Ein Modell für Finanzkrisen bei Moral Hazard und Überinvestition

Nicolas Henrik Schwarze

Working Paper No. 44
March 2003

Bamberg Economic Research Group
on Government and Growth
Bamberg University
Feldkirchenstraße 21
D-96045 Bamberg
Telefax: (0951) 863 5547
Telephone: (0951) 863 2547
E-mail: public-finance@sowi.uni-bamberg.de
http://www.uni-bamberg.de/sowi/economics/wenzel/berg

ISBN 3-931052-36-2
Ein Modell für Finanzkrisen bei Moral Hazard und Überinvestition

Nicolas Henrik Schwarze
Doktorand
Lehrstuhl für Internationale Wirtschaftsbeziehungen
Universität Bamberg
nicolas-henrik.schwarze@sowi.uni-bamberg.de

ABSTRACT

JEL Klassifikation: No. F34, G15, G18
Inhaltsverzeichnis

Abstract .. III
Inhaltsverzeichnis .. V
Symbolverzeichnis ... VI
1 Einleitung ... 1
2 Das Modell einer krisengefährdeten Volkswirtschaft 2
 2.1 Die ausländischen Kreditgeber ... 2
 2.2 Die Haushalte ... 3
 2.2.1 Allgemein ... 3
 2.2.2 Kreditnahme .. 3
 2.2.3 Kapitalkosten .. 4
 2.3 Zinszahlung .. 5
 2.4 Gütermarkt und Leistungsbilanz .. 5
3 Die staatliche Kreditgarantie .. 6
 3.1 Definition und Begründung ... 6
 3.2 Varianten .. 8
 3.3 Modellierung ... 8
4 Moral Hazard ... 11
 4.1 Definition .. 11
 4.2 Der optimale Kapitalstock unter Sicherheit 11
 4.3 Der optimale Kapitalstock unter Unsicherheit 12
 4.4 Der optimale Kapitalstock unter Unsicherheit und Moral Hazard ... 14
5 Finanzkrise .. 19
 5.1 Modelldynamik .. 19
 5.2 Kriseneintritt ... 22
 5.3 Folgen der Krise .. 24
6 Diskussion der Annahmen .. 25
7 Zusammenfassung und Ausblick .. 27
Literaturverzeichnis .. 29
Symbolverzeichnis

A_t Produktivitätsparameter in der Produktionsfunktion
A^e Erwartungswert für den Produktivitätsparameter
α Exponent in der Produktionsfunktion
B Vermögen der Volkswirtschaft
C Konsum
D Kreditnahme der Haushalte
E Wechselkurs in Preisnotierung
δ Abschreibungsrate
GPK Grenzprodukt des Kapitals
GPL Grenzprodukt der Arbeit
K Kapitalstock
K^a gesamtwirtschaftlich optimaler Kapitalstock
K^{MH} Kapitalstock bei Moral Hazard
KB Kapitalbilanz
L Arbeit
LB Leistungsbilanz
P Preisniveau
P_K Preis der Kapitalgüter
Q Output
Q^a Output bei Produktion mit Kapitalstock K^a
r Weltzins
R Staatliche Währungsreserven (real)
R^n Staatliche Währungsreserven (nominal in ausländischer Währung)
rr Mietpreis für Kapital
σ Standardabweichung für den Produktivitätsparameter
t Zeit
t^* Kriseneintrittszeitpunkt
V implizite Verbindlichkeit des Staates
w Lohnsatz
w^{MH} Lohnsatz bei Moral Hazard
Y Sozialprodukt
1 Einleitung

Es sind einige stilisierte Fakten aus der Asienkrise entnommen bzw. anhand der Asienkrise begründet. Das Modell ist jedoch nicht auf die Asienkrise begrenzt. Die Moral-Hazard-Problematik bestand in ähnlicher Form

3 Der Artikel von Corsetti et al. ist der einzige, der mir bekannt ist, in dem eine Finanzkrise im internationalen Rahmen mit Moral Hazard und Überinvestition vollständig modelliert wird.

2 Das Modell einer krisengefährdeten Volkswirtschaft

Im folgenden wird ein Modell einer kleinen, offenen Volkswirtschaft vorgestellt. Das Modell ist real und es existiert ausschließlich ein Gut. Die Akteure sind die ausländischen Kreditgeber und die inländischen Haushalte. Der Staat wird im nächsten Kapitel in das Modell eingeführt.

2.1 Die ausländischen Kreditgeber

2.2 Die Haushalte

2.2.1 Allgemein

Es wird ein repräsentativer Haushalt betrachtet, der sowohl Kapital als auch Arbeit besitzt und beides zur Produktion einsetzt.

\[Q = F(K, L) \]

Kapital unterliegt keiner Abnutzung, und kann deshalb jederzeit zum Neuwert verkauft werden. Der Bestand an Arbeit ist fixiert. Produziert wird mit einer Produktionsfunktion mit konstanten Skalenerträgen, wobei der Unternehmer unter Konkurrenz steht und profitmaximierend handelt. Entsprechend entsteht kein Residualgewinn, sondern der Output entspricht den Faktorentgelten.6

\[Q = rR + wL \]

Der Output ist ein duales Gut, das sowohl als Investitionsgut als auch als Konsumgut verwendet werden kann. Dieses Gut ist außerdem handelbar.

