with Carolina Castaldi.

36
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I Characteristic Exponent and Lorenz Data

Quite often wealth data are reported in Lorenz form, i.e. z% of the popu-
lation owns y% of total wealth. We can infer the characteristic exponent if

we know the wealth share S of a top percentile P with the following lemma.
Lemma 2. If wealth is distributed according to a power law, then one point
(P, S) on the Lorenz curve enables us to determine the characteristic expo-
nent of the distribution as

log S !
=1 1-— . 4.1
T ( logP> 1

Proof. Set minimum wealth to unity and consider the probability density
function n(z) of wealth z, n(z) = cx~?, with ¢ as an appropriate normalizing
constant and w as the (unknown) wealth level corresponding to the pair

(P, S); then P and S are defined by the ratios

P= fzzo 'n/(.’L') dz — w—a—l—l and S = fu(jo .T’n/(.’L') dz — w—a+2
[ n(z)dz ’ O an(z) dz ’

provided Assumption 1 holds. Since empirically observed wealth is finite,
this assumption is not restrictive. Given P and S, we solve the system of

two equations in two unknowns for a to obtain the above statement. U

To avoid confusion, we recall that the characteristic exponent derived

here refers to the density and not the (inverse) distribution function, which
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P .0001 .001 .002  .005 .01 .03 .05
S¢ 167 0 232 261 310 359 466  .534
a—1 1.241 1.267 1.275 1.283 1.286 1.278 1.265

Table 4.1: Critical values for the propagation of errors.

is usually cited in the literature. It is readily verified that the exponent of
the distribution function will be @ — 1 = (1 — log S/ log P) !.

We could calculate error bounds for a from (4.1) if we knew the variance
o2 in the measurement error of S by simply calculating o for S+0/2, holding
P constant. Alternatively, we can use the law of propagation of errors to
approximate the effect of a mismeasurement in S. The law of propagation

of errors states that, for o < S, the extent of the error bounds will be

da
oS

log S -2 o
=11- for P, 1). 4.2
7 ( logP) |log P|S or P,5 € (0,1) (42)

As the name suggests, the law of propagation of errors allows us to determine
how much of the measurement error in S is ‘passed through’ to « since
|0a/0S| < 1 means a less than proportionate increase in the error bounds
of @ compared to o; the opposite is true for [0a/dS| > 1. The following
table shows the numerically computed solutions for the ‘critical values’ S¢
where |0a/0S| = 1. We chose P based on the data in Table 4.2. For a given
P, equation (4.1) shows « as a strictly convex function of S > P. Therefore,
measurement errors will be magnified in « if 0 < § < §¢, while the reverse

istrueif S¢ < S < 1.
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Country Year Top households P Wealth share S o —1
Sweden 1920 0.0001 0.090 1.354
0.0010 0.240 1.260

0.0100 0.500 1.177

1975 0.0010 0.060 1.687

0.0020 0.080 1.685

0.0050 0.125 1.646

0.0100 0.170 1.625

0.0200 0.240 1.574

1983 0.0010 0.080 1.576

0.0020 0.100 1.589

0.0050 0.145 1.573

0.0100 0.195 1.550

0.0200 0.260 1.525

1975 0.01 0.160 1.661

Belgium 1969 0.01 0.280 1.382
Canada 1970 0.01 0.196 1.548
Denmark 1973 0.01 0.250 1.431
Germany 1973 0.01 0.280 1.382
United States 1972 0.01 0.250 1.431
1983 0.01 0.34 1.306

1989 0.01 0.39 1.257

United 1923 0.01 0.61 1.120
Kingdom 0.05 0.82 1.071
1929 0.01 0.56 1.144

0.05 0.79 1.085

1975 0.01 0.24 1.449

0.05 0.44 1.378

1980 0.01 0.23 1.469

0.05 0.43 1.392

France 1977 0.01 0.19 1.564
0.05 0.45 1.363

1986 0.01 0.26 1.413

0.05 0.43 1.392

39

Table 4.2: Lorenz data are taken from [46] and the papers collected in [45];
different data sources are indicated by a horizontal line.
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Table 4.2 presents Lorenz data for different countries at different points
in time, taken from Wolff [45, 46], together with the characteristic exponents
of the distribution function that we calculated using Lemma 2. The results
are encouraging: within the upper tail—typically the top one to three per-
cent of households—the functional form of a power law seems consistent
with the data. (Particularly since the deviations that occur do so where
the propagation of errors will be pronounced.) Moreover, variation across
time is much more pronounced than variation across countries, all this in
spite of the fact that international wealth data are usually not measured
in the same fashion [45] and in spite of the rather coarse nature of wealth
percentiles. Wealth inequality in the upper tail was significantly higher at
the beginning of the twentieth century compared to the ‘Golden Age,’ i.e.

the decades between World War II and the collapse of Bretton-Woods.

