


of the ACF at the longer lags. Except for the Hill moment, for which a theoretical
formula is available, the standard errors of the moments are obtained by conceiving the
autocorrelation coefficients as (nonlinear) functions of the means, or time averages, of
simpler expressions of the returns and applying the delta method to them (the details of
these computations are given in the Appendix). On this basis, the 95% confidence interval
of a moment is defined as the interval with boundaries ±1.96 times the standard error
around the empirical estimate. In addition, the slight smoothing of the single coefficients
in Section 2 with the centred three-lag averages is taken over (the lower and upper bounds
of the confidence intervals are reported in Table A1 in the Appendix).

In this way we have a simple and intuitive criterion for a qualitative assessment of
a given return series that was simulated over the empirical time horizon: it cannot be
rejected as being incompatible with the data if all of its moments are contained in the
confidence intervals. Nevertheless, because of the sample variability a single series is
clearly not sufficient to evaluate a model as a whole.

Figure 3: Sample autocorrelation functions from TPA–HPM.

Note: Shaded area: (smoothed) confidence band of the ACF of the empirical absolute returns;
bold lines: (smoothed) ACF of the absolute returns from two simulation runs over the empirical
time horizon; lower solid line: ACF of the raw returns from one sample; dotted lines: the
corresponding Bartlett confidence band.

Focussing on the ACF of the absolute returns, this is illustrated in the upper part
of Figure 3. The shaded area is its confidence band, and the two bold lines result from
two sample runs of model TPA–HPM. The upper (red) line is an example showing that
the all-in criterion can be satisfied (with respect to the moments considered here), which
is indeed a remarkable property of the model. The second (blue) line exhibits a similar
pattern and is still bounded away from zero over the first 100 lags, but larger segments
are outside the confidence band. The general ‘shift’ in the ACF can be ascribed to the
number of chartist regimes occurring in the two samples over the time span of the 6866
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days. The simulation producing the upper line gives rise to seven episodes where the
chartists form a fair majority, while the lower bold line originates from a simulation run
with only four chartist regimes. Besides, the lower thin line in Figure 3, which displays
the ACF of the raw returns of one of the simulation runs, is perfectly representative
and exemplifies once more that this—and the other models as well—have no difficulty in
keeping it insignificant.

It is now obvious to think of many simulation runs of a model for each of which
the confidence interval check is repeated. This leads us to the concept of a coverage
ratio. That is, we count the number of Monte Carlo simulation runs for which the single
moments, or all nine moments jointly, are contained in their confidence intervals and
define the corresponding percentage numbers as the model’s moment coverage ratios.
More briefly, they may also be denoted by the acronym MCR.

As the concept has been introduced, the central coverage ratio is certainly the joint
MCR. Its values for the seven models are presented in the first row of Table 4. It will
perhaps be expected that comparatively low values of the objective function J go along,
more or less, with comparatively high coverage ratios. The table, however, reveals that the
minimized values of J and the corresponding joint MCRs convey different information,
which even leads to a different ranking of the models. In particular, the formerly dominant
model DCA–HPM now only ranks fourth, whereas TPA–HPM as the model that in Tables
2 and 3 was second or worse, now shows the best performance—and this with a distance
from the other models.

There is one model (TPA–W) that misses the obvious benchmark value of 5%, and
DCA–W (which formerly was among the best) is just at the margin. This is quite in
contrast to their p-values with respect to the empirical bootstrap distribution of J in
Table 2, which were distinctly higher than 5%. The other five models are not in open
contradiction to the data, neither on the basis of J nor on the basis of the joint MCR
criterion.