2.2.2 Kreditnahme

Die Kreditnahme im Ausland ist der kritische Faktor in diesem Modell, weil diese den Einfluss der – später einzuführenden - staatlichen Kreditgarantie wiederspiegelt. Je höher die Kreditnahme der Haushalte, desto ausgeprägter der im folgenden dargestellte Mechanismus. Die empirische Beobachtung bestätigt sowohl eine hohe Fremdkapitalquote der inländischen Unternehmen, als auch eine hohe Auslandsverschuldung in den Krisenländern.7 Dieser Fakt wird stilisiert in das Modell übernommen, in dem angenommen wird, dass der Kapitalbestand der Haushalte vollständig durch Kredite aus dem Ausland finanziert ist.8

8 Andere Autoren, die diese Annahme verwenden sind z. B. Corsetti et al. (1998a), S.6.
(3) \(D_0 = K^9 \)

Damit diese Regel auch in der dynamischen Betrachtung Gültigkeit hat, wird weiterhin davon ausgegangen, dass die Sparquote in der betrachteten Volkswirtschaft bei Null liegt. Mit einer positiven Ersparnis würden entweder Investitionen finanziert werden oder die Nettoverschuldung würde sinken. Beides würde die Annahme aufheben, dass der komplette Kapitalbestand durch Kreditnahme im Ausland finanziert ist. Die Sparquote von Null kann auch damit begründet werden, dass diese Form von Krisen hauptsächlich in Entwicklungsländern auftritt und diese grundsätzlich eine geringe Ersparnis aufweisen.\(^{10}\) Die Folge dieser Annahme ist auch, dass eine Kreditnahme nicht im Inland sondern ausschließlich im Ausland möglich ist.

2.2.3 Kapitalkosten

Die Kosten des Faktors Kapitals bzw. dessen Mietpreis werden in der Regel in die Kosten der Kreditnahme zur Finanzierung des Kapitals, die Wertveränderung des Kapitals und die Abschreibung eingeteilt. Die Kreditkosten, die hier durch den Weltzins beschrieben werden, und die Abschreibung, die durch die Abschreibungsrate \(\delta \) zum Ausdruck kommt, bilden dabei jeweils einen Kostenfaktor. Eine positive Wertveränderung des Kapitals in der betrachteten Periode, hier beschrieben durch \(\Delta P_K \), wirkt hingegen kostensenkend. Formal wird dieser Zusammenhang in Gleichung (4) beschrieben.

\[
\text{(4) } P_{\text{rr}} = i P_K + \delta P_K - \Delta P_K \quad ^{11}
\]

In diesem Modell ist jedoch weder eine Wertveränderung des Kapitals noch eine Abschreibung enthalten. Der Kapitalbestand kann jederzeit zum Neuwert wieder verkauft werden. Zudem wurde eine Ein-Gut-Welt angenommen. Der Kapitalgüterpreis entspricht also dem Welt-Güterpreisniveau und kann herausgekürzt werden. Außerdem wird davon ausgegangen, dass es in diesem Modell keine Inflation gibt. Der Nominalzins \(i \) entspricht folg-

\(^9\) Das Kreditvolumen wird hier mit einem Zeitindex versehen, weil es sich in der späteren Betrachtung im Zeitverlauf verändern wird.

lich dem Realzins r. Somit kann Gleichung (4) zu Gleichung (5) vereinfacht werden.

\[(5) \quad rr = r\]

2.3 Zinszahlung

Aus der Annahme, dass der gesamte Kapitalbestand kreditfinanziert ist, folgt, dass die Faktorentgelte des Kapitals (\(rr\)) den Zinszahlungen für die Kredite (\(r\)) entsprechen. **De Facto erhält also der ausländische Kreditgeber die Faktorentgelte des Kapitals.**

2.4 Gütermarkt und Leistungsbilanz

\[(6) \quad wL = C = Y\]

Das Kapitaleinkommen steht wie gezeigt den ausländischen Kreditgebern zu, da es den Zinszahlungen für die Kredite entspricht. Da die Kreditgeber
in der gleichen Periode einen Anspruch darauf erheben, finden Güterexporte im Umfang des Kapitaleinkommens statt.

\[(7) \quad rK = rD = X\]

Aus den Gleichungen (2), (6) und (7) kann die **Gütermarktgleichung** hergeleitet werden.

\[(8) \quad Q = C + X\]

Der Output wird also ausschließlich für Konsum und Exporte verwendet und Investitionen finden nicht statt. Dies liegt daran, dass die Sparquote bei Null liegt.

\[(9) \quad LB = X - rD = 0\]

Das bisher beschriebene Modell bleibt in der dynamischen Betrachtung unverändert, weil keine Ersparnis und keine Investition im Modell enthalten ist und sich das Kreditvolumen nicht verändert. Das Modell ist also stationär.

3 Die staatliche Kreditgarantie

3.1 Definition und Begründung

Besteht jedoch eine staatliche Garantie, so haben die Anleger keinen Anreiz mehr, an einem Bank-Run teilzunehmen, weil ihre Einlagen abgesichert sind.12 Entsprechend findet der Bank-Run nicht statt. Die Garantie muss deshalb nicht erfüllt werden, und für den Staat entstehen keine Kosten. In der Regel gilt die Garantie nur für große Banken (Too-Big-to-Fail-Argument) oder für Situationen, in denen viele Banken zahlungsunfähig sind. Die Kreditgarantie soll dann verhindern, dass sich die Krise auf die gesamte Volkswirtschaft ausweitet.

Voraussetzung dafür, dass die staatliche Garantie glaubwürdig ist, ist die \textbf{Kompatibilität mit den staatlichen Anreizen}. D. h. im Falle einer Bankenkrise, in der die Garantie eingefordert wird, muss es für den Staat vorteilhaft sein, die ihm zur Verfügung stehenden Mittel einzusetzen, um die Garantie zu erfüllen.13 Es ist vorstellbar, dass der Staat es vorzieht, sein Vermögen für andere Staatsausgaben einzusetzen, und deshalb bei Eintreten einer Bankenkrise seine Garantie zurückzieht.