II The Forbes 400 List

Since 1982 Forbes has annually published the Forbes 400 list of the wealthi-
est US individuals in its print edition, and also posted the list free of charge
on its web site for the years 1996-2002.2

To be considered for the list, individuals must be US citizens and should
own more than $550 million. In order to estimate net worth, a dozen-strong

staff collects and updates publicly available information regarding stakes in

*http:/ /www.forbes.com/2002/09/13 /rich400land.html
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public stock, real estate, and unincorporated businesses. Yet the data need
to be gauged with the appropriate degree of skepticism. We often hear—
Forbes being no exception—that, say, Bill Gates’ fortune is made up almost
exclusively from his Microsoft shares. It is by no means clear why he should
not have diversified his position, nor do we get to know on which evidence
such a claim rests. That said, the Forbes staff calculates wealth from public
stock holdings by multiplying share prices with the number of shares known
to be in the agents’ possession; wealth from real estate is calculated on the
basis of publicly known square feet-ownership multiplied by local market
rates; wealth from unincorporated businesses is estimated by assuming that
the enterprise operates under the same margins as a publicly traded company
in the same sector; finally, projected tax liabilities are subtracted to obtain
an estimate of net worth.

On the other hand, more reliable wealth data from estate tax records
and household surveys are particularly inaccurate in the tails of the distri-
bution [7], so the Forbes 400 represents valuable information on the upper
tail in spite of its imperfect measurement. Since Pareto’s initial discovery of
a power law distribution there has been ongoing controversy about the func-
tional form of wealth distributions [6, 35], but also a consensus that the up-
per tail of wealth distributions indeed obeys a power law [1, 7, 10, 30, 35, 42].
To check whether the Forbes 400 list confirms the claim of a power law dis-
tributed upper tail, we plot the inverse cumulative distribution function for

the original lists and for a modified set where we grouped the wealth of Sam
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Figure 4.1: Inverse cumulative distribution of personal wealth from the
Forbes 400 list, plotted on double-logarithmic scale for each of the years
1996-2002.
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Walton’s five heirs to his retail empire into one observation because they
always have identical net worth—an indication that they share equal stakes
in a single portfolio, which is the relevant information for our theoretical
framework. We also removed a few minor inconsistencies, e.g. if a fortune
shows up in one year as a family item, then as multiple individual items,
and in later years again as a single family item.

If wealth is distributed as a power law, the inverse cumulative distribu-
tion will be a straight line on double-logarithmic scale. Casual inspection
of Figure 4.1 certainly confirms the conventional wisdom, and it is much
more likely that observed deviations are due to measurement error rather
than the other way around, i.e. that measurement error creates a strong but

spurious impression of a power law.

IIT Estimation of Power Law Exponent

We will estimate the characteristic exponent for each of the years 1996-
2002 from the modified Forbes 400 lists, where wealth levels are arranged
in descending order. (A form that is also referred to as reverse order statis-
tics.) The statistical equilibrium model predicts the probability density
flw) = (@—1)c* 1w~ for wealth w, where we denote the minimum wealth
level by ¢ = min{w; : ¢ = 1,...,n} to explicitly distinguish it from the min-

imum return factor rmi,.2 The log-likelihood function for the reverse order

3Notice that we have consistently labeled the characteristic exponent as a and not as
in this chapter because A is the exponent of the distribution of return factors. Chapter 5
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statistics of size n is

n
log L = n[log(a — 1) + (a — 1) log c| — aZlog w;. (4.3)
=1

Defining ¢ = o — 1, we obtain the maximum likelihood estimator for the

characteristic exponent ¢ of the cumulative distribution as

n —1
b= (n_l Z log w; — log c) , (4.4)

=1

which is the well-known Hill estimator [18]. The Hill estimator depends
crucially on the “cut-off” parameter n and is particularly sensitive to the
term log c because ¢ depends directly on the chosen sample size n. In order
to decide on the ‘optimal’ cut-off point in our samples we employ a tool
that is known as the Hill plot, graphing the characteristic exponent qAS as a
function of the used sample size n. In the case of very accurate data and, of
course, provided the distribution is a power law, the Hill plot typically shows
a few initial oscillations that quickly disappear and settle into a horizontal
line at the ‘true’ value of ¢ [9].