Beyond this qualitative statement, we would like to put the figures of the joint coverage
ratios in Table 4 into a quantitative perspective. To this end, consider the events that
the sample moments from the true DGP process happen to fall into their confidence
intervals. If it were assumed that these events are all independent of each other, the
true DGP would have a joint MCR of 0.959 = 63.0%. If more conservatively the fact
of a certain dependence among the events is approximated by the assumption that only
five of them are independent—say: r AC–1, Hill, v Mean, v AC–1 and v AC–100—then a
joint MCR of 77.4% would be obtained. Using the latter as a conservative benchmark to
which the fitting ratios from the Monte Carlo experiments may be related, the 10.1% of
the DCA model with herding, predisposition and misalignment (HPM) corresponds to
an effective MCR of 10.1/77.4 = 13.0%, and the 22.1% of the analogous TPA model to
an effective MCR of 28.6%.

Another problem is that all of these statements are based on asymptotic theory. The
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bootstrapped DCA TPA

remp
t W WP WHP HPM W WP HPM

joint MCR 32.6 5.1 12.4 13.7 10.1 0.5 6.8 22.1

in % of 32.6 — 15.5 38.1 41.9 31.0 1.6 20.8 67.9

1: r AC–1 99.8 98.0 98.6 98.1 98.4 98.8 98.7 97.1

2: Hill 81.2 10.4 61.6 79.5 23.4 2.0 21.0 53.3

3: v Mean 66.8 40.3 72.4 75.8 54.4 71.4 72.5 64.9

4: v AC–1 95.3 99.9 95.2 98.5 97.5 99.3 98.5 92.0

5: v AC–5 92.0 89.6 49.7 65.5 72.6 60.3 70.1 68.2

6: v AC–10 84.2 96.0 63.3 73.7 88.7 87.5 86.2 83.1

7: v AC–25 80.4 87.3 51.6 59.5 87.4 80.3 78.4 65.2

8: v AC–50 69.4 86.6 35.0 39.4 76.4 53.3 55.1 73.5

9: v AC–100 67.3 76.3 29.3 32.4 69.1 38.5 40.1 66.5

Table 4: Moment coverage ratios (in %).

confidence intervals of the moments that we thereby obtained may or may not be a good
approximation to the ones appropriate for small samples of the real-world DGP. Above,
to get more information about the small sample properties, we applied the bootstrap to
the empirical returns. We can once more make use of the 5000 bootstrap samples for
our present purpose, that is, we compute the joint MCR for them and employ it as a
yardstick against which we can measure the MCRs of our models. The result, as shown in
the first column of the numbers in Table 4, is a ratio of 32.6%, which is considerably lower
than the hypothetical reference figures of 77.4% or 63.0% that have just been mentioned.
On the other hand, as it should be, the ratio of 32.6% is still distinctly higher than the
MCRs of the models, though it does not degrade the latter completely.

The most obvious way to relate the models’ joint MCRs to that of the bootstrap is
to express them as a fraction of it (in %). This is done in the second row of Table 4.
Referring to these statistics, we only would reject TPA–W; already the figure of 15.5% for
DCA–W as the second-worst model appears fairly acceptable, even though the remaining
five models perform much better. The best model, TPA–HPM, now reaches a level of
even 67.9%. Nonetheless, this figure is probably an overestimation of a more appropriate
relative coverage statistic and should not be taken too literally. In any case, whatever
measure we refer to, the degree of the model’s ability to match the moments we have
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chosen is highly remarkable.
Returning to the model ranking, TPA–HPM clearly outperforms DCA–HPM, which

was formerly so dominating. To see what mainly causes the reversal in the ranking, we
should have a look at the coverage ratios of the single moments in the lower part of Table
4 and compare them across the models. It is thus found that there are only two moments
in which DCA–HPM is inferior to TPA–HPM, namely the Hill moment and the mean
of the absolute returns. In all other moments, DCA–HPM has an edge over TPA–HPM,
especially at the longer lags in ACF(v). Its lower joint MCR results from the fact that
the superiority in the latter is less pronounced than the inferiority in v Mean and, most
dramatically, in the Hill moment.