Für Kredite in inländischer Währung kann der Staat theoretisch unbegrenzt bürgen, weil er die Möglichkeit hat Geld in inländischer Währung zu drucken. Bei ausländischer Währung ist dies nicht der Fall. Deshalb ist eine zusätzliche Voraussetzung notwendig, wenn die Kreditgarantie auch für Kredite in ausländischer Währung gelten soll. In diesem Fall muss der Staat ausreichend \textbf{Währungssreserven} zur Verfügung stellen, um die Kredite im Krisenfall zurückzahlen zu können. Hat er dies nicht, ist auch die staatliche Garantie nicht glaubwürdig.14 Um diesen Sachverhalt zu berück-

sichtigen, wird in dem Modell von Krediten in ausländischer Währung ausgegangen.

3.2 Varianten

3.3 Modellierung

Im Modell wird davon ausgegangen, dass die Kreditgarantie vom Staat vergeben wird. Eine Unterscheidung zwischen expliziter und impliziter Garantie spielt im Modell keine Rolle, und die Glaubwürdigkeit der Garantie wird hier unterstellt. Die Sicherung der Kreditgarantie ist hier die einzige Funktion, die der Staat ausübt. Das bedeutet, dass der Staat einen Bestand an Währungsreserven hält und diesen gegebenenfalls zur Einlösung der Ga-

rantie verwendet. Im folgenden wird der reale Wert der Währungsreserven des Staates betrachtet. Dieser definiert sich als

\[(10) \quad R = \frac{\bar{E} R^n}{P},\]

wobei \(R^n\) die nominales Währungsreserven in ausländischer Währung, und \(R\) die realen Währungsreserven bezeichnet.

Es kann hier diskutiert werden, inwieweit der Staat bereit ist, die Währungsreserven zur Sicherung der Garantie einzusetzen. In der Krisentheorie wird in der Regel unterstellt, dass der Staat bereit ist seine Währungsreserven bis zu einer bestimmten unteren Schwelle einzusetzen. Diese Schwelle kann sowohl im positiven Bereich sein, wenn der Staat Zugriff auf Kredite aus dem Ausland hat, kann sie auch im negativen Bereich sein.\(^{17}\) Dies wird hier aber nicht näher spezifiziert. Es wird angenommen, dass der Staat bereit und in der Lage ist, **Währungsreserven im Umfang von \(R\) einzusetzen**, um die Garantie zu erfüllen.

Währungsreserven werden in der Regel in hoch liquider Form gehalten, weil sie kurzfristig verfügbar sein müssen. Folglich werfen sie nur einen geringen Zinsertrag ab. Dieser Fakt wird stilisiert in das Modell übernommen, in dem angenommen wird, dass mit den **staatlichen Währungsreserven kein Zinsertrag** erzielt wird. Diese Annahme verändert das Modellverhalten unter normalen Bedingungen nicht. Die Folgen einer Aufhebung dieser Annahme werden in Kapitel 6 betrachtet.\(^{18}\)

Es soll nun eine weitere Vereinfachung vorgenommen werden. Basis dafür ist die enge Verflechtung zwischen inländischen Banken und Unternehmen, die in den südostasiatischen Krisenländern zu beobachten war. Z. T. gehören die Unternehmen, die Kredite bei einer Bank aufnehmen zu einem Konsortium, das selbst im Vorstand der Bank sitzt.\(^{19}\) Stilisiert betrachtet kann damit die Trennung zwischen der inländischen Bank und der inländischen Unternehmung aufgehoben werden. Es wird im folgenden davon ausgegangen, dass der **inländische Haushalt selbst staatlich garantierte**

\(^{17}\) Vgl. u. a. Krugman, P. (1979), S.311f.

Kredite im Ausland aufnehmen kann. Deshalb werden inländische Banken nicht explizit modelliert.\(^{20}\)

\[(1 + r) D = (1+rr) K \]

\[\text{Fehlbetrag} \]
\[wL \]
\[\text{staatliche Garantie} \]
\[Q \]
\[K = D \]

Abb. 3.1: Geltungsbereich der staatlichen Garantie

Es wird hier also angenommen, dass der Haushalt auch im Falle der Zahlungsunfähigkeit nicht auf seinen Arbeitslohn verzichten muss. Diese Annahme verändert das Modellverhalten nicht grundsätzlich. Zur Bedeutung dieser Annahme für das Modellverhalten siehe auch die Diskussion in Kapitel 6.

Es wurde bereits diskutiert, dass die staatliche Garantie nur für den Fall gilt, dass viele Kreditnehmer zahlungsunfähig sind. Da hier aber von einem repräsentativen Haushalt ausgegangen wird, also alle Haushalte identisch sind, impliziert die Zahlungsunfähigkeit des repräsentativen Haushalts automatisch die Zahlungsunfähigkeit aller Haushalte. Die Garantie muss also erfüllt werden, sobald der repräsentative Haushalt zahlungsunfähig ist.

4 Moral Hazard

4.1 Definition

Im vorangegangenen Kapitel wurde der staatlichen Garantie eine positive Rolle zugeschrieben. Im folgenden soll erläutert werden, welche negativen Nebenwirkungen die Einrichtung der Garantie haben kann. Diese bauen auf der Moral-Hazard-Problematik auf.

Ausgangspunkt für Moral Hazard ist ein Vertrag zwischen zwei Wirtschaftssubjekten, wobei der erste Vertragspartner aufgrund von unvollkommener Information die Aktionen des zweiten Vertragspartners nicht oder nur unvollständig beobachten kann. Der zweite Vertragspartner kann diesen Zustand nun zu seinen Gunsten strategisch ausnutzen. Deutlich wird dies im Fall einer Risikoversicherung. Wenn der Anbieter einer Risikoversicherung die Handlungen eines Versicherungsnehmers nicht beobachten kann, hat der Versicherungsnehmer einen geringen Anreiz, dem Risiko, gegen das er versichert ist, vorzubeugen. Der Versicherungsnehmer kann durch mangelnde Vorsichtsnahme eventuell selbst Kosten sparen, erhöht dadurch aber das Risiko und somit die erwarteten Kosten für den Anbieter der Risikoversicherung.21

In dieser Arbeit ist die staatliche Kreditgarantie die Ursache für Moral Hazard. Es handelt sich hier also nicht um einen expliziten Vertrag, sondern um eine einseitige Verpflichtungserklärung von Seiten des Staates. Dadurch, dass der Staat nur unvollständige Informationen über die Kreditgeschäfte der Haushalte besitzt, können die Haushalte diese Garantie zu ihrem Vorteil ausnutzen und die ursprüngliche Absicht der Garantie beeinträchtigen. Wie das konkret geschieht, soll der folgende Abschnitt anhand der Bestimmung des optimalen Kapitalstocks der Haushalte zeigen.