Unfortunately, as we see in the left panel of Figure 4.2, the Hill plots for
the Forbes 400 lists do not show any tendency to settle down at a specific
value of c;AS as the sample size increases but instead oscillate over the entire
order statistics in a given year. There are two possibilities why this should

be the case. Either the distribution is not a power law in the first place, or

takes up the issue in more detail.
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Figure 4.2: (Continued from the previous page.) The left panel shows the
Hill plots of the modified Forbes 400 list for the years 1996-2002. The right
panel plots the inverse cumulative distribution of the top 250 observations in
the corresponding year for the modified lists on double-logarithmic scale, as
well as the curve fitted from the Hill estimator of the characteristic exponent
qAS at n = 250.
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Year 1996 1997 1998 1999 2000 2001 2002
¢ 1573 1497 1.369 1.315 1.262 1.358 1.341
(.100) (.095) (.087) (.083) (.080) (.086) (.085)

Table 4.3: Characteristic exponent and standard error, top 250 observations
of the Forbes 400. Standard errors reported in parentheses.

measurement error prevents the discovery of the ‘true’ exponent. Since our
theoretical model strongly suggests a power law distribution, and because
we know about the imperfect compilation of the data, we side with the latter
explanation.

Nevertheless, the Hill plots reveal two interesting features. First, there
is a pronounced decrease at the right end of the curves. Second, the curves
show a stable region where the graphs oscillate around a stable level before
falling off to the right. Therefore, the appropriate sample size seems to be
the one that separates the stable region from the decreasing tail in the Hill
plots.* Instead of elaborating—ultimately arbitrary —criteria for choosing
the ‘best’ sample size for each individual year from the Hill plots, we prefer
to select a uniform cut-off point for all seven years. Based on graphical
inspection, we chose n = 250 to estimate the characteristic exponent and
show the resulting fit in the right panel of Figure 4.2.

We report the values of the estimated characteristic exponent ¢ in Ta-

4One could speculate that measurement error is more pronounced for the lower part
of the lists because there is less discriminating information about half-billionaires than
about the top ranked agents, or possibly less effort is devoted to the compilation of ‘lower’
ranks in the list.
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ble 4.3. It has been shown [8, 17] that /n(¢ — ¢) LN N (0, $?) such that we
can estimate the standard error of ¢ as ¢//n. We also performed a Monte
Carlo simulation to check whether the standard error of the estimator con-
forms to the asymptotic expression at sample size 250.°> The results were

virtually identical and Table 4.3 reports the estimated standard error.

IV Wealth Mobility

Inequality measures the dispersion in the distribution of wealth at a given
point in time. Mobility, on the other hand, measures how agents move
within the distribution over time. The question of interest is whether in-
equality and mobility are clearly correlated, i.e. does higher inequality go
along with higher (or lower) mobility, or are the two measures possibly even
uncorrelated?

The primary purpose of this section is to obtain a rough-and-ready im-
pression of mobility and to relate it to inequality, not to provide a rigorous
measurement of mobility. Hence we neglect issues of positional versus non-
positional measures of mobility [11] as well as issues regarding the desirable
axiomatic minimum requirements of such measures [40].

The nature of the Forbes 400 data enables us to provide particularly sim-
ple, yet informative, measures of mobility among the wealthiest US citizens.

We are interested both in assessing how volatile or persistent membership

SWe are happy to provide the code upon request.
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Number of years 1 2 3 4 5 6 7
Frequency (total=685) 149 83 68 95 41 44 205

Table 4.4: Frequency table for the number of years that individuals stay in
the Forbes 400 list.

in this privileged club is, as well as in measuring the relative mobility within
the list. Regarding membership over the seven years, we observe that 205
individuals constitute the core group that is present in all years. A total of
685 people (or families) appear at least once, while 149 of them appear only
once. We calculated the frequency distribution for the length of stay in the
list, shown in Table 4.4. The average length of stay between 1996 and 2002
is four years.

In addition, we traced year-by-year entries—i.e. the number of people
that appear in a given year but were not there in the previous one—as well
as the year-by-year exits.5 We define rank mobility as the average absolute
change in rank of agents between consecutive years of the list. Notice that
in calculating rank mobility we only consider agents that appear in the list
from one year to the next, thereby avoiding the assignment of fictitious rank
for people who are entries or exits during that period. The results, reported
in Table 4.5, indicate a considerable churn rate in the Richest Club with an

average of 62 year-on-year entries and exits,” and an average annual rank

5Note that the difference between number of entries and number of exits reported in
Table 4.5 is exactly the difference in the sample size between the two consecutive years.