The overall impression from the detailed model comparisons is the omnipresence of
trade-off effects. No model is, so to speak, Pareto inferior or superior to another model
(except perhaps the WP and WHP versions of DCA, if we neglect the first moment
which is almost perfectly matched by all models). In particular, the second-worst model
DCA–W has the highest MCRs of all models at the longer lags of ACF(v). Unfortunately,
this positive result is wrecked by the bad match of v Mean and Hill. The more general
DCA–WHP is clearly better in this respect (even the best of all models), but at the price
of a serious deterioration of the last three moments. There are similar, though more
moderate examples for other pairwise model comparisons. On the whole, it turns out
that TPA–HPM has found the best compromise in the trade-offs.

4.4. The joint coverage ratio as an alternative estimation criterion

Table 4 has disproved the expectation that minimal values of the objective function
J also imply a near-optimal ratio of a model’s joint moment matching. In particular,
the formerly best model DCA–HPM only ranks fourth when evaluated in terms of the
joint MCR. Hence the question arises if a different choice of its structural parameters
could enhance its position; or, with respect to the presently best model TPA–HPM, if
we could still improve its joint MCR of 22.1%. Most obviously, we are thus asking for the
maximization of the joint MCR as an alternative estimation criterion. Unfortunately, a
direct maximization would incur an extremely high computational cost. In addition, the
many trade-offs that we have seen are likely to cause a larger (or even infinite) number
of local maxima of the joint coverage ratio.

To reduce the computational burden we resort to a heuristic procedure. Our idea is
to modify the original loss function J and set up a version of which we hope that it is
better suited for achieving high coverage ratios. To begin with, we disregard the cross-
dependencies between the single moments in the weighting matrix. Since our goal is to
have the moments contained in their confidence intervals, the width of which are given
by roughly two times the standard error (SEi) of the moments i, we think of a diagonal
weighting matrix with weights wii = 1/(SEi)2.
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With such an objective function, a deviation of the simulated from the empirical
moment i by one or two SEi, respectively, would yield a contribution of this moment to
the total value of the function of 1 or 4, respectively. However, in our explorations of this
idea we found out that penalizing the deviations in a quadratic way is not sufficiently
strong.

As a more flexible approach, the following specification proved useful then. Starting
from the observation that the expressions di := | mi(θ;T, s) − memp

i | / SEi should fall
short of 1.96 if possible (s being an index to represent the random seed in the simulation
of the model), we expect better chances if values of di close to or above this threshold
are disproportionately penalized. The simplest way to do so is to apply a piecewise
linear transformation function to di, where the change in the slope is described by two
parameters d̃i and κi. The slope for values of di between zero and some critical value
d̃i somewhat below 1.96 is thus relatively flat compared to the slope when di > d̃i.
Without loss of generality, the slope over the first segment can be unity, and it is κi � 1
when di > d̃i. After some trial and error, we uniformly put d̃i = d̃ = 1.90, so that our
transformation function reads,

F (di;κi) =


di if 0 ≤ di ≤ d̃

d̃ + κi(di−d̃) if di ≥ d̃

d̃ = 1.90 (11)

Given the moment-specific slopes κi, and given the index s of the random seed of a
simulation run over the empirical time horizon T (s = 1, 2, . . . ), the total loss to which
a parameter set θ gives rise is the sum of the losses of the single moments in (11),

`(θ;T, s) :=
9∑

i=1

F [ |mi(θ;T, s)−memp
i |/ SEi ; κi ] (12)

To reduce the sample variability, these losses are finally averaged over a larger number
S of simulations. Dropping the explicit reference to T , this yields the loss function L =
L(θ;S) with which we will work in the following:

L(θ;S) :=
1
S

S∑
s=1

`(θ;T, s) (13)