4.2 Der optimale Kapitalstock unter Sicherheit

Zur Analyse des optimalen Kapitalstocks wird zuerst dargestellt, wie der Haushalt seinen Kapitalstock im beschriebenen Modell bestimmt. Es wird die Cobb-Douglas Produktionsfunktion

\[(12) \quad Q'(K) = \alpha A \left(\frac{K}{L} \right)^{\alpha - 1} = r\]

Durch Umformung kann die optimale Einsatzmenge für Sachkapital im Ausgangszustand bestimmt werden.\[22\]

\[(13) \quad K^a = L \left(\frac{\alpha A}{r} \right)^{\frac{1}{1-\alpha}}\]

4.3 Der optimale Kapitalstock unter Unsicherheit

Es werden nun zwei Fälle unterschieden. Im günstigen Fall ist der Technologie-Parameter um den Faktor \(\sigma\) höher, im ungünstigen um den Faktor \(\sigma\) niedriger als bisher. In Gleichung (14) wird diese Regel formal dargestellt.

(14) \[A_t = \begin{cases} A^e + \sigma \\ A^e - \sigma \end{cases} \]

Dabei wird angenommen, dass jede Möglichkeit die Wahrscheinlichkeit \(\frac{1}{2} \) besitzt. Der Erwartungswert für die Produktivität ist also \(A^e \). Weiterhin gilt, dass der Faktor \(\sigma \) kleiner ist als \(A^e \), so dass die Produktivität nicht negativ werden kann. In Abb. 4.1 sind die Produktionsfunktion und die Grenzkostenfunktion jeweils für günstige, ungünstige und mittlere Produktivität dargestellt.

Abb. 4.1: Produktions- und Grenzproduktionsfunktion unter Unsicherheit

Zuerst wird nun dargestellt, wie der Haushalt sich verhält, wenn keine *Kreditgarantie* besteht. Zur Berechnung des optimalen Kapitalstocks wird er nun den Erwartungswert für die Produktivität \(A^e \) unterstellen, da dadurch die erwarteten Grenzproduktivitäten der Faktoren den Faktorkosten entsprechen. Bei günstiger Ausprägung der Zufallsvariable erwirtschaftet der Unternehmer einen Residualgewinn, weil die Grenzproduktivitäten der

24 Das hochgestellte e wird hier und im folgenden für Erwartungsgrößen bzw. für den Wert der Größen im langfristigen Mittel verwendet.
Faktoren in diesem Fall größer sind, als deren Kosten (obere Fläche in Abb. 4.1). Bei ungünstiger Ausprägung der Zufallsvariable erwirtschaftet der Unternehmer allerdings Verluste, weil die Kosten in diesem Fall höher sind, als die Grenzproduktivitäten. Auf lange Sicht entspricht die Produktivität nach dem Gesetz der großen Zahl jedoch dem Erwartungswert, so dass sich Residualgewinne und Verluste ausgleichen, und die Erträge den Faktorentgelten entsprechen. Dies wird auch daran deutlich, dass die Flächen in Abb. 4.1 die gleiche Größe haben.

Bei einem negativen Produktivitätsschock ist es nun möglich, dass der Haushalt kurzfristig den Zinsforderungen der Kreditgeber nicht nachkommen kann. Es wird hier angenommen, dass der Kreditgeber bereit ist, diese Ausfälle in den Zinszahlungen durch vorübergehend erhöhte Kreditvergabe auszugleichen. Damit ist das Kreditvolumen zwar kurzfristig nicht durch den Kapitalbestand gedeckt, im langfristigen Mittel ist dies jedoch der Fall.

4.4 Der optimale Kapitalstock unter Unsicherheit und Moral Hazard

verwendet wird. Auf den Arbeitslohn müssen die Haushalte also auch nicht verzichten, so dass dadurch ebenfalls keine persönlichen Verluste entstehen. Da der Outputwert aber im Mittel geringer ist, als die Faktorentgelte, können die Kreditzinsen nicht oder nicht vollständig gezahlt werden, und der Staat übernimmt die restlichen Verbindlichkeiten. Diese zahlt dieser dann aus seinem Vermögen.

Abb. 4.2: Kapitaleinsatz bei Moral Hazard

Während der Haushalt keine persönlichen Verluste macht, entstehen jedoch trotzdem Verluste bei diesem erhöhten Kapitaleinsatz. Denn bei einem ne-
gativen Produktivitätsschock ist der Output nun geringer als die Faktorentgelte des Kapitals. Hierbei handelt es sich um Verbindlichkeiten, für die der Staat eintritt. Das Volumen der Verbindlichkeiten im langfristigen Mittel kann aus Abb. 4.2 abgeleitet werden. Die erwarteten Erträge pro Kapitaleinheit ergeben sich aus dem erwarteten Grenzprodukt, also $GPK(A^e, K^{MH})$. Die erwarteten Kosten pro Kapitaleinheit ergeben sich aus dem Weltzins. Die Differenz aus beidem multipliziert mit dem Kapitalstock ergibt die erwarteten staatlichen Verbindlichkeiten pro Periode.

\begin{equation}
\Delta VK^e = \left[r - GPK(A^e, K^{MH}) \right] K^{MH}
\end{equation}