"Note that the difference between number of entries and number of exits is exactly the
difference in the sample size between the two consecutive years.
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Year Entries Exits Rank mobility

1996-97 69 71 32.50
1997-98 55 55 31.10
1998-99 70 71 35.81
1999-00 7 68 33.35
2000-01 55 55 40.96
2001-02 47 47 32.38

Table 4.5: Entry and exit, and average absolute change in rank between
consecutive years.

mobility of 34. It is quite interesting that rank mobility and entry-and-exit
do not show a clear positive correlation—the period 1999-2001 is a powerful
illustration that mobility and entry-and-exit can be negatively correlated!

Unfortunately, we have no way of knowing whether the proportion of
entries and exits or the magnitude of rank mobility that we observed for the
very small subset of the richest four hundred are also representative of the
entire power law tail. Be that as it may, the fact remains that within the
Forbes 400 subset we cannot observe a clear pattern between inequality and
mobility, at least not in the short run, as a comparison of the exponents in
Table 4.3 with the mobility measures in Table 4.5 illustrates.

A final remark concerns the average growth of wealth in the subset.
Neglecting entry-and-exit, we simply calculated the growth rate of ‘total’
wealth from the top four hundred observations in each of the seven years.
The annual growth rates of wealth between 1996 and 2002 were 28%, 17%,

37%, 6%, —21%, and —8%. Obviously, the pattern in the average growth of
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wealth cannot account for the inequality pattern in Table 4.3. The reason,
of course, is that the average growth of wealth is only one variable that
influences inequality through the characteristic exponent. The remaining
task, taken up in the next chapter, is to operationalize the model with the

ultimate goal of obtaining estimates for unobservable turnover activity.



Chapter 5

Calibration Issues

In the last chapter we estimated the characteristic exponent of the distribu-
tion of wealth, using two different methods and various sources. But why
or how does the empirically observed exponent « relate to A, the exponent
of the distribution of return factors developed in Chapter 37 We have not
yet discussed how to determine the minimum return factor, either. As the
following sections demonstrate, the calibration of the theoretical model is

everything but a trivial exercise.

I How Does the Theoretical Exponent Relate to

the Empirically Observed One?

Our theoretical model defined wealth levels to be proportional to return

factors because we assumed all portfolios to start out with the same wealth

52
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level. Hence the random variable determining the observed wealth level is
the return factor in (3.1). Given equation (3.10), the probability density
of return factors in statistical equilibrium, and given the definition (3.1),
we can use an elementary theorem of probability theory to find the density
of wealth levels. According to the theorem, see for example [39, p. 229,

Theorem 7.1], the density function for wealth levels will be given by!

NG (5.1)

where g 1(z) denotes the inverse functional relationship between wealth
levels and return factors, i.e. g~'(2) = (z/wo)*”. To simplify things, we
assume that the mythical initial wealth level equals unity.

Furthermore, the turnover parable implies that 7" is very large, as we
explicity pointed out in Assumption 2 on page 31. Thus we can argue that
Tmin has to equal unity, since otherwise the definition in (3.1) implies either a
minimum wealth equal to zero (if rmin < 0) or equal to infinity (if 7min > 0),
both of which have to be ruled out. That leaves us with a much simpler
expression for the distribution of wealth levels. Now that g~'(z) = 2"/ and

f(r) = (A —1)r=*, we have

fulz) =&Y where €= /\% (5.2)

!To be more precise, the application of the theorem presupposes that return factors
are a continuous random variable and wealth levels are a continuous differentiable and
monotonic function—unproblematic in the case of our support.
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The characteristic exponent of the (inverse) cumulative distribution of
wealth will therefore be &, corresponding to our ‘observed’ or estimated ¢
from the previous chapter. Recalling Proposition 1, with ryij, = 1, turnovers
per observational period are equal to T/L = log R(A — 1). But from the
definition of £ in (5.2) we also know that A — 1 = (£ 4+ 1)T, which finally

leaves us with the expression

— (+1)logR. (5.3)

=

While the right-hand side contains only observables now, it is also true
that turnovers have canceled out—the baby has been thrown out with the
bathwater! Starting from an alternative formulation of the basic theory, we

attempt a remedy in the next section.

II An Alternative Statistical Equilibrium Model

of the Power Law Tail

The pre-analytical vision remains the same as in Chapter 3. All portfolio’s
start out with the same wealth level, for convenience set to unity. At the end
of the turnover period, wealth will be distributed according to the maximum
entropy principle under a logarithmic constraint. But instead of conceptual-
izing wealth as a return factor, we use continuous compounding and define

the rate of return per turnover » = logw. The one period constraint on
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wealth levels remains logarithmic, so that the mean constraint on rates of
return is arithmetic.