We first applied the function to model TPA–HPM and explored whether it would thus
be possible to raise its joint MCR noticeably above the maximal 22.1% from Table 4.
We began with S = 10 and later sharpened it to S = 100. Playing around with different
combinations of the slope parameters κi, the trade-off effects were also (not surprisingly)
found for the individual model. That is, an increase in the coverage ratios of one or
two moments goes at the expense of some other moments. Generally, of course, the
implications for the joint coverage ratio are ambiguous. It nevertheless proved promising
to try to improve on the coverage ratio of the Hill estimator. Although this tends to
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deteriorate the ratios of the autocorrelations of the absolute returns with the longer lags,
sufficiently high κi for the latter can restrain these negative effects such that, on the
whole, the joint coverage ratio increases. These trade-offs are illustrated for four different
parameter sets in Table 6. For better control in the explorations, we here limit ourselves
to the variations of four parameters, which are reported in Table 5 (this limitation will,
of course, be dropped in the final optimization).

Set χ αp σf σc

A 2.300 12.500 0.790 1.900

B 2.176 11.981 0.786 1.912

C 2.160 11.768 0.794 2.044

D 2.323 12.148 0.779 1.937

Table 5: Alternative parameter sets for TPA–HPM
(other parameters as in Table 1).

The first parameter set is the one from our original MSM estimation of TPA–HPM; see
Table 1. Accordingly, column A in Table 6 reproduces the statistics in the last column of
Table 4. As observed before, the Hill estimator (the second moment) has the worst fit.
The optimization under a higher tuning parameter κ2 for it leads to parameter set B and
procures a moderate improvement in this respect, at the price of a moderate worsening
of the long-lag autocorrelations. The effects brought about by set C (from somewhat
different values of the κi) go in the same direction, but the quantitative changes are
larger. In both cases, the overall impact of these trade-offs on the joint coverage ratio is
positive, being mild in the first and stronger in the second case.

Regarding parameter set C one may nevertheless feel that the ratios of the long-lag
autocorrelations are already unduly low. This induced us to try higher penalties for these
moments. They worked out as expected, the primary trade-off again affecting the cov-
erage of the Hill moment. On the whole, however, a further increase of the joint MCR
up to 23.6% could be achieved. Column D in the table and its comparison with the
other columns shows the kind of compromise that makes this success possible. The un-
derlying moment-specific penalty parameters are as follows (with respect to the moment
numbering in Table 6),

κi =


10 i = 1, 4, 5, 6
50 i = 2, 3

100 i = 7, 8, 9

(14)
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A B C D

joint MCR 22.1 22.3 22.9 23.7

1: r AC–1 97.1 97.2 96.9 97.0

2: Hill 53.3 58.9 76.1 67.2

3: v Mean 64.9 63.2 60.1 62.6

4: v AC–1 92.0 93.6 95.0 94.3

5: v AC–5 68.2 73.3 79.5 77.0

6: v AC–10 83.1 84.5 77.2 82.2

7: v AC–25 65.2 59.3 48.5 53.6

8: v AC–50 73.5 69.1 60.0 64.5

9: v AC–100 66.5 64.7 59.5 62.4

Table 6: Moment coverage ratios of TPA–HPM
from the alternative parameter sets of Table 5.

These are also the values that we adopt for our final optimization, together with S = 100
for the number of sample runs in (13). Having found a minimum in this way, we subse-
quently rounded the parameter values, ran the 5000 MC simulations, and computed the
coverage ratios. We also made further explorations with slight modifications of the para-
meters in order to check that we have not missed a higher joint MCR in this parameter
region.

The presentation of our results is limited to the four model versions with the best
performance. This is the herding version without differential wealth for TPA as well
as DCA, and for the latter approach the two more elaborated versions that include
differential wealth. The parameter values to which we commit ourselves in the end are
collected in Table 7. It is seen that the values for TPA–HPM are not very different from
the original values in Table 1. Common to the three DCA models is the opposite shift of
the noise levels in the fundamentalist and chartist demand, which are lower for the former
and higher for the latter group. In the two wealth versions DCA–WP and DCA–WHP
we notice similar modifications of the fundamentalist and chartist reaction coefficients φ

and χ. It is also interesting that in DCA–WHP the herding effect is now considerably
weakened (a strong decrease in αn).