Abb. 4.3: Arbeitslohn bei Moral Hazard

Da der Bestand an Arbeit in der Volkswirtschaft als fix angenommen wurde, kann keine Erhöhung des Arbeitsansatzes infolge der Einführung der staatlichen Kreditgarantie vorgenommen werden. Dadurch, dass jetzt bei einem höheren Kapitalstock produziert wird, steigt jedoch auch der Output pro eingesetzter Arbeitseinheit. Entsprechend ist auch das Grenzprodukt für den konstanten Arbeitseinsatz nun höher. Außerdem wird wiederum das Grenzprodukt bei positivem Produktivitätsschock verwendet, welches höher ist, als das Grenzprodukt für den Erwartungswert für den Produktivi-

Durch den erhöhten Lohn entstehen im langfristigen Mittel ebenfalls staatliche Verbindlichkeiten. Während eine eingesetzte Arbeitseinheit im Mittel nur ein Grenzprodukt von \(GPL(A^e, K^{MH}, \bar{L}) \) erwirtschaftet, entstehen Kosten pro eingesetzter Arbeitseinheit von \(w^{MH} \). Die staatlichen Verbindlichkeiten im langfristigen Mittel belaufen sich dadurch auf

\[
\Delta V^e = \left[w^{MH} - GPL(A^e, K^{MH}, \bar{L}) \right] \bar{L}.
\]

\(\Delta V^e \) bezeichnet nun die staatlichen Verbindlichkeiten, die durch den erhöhten Kapitaleinsatz und durch den erhöhten Arbeitslohn entstehen. Es gilt also

\[
\Delta V^e = \Delta V^k + \Delta V^a^e
\]

Somit findet eine für den Haushalt optimale aber gesamtwirtschaftlich suboptimale Überinvestition in der Volkswirtschaft statt.²⁵

Zu berücksichtigen ist an dieser Stelle, das ausschließlich Produktivitätsschocks betrachtet werden, die alle Haushalte gleichermaßen treffen. Gegen individuelle Produktivitätsschocks müssen sich die Haushalte weiterhin

absichern, weil die staatliche Kreditgarantie nur für den Fall gilt, in dem viele Haushalte zahlungsunfähig sind.

Formal kann der für die Haushalte optimale Kapitalstock unter Moral Hazard folgendermaßen bestimmt werden. In die Gleichung zur Bestimmung des Kapitalstocks wird nun zu dem Erwartungswert für den Produktivitätsparameter der positive Produktivitätsschock hinzuaddiert.

\[K^{MH} = \left(\frac{\alpha (A^e + \sigma)}{r} \right)^{1-\alpha} > K^a \]

Das Volumen, um das der Kapitalstock infolge von Moral Hazard ansteigt, kann bestimmt werden, indem von dem neuen Kapitalstock der alte Kapitalstock abgezogen wird.

\[\Delta K = K^{MH} - K^a = L \left[\left(\frac{\alpha (A^e + \sigma)}{r} \right)^{1-\alpha} - \left(\frac{\alpha A^e}{r} \right)^{1-\alpha} \right] \]

Durch die Einführung der staatlichen Kreditgarantie wird also der optimale Kapitalstock erhöht. Die Haushalte führen deshalb eine Investition durch, um ihren Kapitalstock an den neuen optimalen Kapitalstock anzupassen. Diese Investition wird durch erhöhte Kreditnahme aus dem Ausland finanziert, und das Sachkapital wird aus dem Ausland importiert. Die Kreditgeber sind dazu bereit, das Kreditvolumen zu erhöhen, weil das erhöhte Kreditvolumen durch einen erhöhten Kapitalstock gedeckt ist.

Zu beachten ist, dass die Einführung der staatlichen Garantie das einzige Ereignis ist, dass in diesem Modell zu Investitionen führen kann. Vor der Einführung und im Anschluss daran finden keine Investitionen statt, weil keine Ersparnis durchgeführt wird und der optimale Kapitalstock konstant bleibt. Die Einführung der Garantie stellt somit einen Schock dar, der eine einmalige Durchführung von Investitionen bewirkt.
5 Finanzkrise

5.1 Modelldynamik

Dieses Verfahren ist aus Sicht des Kreditgebers deshalb rational, weil er die staatliche Kreditgarantie als Sicherheit für die Kredite akzeptiert. Die zusätzliche Kreditvergabe ist deshalb für ihn risikolos. Solange der Haushalt Evergreening durchführen kann, hat er keine Zahlungsprobleme und eine Finanzkrise tritt nicht ein. Empirisch wurde das Evergreening-Verhalten insbesondere bei koreanischen Unternehmen in der Asienkrise beobachtet.27

Das Grundmodell ändert sich durch die Überinvestition und Evergreening folgendermaßen. Durch den erhöhten Kapitalstock steigt der erwartete Output an.

\[
Q^{e, MH} = F(K^{MH}, L) > Q^a
\]

Der erwartete Output ist jedoch im langfristigen Mittel geringer, als die Faktorentgelte. Die Differenz ist der oben berechnete Fehlbetrag ΔV^e.

(21) $Q^{e, MH} = w^{MH} - rK^{MH} - \Delta V^e$

(22) $w^{MH} - C^{MH} = \gamma^{MH}$

Der Output wird folglich zum Teil zu Konsumzwecken verwendet. Der Rest des Outputs wird wieder für Exporte verwendet, da die ausländischen Kreditgeber Anspruch auf die Kreditzinsen haben.

(23) $Q^{e, MH} = C^{MH} + X^{e, MH}$

Aus den Gleichungen (21), (22) und (23) kann folgende Gleichung abgeleitet werden.