Turning the crank, we obtain an exponential distribution of rates of
return that corresponds to a Pareto distribution of wealth levels, as we
already have demonstrated in (2.7) and (2.8) on page 12. Suppose the
observed minimum wealth level is less than the initial wealth level, m <
wg. That means that the corresponding minimum return factor is negative,
logm = r, < 0. Maximizing (2.1) on the support R = [r;,,00) subject

to (2.3) yields the distribution of return factors

f(r) = peHr=rm), (5-4)

where p is the Lagrange multiplier associated with the arithmetic mean

constraint (2.3), and obeys

p=1/(F—rm). (5.5)

What happens after T' successive turnovers have taken place, i.e. what
is the distribution of 7 = 25:1 r¢? Assuming that each turnover follows
the same one-period statistical equilibrium distribution, the sum of T" expo-
nentially distributed random variables with parameter y will be a random
variable that is Gamma distributed with parameters p and T [39, p. 266,

Proposition 3.1]. In other words, T' convolutions of an exponential distribu-
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tion with parameter y result in the Gamma distribution
put ;
f(7) = =71 te KT, (5.6)

But what does a Gamma distribution of returns imply about the tail
behavior of the distribution of wealth levels @ = e’ after T' turnovers?
Applying the previously used theorem for the density of a function of a
random variable, we have

W :w*(ﬂﬂ)i log w)T 1. 5.7
f(w) I‘(T)( g W) (5.7)

In a first approximation, we argue that the asymptotic slope of the den-

sity of period T wealth will be, on logarithmic scale,

. Ologf(w) .. T-1
A ogd A Togw MU
=—(u+1). (5.8)

In a (probably too rough) second approximation, we argue by analogy to
the ‘pure’ power law that the absolute slope of the cumulative distribution
will be equal to the empirically observed one, u ~ qAS Finally, employing the
same logic as in Chapter 3, we know that 77 = L R, where R is now the
rate of return per unit time, and L still designates the elapsed time since

the process started. Therefore T/L = R/7, but as before we cannot observe
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Year R R, T/L
1996-97  28% -59% 1.31
1997-98  17% -47% 0.88
1998-99  37% -47% 1.11
1999-00 7% -61% 0.85
2000-01 -21% -90% 0.94
2001-02 -8% -68% 0.81

Table 5.1: Implied average turnover activity calculated from equation (5.10).

7. We know, however, from (5.5) that # = r,, + 1/¢ and thus

T/L~R/(rm+1/9). (5.9)

In contrast to the previous section, we are now able to derive an expres-
sion for turnover activity that depends on the same observables, but where
turnovers per observational period do not cancel out. The final step is to
express the unobservable minimum return per turnover r,, in terms of the
observable minimum return per calendar time R,,. But the convolutions

imply that L R,, =T rp,, and we are finally left with

T/L ~ (R — Ry)¢. (5.10)

Conceptually, turnovers per observational period are a dimensionless
positive constant implied by the theoretical model. T'/L is always posi-
tive since ¢ is always positive (in fact greater than unity), and because it

also must be true that R > R,,. Table 5.1 reports the turnover activity
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Year  Entries Exits Rank mobility ¢ T/L
1996-97 69 71 32.50 1.497 1.31
1997-98 55 55 31.10 1.369 0.88
1998-99 70 71 35.81 1.315 1.11
1999-00 7 68 33.35 1.262 0.85
2000-01 55 55 40.96 1.358 0.94
2001-02 47 47 32.38 1.341 0.81

Table 5.2: Mobility, inequality, and turnover activity in the Forbes 400.

calculated from the seven consecutive Forbes 400 lists studied in Chapter 4.

We conclude the chapter with a reproduction of the data from Tables 4.3,
4.5, and 5.1, to better visualize the movements in inequality, mobility, and
turnover activity. A comparison of the series describing wealth inequality,
turnover activity, and wealth mobility shows that mobility and turnover ac-
tivity are strongly positively correlated, with increases (decreases) in turnover
activity always going along with higher (lower) mobility. Conversely, turnover
activity and wealth inequality are also positively correlated, with only one
exception during the period 1998-99, which is also true of the relationship
between inequality and mobility. The increase in inequality during that
period is caused by the enormous growth rate of wealth that cannot be

compensated for by the increase in turnover activity.