(24) $X^{e, MH} = rK^{MH} - \Delta V^e$

Diese Gleichung zeigt, dass mit den Exporten die Faktorentgelte des Kapitals nicht gedeckt sind. Es fehlt der oben berechnete Fehlbetrag, der durch die Überinvestition entsteht. Wie oben besprochen räumen die ausländischen Kreditgeber den Haushalten zur Finanzierung der Differenz einen zusätzlichen Kredit ein. Es finden also Kapitalimporte in Höhe des Fehlbetrags statt.

(25) $KM^e = \Delta V^e$

Mit (24) und (25) lässt sich zeigen, dass

(26) $X^{e, MH} + KM^e = rK^{MH}$

gilt. Die Faktorentgelte des Kapitals werden also immer durch Güterexporte und neue Kreditaufnahme im Ausland finanziert.

Auf die Zahlungsbilanz hat die veränderte Situation im langen Mittel folgende Auswirkungen. In der Leistungsbilanz stehen wie im Ausgangsmod-
dell die Güterexporte und die geleisteten Erwerbs- und Vermögenserwerbs- und Vermögenseinkommen an das Ausland.

\[(27)\] \(LB^{e,\text{MH}} = X^{e,\text{MH}} - rK^{\text{MH}} \)

Allerdings wurde gezeigt, dass die Exporte jetzt geringer sind, als die Faktorentgelte des Kapitals. Aus den Gleichungen (24) und (27) ergibt sich

\[(28)\] \(LB^{e,\text{MH}} = -\Delta V^{e} \).

Es besteht also ein **Leistungsbilanzdefizit**.

In der Kapitalbilanz tauchen ausschließlich die Kapitalimporte auf, die der Haushalt zur Finanzierung der Faktorentgelte des Kapitals benötigt.

\[(29)\] \(KB^{e,\text{MH}} = \Delta V^{e} \)

Dieser Überschuss in der Kapitalbilanz deckt sich mit dem Leistungsbilanzerfolg, womit der Zahlungsbilanzerfolg hergestellt ist.

Diese zusätzliche Kreditnahme, die der Haushalt zur Finanzierung der Faktorentgelte des Kapitals benötigt, ist nicht durch den Kapitalbestand gedeckt. Deshalb stellt sie die implizite zukünftige Verbindlichkeit für den Staat dar. Im Zeitverlauf wird immer dann, wenn der negative Produktivitätsschock auftritt, erneut eine Kreditnahme notwendig. Die Kreditnahme steigt also im Zeitverlauf an. Der erwartete Wert der impliziten Verbindlichkeiten im Zeitverlauf kann wie folgt berechnet werden. Die Forderungen des Auslands steigen im Mittel um \(\Delta V^{e} \) pro Periode. Zudem findet eine Verzinsung der Forderungen statt. Wählt man den Einführungszeitpunkt der Garantie als Zeitpunkt Null, dann ergibt sich der Gegenwartswert der impliziten Verbindlichkeiten im Zeitpunkt \(t \) als

\[(30)\] \[V^{e}_{t} = \sum_{s=0}^{t} \left[\Delta V^{e}_{s} (1 + r)^{s} \right] \]

Zu betonen ist an dieser Stelle, dass es sich um den erwarteten Wert der impliziten staatlichen Verbindlichkeiten handelt. Tatsächlich werden diese nicht in jeder Periode ansteigen. Bei einem positiven Produktivitätsschock entstehen keine Verluste für den Haushalt und folglich auch keine impliziten Verbindlichkeiten für den Staat. Bei einem negativen Produktivitätsschock sind die Verluste jedoch höher als \(\Delta V^{e} \) und die impliziten Verbind-
lichkeiten steigen deutlich an. Im Mittel ist der Wert der impliziten Verbindlichkeiten bei dem Wert der oben beschriebenen Funktion. Die Kreditnahme des Haushalts stellt im übrigen das einzige dynamische Element des Modells dar.

5.2 Kriseneintritt

Der Grund, warum die Kreditgeber zum Evergreening bereit sind, ist das Vertrauen auf die staatliche Kreditgarantie. Allerdings ist die Kreditgarantie nur mit Hilfe der staatlichen Währungsreserven erfüllbar. Sobald die impliziten Verbindlichkeiten des Staates über die Währungsreserven hinausgehen, kann dieser seine Garantieverpflichtung nicht mehr erfüllen, und die Kreditgeber erhalten ihre Zins- und Tilgungsforderungen nicht vollständig zurück. Auch wenn die Kreditgeber in diesem Punkt das Evergreening einstellen, aber den Kreditbestand konstant lassen, steigen ihre Zinsforderungen im Zeitverlauf. Diese sind ebenfalls nicht mehr durch Währungsreserven gedeckt. Entsprechend werden die Kreditgeber, um keine Verluste zu riskieren, in dem Zeitpunkt, in dem die impliziten Verbindlichkeiten den Währungsreserven entsprechen, das gesamte Kreditvolumen zurückziehen und die Auszahlung von Zins- und Tilgung verlangen.\footnote{Genau genommen ziehen die Kreditgeber die Kredite genau dann zurück, wenn in der nächsten Periode durch einen negativen Produktivitätsschock die impliziten Verbindlichkeiten größer sind als das Staatsvermögen.} Der Kriseneintrittszeitpunkt t^* ist also durch folgende Gleichung bestimmt.

\begin{equation}
V_{t^*} = R
\end{equation}

Es handelt sich hier um die tatsächlichen impliziten Verbindlichkeiten des Staates und nicht mehr um deren Erwartungswert, weil letztendlich nur diese für den Kreditgeber von Bedeutung sind.

\begin{equation}
B = K^{MH} + R
\end{equation}
Im Gegensatz dazu setzt sich die gesamte Verschuldung der Haushalte aus der Ausgangsverschuldung und den Krediten, die die Haushalte zur Finanzierung der Faktorentgelte des Kapitals aufnehmen müssen zusammen.

(33) \[D_{t*} = D_{0}^{MH} + V_{t*} \]

Annahmegemäß entspricht der Kapitalstock der Verschuldung der Haushalte im Ausgangszustand.

(34) \[D_{0}^{MH} = K^{MH} \]

Daraus und aus den Gleichungen (31), (32) und (33) lässt sich folgende Gleichung ableiten.

(35) \[B = D_{t*} \]

Das gesamte Vermögen der Volkswirtschaft entspricht im Kriseneintrittszeitpunkt der gesamten Verschuldung der Haushalte. Da die Kreditgeber jetzt auf die Auszahlung der Kredite bestehen, werden diesen zum einen die Devisenreserven und zum anderen der Kapitalbestand zur Verfügung gestellt. Der gesamte Kapitalbestand der Haushalte wird folglich ins Ausland exportiert.

Auf die **Zahlungsbilanz** der Krisenperiode hat das folgende Effekte, die zusätzlich zu den bereits genannten Effekten auftreten. In der Leistungsbilanz findet sich der Export der Kapitalgüter wieder.

(36) \[\Delta LB_{t*} = K^{MH} \]

Zum anderen ist die Kapitalbilanz i. w. S. betroffen. Der Abbau der Devisenreserven wird als Sinken der Auslandsforderungen der Zentralbank gebucht. Zudem sinkt die Kreditgewährung an Inländer, die durch Gleichung (33) definiert ist, auf Null ab.

(37) \[\Delta KB_{t*} = -\left(D_{0}^{MH} + V_{t*} \right) + R \]

Unter Berücksichtigung von (31) und (34) ergibt sich

(38) \[\Delta KB = -K^{MH}. \]

Somit ist gezeigt, dass die Zahlungsbilanz ausgeglichen ist.
5.3 Folgen der Krise

Im Anschluss an die Krise wird die staatliche Kreditgarantie annahmegemäß aufgehoben. Sie wäre auch nicht mehr glaubwürdig, weil der Staat keine Währungsreserven mehr hat, um die Garantie gegebenenfalls einzulösen. Der optimale Kapitalstock für die Haushalte ist dementsprechend wieder der gesamtwirtschaftlich optimale Kapitalstock K^a, und damit wird der Output Q^a erzeugt. Da gilt $K^a < K^{MH}$ und $Q^a < Q^{MH}$, impliziert dies eine Desinvestition und einen Outputrückgang als Folge der Krise. Beides ist auch empirisch in den Finanzkrisen zu beobachten gewesen.\(^{29}\) Genau wie die Einführung der staatlichen Garantie eine einmalige Investition bewirkt hat, wird durch die Aufhebung der Garantie eine einmalige Desinvestition erzeugt. Die Kreditgeber sind bereit den neuen Kapitalstock K^a zu finanzieren, weil das Kreditvolumen wieder durch den Kapitalstock gedeckt ist, und weil mit dem Output die Faktorentgelte gezahlt werden können.

Abb. 5.1: Dynamische Entwicklung der Kreditnahme

Zur Verdeutlichung des Krisenverlaufs wird in Abb. 5.1 die Verschuldung der Haushalte im Zeitverlauf dargestellt. In Periode t^{MH} wird die Garantie eingeführt, und die Kreditnahme steigt durch Moral Hazard an. Anschließend steigt die Kreditnahme im Zeitverlauf exponentiell an, weil die Unternehmen Verluste durch weitere Kreditnahme finanzieren. In der Krise

sinkt das Kreditvolumen abrupt auf Null, um anschließend wieder auf das Ausgangsniveau zu steigen.

6 Diskussion der Annahmen

Zur Diskussion der Annahmen, die für dieses Modell kennzeichnend sind, sollen diese in verschiedene Kategorien eingeteilt werden. Zum einen wurden Annahmen implementiert, die verursachen, dass der **Haushalt im Falle eines Bankrotts keine persönlichen Verluste** macht. Dazu gehören im einzelnen:

- Der Haushalt bekommt seinen Arbeitslohn auch beim Bankrott vollständig ausgezahlt.
- Der Kapitalbestand, mit dem der Haushalt haftet, ist vollständig kreditfinanziert.
- Der Staat zahlt die ausbleibenden Forderungen der Kreditgeber vollständig.

Darüber hinaus wurden Annahmen getroffen, die die **Währungsreserven des Staates** betreffen. Dazu gehören:

- Die Währungsreserven erbringen keinen Zinsertrag.
- Der Staat hat kein Einkommen und keine Ausgaben.
- Der Staat muss die Verbindlichkeiten gegenüber dem ausländischen Kreditgeber, die er übernommen hat, unverzüglich begleichen.

Eine Aufhebung der letzten beiden Annahmen bewirkt, dass der Staat auch die Möglichkeit hat die Verbindlichkeiten über aktuelles oder zukünftiges Einkommen z. B. aus Steuermitteln oder Seignorage zu begleichen. Die Finanzierung über zukünftiges Einkommen bedeutet hierbei, dass der Staat die Verbindlichkeiten in Raten abbezahlt. Somit würde der Gegenwartswert der Währungsreserven in der Krisenperiode deutlich steigen. Zudem würde der Anreiz der Haushalte zur Überinvestition sinken, weil sie letztendlich die Steuern bzw. die Seignorage bezahlen, und somit selbst für einen Teil ihrer Verluste aufkommen müssen. Wiederum wird dadurch der Mechanismus der Überinvestition aber nicht außer Kraft gesetzt. Die Krise würde nur später eintreten, weil es länger dauert, bis die impliziten Verbindlichkeiten der Währungsreserven überschreiten.\(^{30}\)

Bei Aufhebung der erstgenannten Annahme ist die Situation anders zu beurteilen. Wenn die Währungsreserven einen Zinsertrag bewirken, bedeutet dies, dass die Währungsreserven im Zeitverlauf zunehmen. Sind sie im Ausgangszustand ausreichend hoch, dann wachsen die Währungsreserven schneller, als die impliziten Verbindlichkeiten des Staates. In diesem Fall wird die Krise niemals eintreten, weil die impliziten Verbindlichkeiten den Wert der Währungsreserven nicht übersteigen können.\(^{31}\) Jedoch ist fraglich, ob ein Staat bereit ist, Überinvestition und exzessive Kreditaufnahme durch ein ständig wachsendes Volumen an Währungsreserven zu decken.