Chapter 6

The Economics of Gamma

Distributed Wealth

We conclude our investigations into the distribution of wealth by examining
the necessary economic ingredients for a statistical equilibrium theory of the
left part of the distribution. A recent article on the UK distribution of wealth
claims to have observed an exponential (inverse) cumulative distribution for
ninety-five percent of the population with positive wealth, together with a
power law tail that covers the top five percent of wealth holders [10].

The authors admit, however, that they are aware of evidence that points
towards a Gamma distribution but—out of convenience—only estimate the
parameter 4 (see page 12) for the exponential law instead of fitting the ad-
ditional parameter of the Gamma distribution. As we have shown in Chap-

ter 2, the inverse cumulative distributions of the exponential and Gamma
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laws look extremely similar so that a relatively good fit of an exponential
law is not surprising, even if the ‘true’ distribution is Gamma. Since the
Gamma and exponential laws have very similar cumulative distributions, we
would expect a better fit to data from the Gamma law, simply because of
the additional degree of freedom. Our ambition in this final chapter is not
to develop a statistical test that discriminates between the two distributions
based on a data sample, but rather to argue which of the two distributions
is more likely from the viewpoint of statistical equilibrium theory.

As usual, our analysis starts from the stylized fact concerning the com-
position of wealth portfolios that make up the part of the distribution we
want to investigate. In the left part of the wealth distribution, the net po-
sition in owner-occupied housing, deposits, and life insurance and pension
plans are the main assets of agents. We assume, in contrast to our pre-
vious analysis where we only cared about the uses of wealth and not its
sources, that these assets are financed from earned income that will mostly
flow from wages and salaries. Other possible sources are government trans-
fer payments, rents, and profits arising from unincorporated businesses and
financial assets. Regardless of the source of income, and this is the crucial
point, we assume that additions to wealth will not be re-invested in the way
we envisaged for the very wealthy in Chapter 3.

Instead, the existing level of wealth will be augmented by additions out
of current income such that wealth remains roughly proportional to income.

It turns out the crucial theoretical argument why the statistical equilibrium
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distribution should be a Gamma, instead of an exponential law boils down
to the definition of what ‘roughly’ should mean in a ‘more exact’ context.
Suppose, for the time being, that for all individuals j € {1,...,n}, n <
00, who accumulate wealth in such fashion y%(t) designates the disposable
income from source e € E = {1,..., F} at time period ¢. Moreover, if w;(t)
denotes the wealth of agent j in period ¢ then the change in wealth between
periods will depend on how much of the agent’s income has been ‘saved’

from the different sources

Aw;(t) = si(t)ys(t) Vi€ fl,...,n}, (6.1)
ecE

where s?(t) represents the proportion of income from source e that agent j
utilizes to augment wealth at time ¢. The stock of wealth w;(7) that agent
7 has accumulated up to period 7, at which we observe the personal wealth
distribution, will depend on her accumulation behavior s?, her fortunes in
the (labor) market Y5, and of course on the number of periods T = T} + T}
in which she has an income either earned during 77 periods of working life

or flowing during the 7 periods after retirement (e.g. when the agent made

provisions through pension and life insurance schemes)

7
wi(r) =Y Awi(t)  Vie{l,...,n}. (6.2)
t=1

Thus s (t) should not be understood in the classical sense of a ‘saving

¢

t), for example to rep-
J

propensity’ since we want to allow for a negative s
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resent the decrease of wealth that occurs when an agent retires and spends
her previously accumulated pension income for consumption.’

As before, the enormous amount of information prevents us from ex-
plaining the empirically observed distribution of personal wealth by tracing
the destiny of all agents. So, by what should hopefully be standard fare at

this point, we start from the macroscopic constraint on the average wealth

accumulated by the population at time 7

T;
wr=nt Y Y ) sS(E(). (6.3)
j t ecE

We denote the set of theoretically possible wealth levels by W = [0,m),
where m is the wealth level that separates the empirically observed exponen-
tial and power law regimes.? Let i € {1,...,z} run over the set of discrete
wealth levels w; € W and let n; be the fraction of agents with wealth w;.

Then it must also be true that

z z
— n;
t %

and to ensure that all agents are assigned to a wealth level again, the natural

constraint ), p; = 1 must hold as well. The wealth distribution that allows

! Consumption should be understood here in the broad sense of an economic use not
included within the five categories we introduced in Chapter 1 that count as personal
wealth.

2The exponential law cannot account for individuals with negative wealth. Thus, for
the sake of completeness, we should also have a constraint that prevents negative wealth
in (6.2). Similar to the conventional life-cycle model, it would boil down to the postulate
that life-time earnings should be greater than or equal to life-time ‘consumption.’
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for the largest number of individual destinies and behaviors consistent with
the observed average stock of wealth in W will be given by the solution to the
maximum entropy program that maximizes informational entropy subject
to (6.4) and the natural constraint. Not surprisingly, as in the continuous
case (2.7), the resulting distribution will be of an exponential type also

known as the canonical Gibbsian distribution [13]

(6.5)

with the partition function Z(u) = )", e #"i. It is quite straightforward to
show that on the continuous support W = [0, m) the relationship between
p and Wy is given by wy = 1/p — m/(e™* — 1), which for a large enough m
approximates the familiar result u = 1/w;.

If wealth in the left part of the distribution was determined by accu-
mulated earnings alone, we would favor the exponential distribution from a
theoretical point of view. But we know that the uses of wealth chosen by
the majority of agents are owner-occupied housing, deposits, and life insur-
ance and pension plans, all of which earn a rate of return.? In principle, we
should be able to observe the average rate of return that the aforementioned
uses earn over a certain period, analogously to the model of Chapter 3, but
without the turnover concept—after all we are arguing that the majority of

agents does not perpetually re-invest returns and therefore does not change

3Returns are possibly negative, particularly regarding the value of owner-occupied real
estate.
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the composition of their portfolios very much. Dropping the turnover con-
cept, we might as well consider the ‘pure’ logarithmic mean without time
dimension as a valid approximation to the return on wealth.

As we have demonstrated in Chapter 2, the statistical equilibrium dis-
tribution under simultaneous arithmetic and logarithmic means will be the
Gamma distribution. Hence, a theoretically founded case can be made in
favor of the Gamma law if we agree that (at least part of) accumulated
wealth from lifetime earnings yields a return.

Obviously, our argument in favor of the Gamma, law has not been devel-
oped in a formally satisfactory way, yet the intuition should be quite clear.
What remains to be done is to clarify the relationship between the parame-
ters of the Gamma distribution and the observed arithmetic and logarithmic
means of wealth. Such an endeavor is complicated by the fact that we cannot
obtain closed-form solutions that relate moments to parameters [22], making
calibration of a model along the lines proposed here at least as difficult as

in the case of the model for the power law tail.



Chapter 7

Concluding Remarks

The distribution of wealth is the result of a highly complex set of interactions
among economic agents and yet it displays robust functional regularities
across space and time. The upper tail of the wealth distribution, covering
about five percent of the population, obeys a power law, while the remaining
majority of agents with positive wealth levels can be described by a Gamma
distribution.

Statistical equilibrium views these phenomena as reflecting two distinct
processes in the accumulation of wealth, the power law tail being caused
by the perpetual re-investment of returns from the different economic uses
of wealthy portfolios, and the Gamma distribution following from a life-
cycle type of savings behavior and the presence of retirement provisions.
It is noteworthy from a formal point of view that the power law distribu-

tion implies the complete absence of any aggregate constraints other than
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a logarithmic mean. Put differently, the fact that we observe a power law
distribution tells us by itself about the inherently dynamic character of the
underlying process (since the logarithmic mean reflects a growth constraint)
that is not in any way constrained by the stock of wealth at a particular
point in time. Contrary to the jargon and intuition of thermodynamics or
statistical physics, we detect the absence of a conservation principle in the
personal wealth of the mighty rich.

The analogy to the first law of thermodynamics, the conservation of
energy, might apply in large part to the wealth of the vast majority of
economic agents but if it was to apply to the very wealthy as well, it would
simply be impossible to observe the power law tail. With respect to the
existing theories of power law distributed phenomena [2, 3, 4, 15, 29, 31, 32,
37], the most significant contribution of the statistical equilibrium approach
is probably the explicit acknowledgment of the absence of any aggregate
constraint other than the logarithmic one.

The strength of statistical equilibrium theory is its formal underpinning
that allows robust statements about the aggregate constraints that shape
the microscopic outcomes of a system. At the same time its strength is
also its major drawback because we cannot identify individual destinies nor
the microeconomic forces—for instance inheritance, investment behaviors,
or personal skills—that economists often regard as the determinants of in-
dividual destinies in the distribution of wealth. In spite of this limitation,

and probably much more important from the viewpoint of economic pol-
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icy, statistical equilibrium tells us something about the functional form of
the wealth distribution. As long as we can only influence the parameters
of a distribution and not its functional form—which is the basic result of
distributional theory in statistical equilibrium and does not depend on the
aforementioned individual characteristics of agents—the task of policymak-
ers will be to provide institutional environments that are able to change
these parameters. Think, for example, of the equality within the power law
tail. If we believe that a more equal distribution among the very wealthy is
desirable—quite possibly making a society ‘more democratic’ because varied
interests are better able to compete with each other through similarly pow-
erful pressure groups—a policymakers’ task would be to increase turnover
activity among the wealthiest portfolios by providing adequate institutional
means.