Zu der Annahme, dass nicht Banken sondern die **Haushalte selbst garantierte Kredite aufnehmen** können, ist folgendes zusagen. Wenn Banken die Kredite aufnehmen besteht für diese auch der Anreiz, risikoreich zu in-

\(^{31}\) Vgl. Corsetti, G. et al. (1998a), S.17.
vestieren. Das bedeutet, sie geben die Kredite an Unternehmen weiter, die unsichere Investitionsprojekte damit finanzieren. Das Ergebnis ist das gleiche, als wenn Unternehmen die Kredite aufnehmen, und selbst den Anreiz haben in risikoreiche Investitionsprojekte zu investieren. Diese Annahme hat also für das Modell keine Bedeutung.

7 Zusammenfassung und Ausblick

Trotzdem bleiben einige Elemente der großen Finanzkrisen in diesem Modell unberücksichtigt. Insbesondere betrifft dies die Währungskrise, welche in der Literatur z. T. als Ergebnis der Finanzkrise, z. T. aber auch als weitere Ursache für die Finanzkrise identifiziert wird. Eine Erweiterung des Modells zur Integration einer Währungskrise verspricht also ein tieferes Verständnis von Finanzkrisen dieser Art. Zudem könnte die Diskussion in Kapitel 6 auch im Modell berücksichtigt werden, um präzisere Aussagen über die Aufweichung der Annahmen zu erhalten.
Literaturverzeichnis

Krugman, Paul (1998): „What happened to Asia?“, mimeo, MIT.

BERG Working Paper Series on Government and Growth

1. Mikko Puhakka and Jennifer P. Wissink, Multiple Equilibria and Coordination Failure in Cournot Competition, December 1993

2. Matthias Wrede, Steuerhinterziehung und endogenes Wachstum, December 1993

6. Peter Meister and Heinz-Dieter Wenzel, Budgetfinanzierung in einem föderalen System, October 1994

9. Heinz-Dieter Wenzel (Editor), Problems and Perspectives of the Transformation Process in Eastern Europe, August 1995

10. Gerhard Illing, Arbeitslosigkeit aus Sicht der neuen Keynesianischen Makroökonomie, September 1995

11. Matthias Wrede, Vertical and horizontal tax competition: Will uncoordinated Leviathans end up on the wrong side of the Laffer curve? December 1995

15. Matthias Wrede, Öffentliche Verschuldung in einem föderalen Staat; Stabilität, vertikale Zuweisungen und Verschuldungsgrenzen, August 1996
16 Matthias Wrede, Shared Tax Sources and Public Expenditures, December 1996

17 Heinz-Dieter Wenzel and Bernd Hayo, Budget and Financial Planning in Germany, February 1997

18 Heinz-Dieter Wenzel, Turkmenistan: Die ökonomische Situation und Perspektiven wirtschaftlicher Entwicklung, February 1997

19 Michael Nusser, Lohnstückkosten und internationale Wettbewerbsfähigkeit: Eine kritische Würdigung, April 1997

21 Matthias Wrede, Spillovers, Tax Competition, and Tax Earmarking, September 1997

22 Manfred Dauses, Arsène Verny, Jiri Zemánek, Allgemeine Methodik der Rechtsangleichung an das EU-Recht am Beispiel der Tschechischen Republik, September 1997

23 Niklas Oldiges, Lohnt sich der Blick über den Atlantik? Neue Perspektiven für die aktuelle Reformdiskussion an deutschen Hochschulen, February 1998

24 Matthias Wrede, Global Environmental Problems and Actions Taken by Coalitions, May 1998

27 Matthias Wrede, Pareto Efficiency of the Pay-as-you-go Pension System in a Three-Period-OLG Modell, December 1998

29 Volker Treier, Unemployment in Reforming Countries: Causes, Fiscal Impacts and the Success of Transformation, July 1999

30 Matthias Wrede, A Note on Reliefs for Traveling Expenses to Work, July 1999
31 Andreas Billmeier, The Early Years of Inflation Targeting – Review and Outlook –, August 1999
32 Jana Kremer, Arbeitslosigkeit und Steuerpolitik, August 1999
33 Matthias Wrede, Mobility and Reliefs for Traveling Expenses to Work, September 1999
34 Heinz-Dieter Wenzel (Herausgeber), Aktuelle Fragen der Finanzwissenschaft, February 2000
35 Michael Betten, Household Size and Household Utility in Intertemporal Choice, April 2000
36 Volker Treier, Steuerwettbewerb in Mittel- und Osteuropa: Eine Einschätzung anhand der Messung effektiver Grenzsteuersätze, April 2001
38 Bernd Hayo und Matthias Wrede, Fiscal Equalisation: Principles and an Application to the European Union, December 2001
39 Irena Dh. Bogdani, Public Expenditure Planning in Albania, August 2002
40 Tineke Haensgen, Das Kyoto Protokoll: Eine ökonomische Analyse unter besonderer Berücksichtigung der flexiblen Mechanismen, August 2002
41 Arben Malaj and Fatmir Mema, Strategic Privatisation, its Achievements and Challenges, January 2003
42 Borbála Szüle, Inside financial conglomerates, Effects in the Hungarian pension fund market, January 2003
43 Heinz-Dieter Wenzel und Stefan Hopp (Herausgeber), Seminar Volume of the Second European Doctoral Seminar (EDS), February 2003
44 Nicolas Henrik Schwarze, Ein Modell für Finanzkrisen bei Moral Hazard und Überinvestition, March 2003