The material in Chapters 5 and 6—i.e. the calibration of the power law
theory and the extension of statistical equilibrium theory to the Gamma
distribution of wealth—should be understood as a road map for the things
that lie ahead and need to be resolved in more detail. More generally,
the “unification” of distributional theory across the different regimes and
“empirical testing” of statistical equilibrium theory are the pressing items
on the research agenda. But there are also other questions that arise from
the current work. A particular detail concerns the wealth level that separates
the power law from the Gamma distribution. How rich does one have to be

in order to enjoy the multiplicative regime that is merely constrained by
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the growth rate of wealth? A trained economist will almost naturally ask
whether this wealth level represents a threshold that fundamentally changes
the economic behavior of agents in such a way that they start to re-invest
all their income. Here we can only speculate that at the threshold agents do
not need to worry anymore about fulfilling their material needs, as agents
below the threshold do, and thus can afford to re-invest returns perpetually.

Our theory started from the stylized fact that different households put
their wealth to different economic uses, and the statistical equilibrium mod-
els neatly tied up the composition of wealth portfolios to the functional form
of observed wealth distributions. Reflecting more broadly on what we have
learned so far about the distribution of wealth, however, the fundamental
question remains why the majority of agents does not want to—or is not
able to—diversify its wealth portfolios into assets that continuously earn
a rate of return. Different preferences will hardly serve as a satisfactory

explanation to this question.



Appendix A

Definitions of Wealth

Marketable wealth, or net worth, is composed of (1) the gross value of owner-
occupied housing; (2) other real estate owned by the household; (3) cash and
demand deposits; (4) time and savings deposits, certificates of deposit (CDs),
and money market accounts; (5) bonds (government, corporate, foreign)
and other financial securities; (6) the cash surrender value of life insurance
plans; (7) the cash surrender value of pension plans; (8) corporate stock,
including mutual fund holdings; (9) net equity in unincorporated businesses;
and (10) equity in trust funds. Subtracting the current value of mortgage
debt, consumer debt, and other debt yields a household’s marketable wealth.

When items (6) and (7) are included, the measure is sometimes also
referred to as augmented wealth, while the definition of financial wealth
subtracts the net equity position in owner-occupied housing, i.e. the differ-

ence between the property value and outstanding mortgage debt.
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Continuous Entropy Measure

The following heuristic motivation for the use of H(f) as a continuous en-
tropy measure can be found in [23]. Let the points z; form an equally spaced

partition of A = [a, b] where ¢ = a and z,, = b such that Az; = z; —z;_1 =

b—a
n

= h. The discrete probability p; can be approximated by f(z;)Az; in

the sense that

— Zpi Inp; ~ - Zf(:vz)sz In (f(z;)Ax;)
i=1 i
- Z Flz)Az;In f(z;) — Z f(zi)Az;In Az;
= =D f@)nf (@) Az —nh Y f(w:) Az

Q

_/;bf(x)]nf(:z;) dz — lnh/abf(:v) dz

b
= —/ f(z)In f(z)dz — Inh.
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The term — In h causes some difficulty since —Inh — oo as h — 0. However,
if we consider the difference between the entropy of f(z) and the entropy of
another density function g(z) corresponding to the probability distribution
g; for i =1,...,n then the term cancels out. In this sense H (f) represents
a measure not of absolute but of relative uncertainty (relative to any other
distribution). Of course, this is not a rigorous but merely a heuristic justifi-
cation for the use of H(f) as a measure of entropy. Instead of h, Jaynes [21]

considers the limiting density of discrete points in h and arrives at

H™(f) = —/f(a;)ln;;(“’)) dz,

(x
where m(z) is proportional to the limiting density of points in h. As Jaynes
points out, under a change of variables the functions f(z) and m(z) trans-
form in the same way so that H™(f) will be invariant. The probability
density function under a constraint on the logarithmic mean obeys
_xm(z)

T) =z "——.
This implies that the functional form of a power law will be preserved if
the measure m(z) obeys a power law itself. Since the measure should be
finite over its support, it must be of the generic form m(z) = z~(1+9) for
all € > 0. Intuitively, such a measure would provide a proportionally spaced

rather than an equally spaced partition of points on the support.
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