The moment coverage ratios to which the new parameters give rise are reported in
Table 8. Comparing them to Table 4, two results are most noteworthy. First, we see
that slight changes in the parameters of TPA–HPM improve the joint MCR by more
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φ χ η αw αo αn αp σf σc

TPA

HPM : 0.180 2.255 — — −0.165 1.291 12.924 0.782 1.927

DCA

WP : 0.945 0.998 0.987 3018 1.469 — — 0.690 1.759

WHP : 0.935 1.148 0.987 3018 1.506 0.431 — 0.690 1.759

HPM : 0.120 1.500 — — −0.336 1.839 19.671 0.708 2.147

Table 7: Parameters to maximize the joint coverage ratio.

Note: Common to all models is the normalization µ = 0.01. In addition, β = 1 is common to
the DCA versions and ν = 0.05 is underlying TPA–HPM.

than two percentage points. Second, the same variant under DCA can do much better
than in Table 4. Indeed, DCA–HPM overtakes TPA–HPM and achieves a top joint MCR
of 26.6%. This is more than 80 per cent of the MCR of the bootstrap samples, which
already served us as a yardstick above. Notice that, in particular, the new parameters
come off with an extraordinarily higher MCR of the Hill moment (71.6% versus the
previous 23.4%). Our heuristic search procedure to optimize on the coverage ratios was
therefore quite successful.

The first row in Table 8 takes up the concept of the moment-spcific p-value of a
model with respect to the bootstrap distribution of J of the empirical returns, which was
discussed in Section 4.1. It shows that this criterion when applied to the same parameter
sets would reverse the ranking, as here TPA–HPM performs best and DCA–HPM comes
out second. Despite its higher joint MCR, model TPA–HPM has even the same p-value
as in Table 2. The different implications of the two criteria of the p-value and MCR are
most strikingly seen in the comparison of TPA–HPM to DCA–WHP; while their joint
MCRs are about equal, DCA–WHP has by far the lowest of all p-values reported in this
paper. 17

To sum up the results from the joint MCR criterion and proclaim what we consider to
be the final winner of our model contest: it is the discrete choice approach combined with
the mechanisms of herding, a predisposition towards chartism, and a correction in the
agents’ demand for price misalignment. DCA–HPM has a clear, though not dramatic,

17 That the joint MCR of DCA–WHP coincides with the p-value of this model in Table 2 is, of
course, purely accidental.
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TPA–HPM DCA–WP DCA–WHP DCA–HPM

‘p-value’ 24.0 10.2 8.7 19.5

joint MCR 24.4 23.8 24.1 26.6

in % of 32.6 74.8 73.0 73.9 81.6

1: r AC–1 97.0 97.4 96.9 97.5

2: Hill 62.9 86,4 86,7 71.6

3: v Mean 64.7 66.8 65.9 55.8

4: v AC–1 94.7 100.0 100.0 99.5

5: v AC–5 75.9 95.8 96.4 93.5

6: v AC–10 84.6 89.8 88.5 90.0

7: v AC–25 59.0 79.8 79.7 79.4

8: v AC–50 70.2 67.8 69.7 84.4

9: v AC–100 65.2 49.5 51.1 70.5

Table 8: Moment coverage ratios (in %)
obtained from minimizing the loss function (11) – (13).

Note: The figures in the first row are the moment-specific p-values with respect to the bootstrap
distribution of J of the empirical returns, described in Section 4.1. The figure of 32.6% in the
third row is the joint MCR of the bootstrap samples (see Table 4).

edge over the same mechanisms within the framework of the transition probability ap-
proach, and over the DCA versions that incorporate the effects of differential wealth.
The performance of the last three models is about equal. More generally, the moment
coverage ratios in Table 8 provide a remarkable benchmark against which we would like
to measure other models of speculative asset price dynamics.

5. Conclusion

In recent years, agent-based asset pricing models have made remarkable progress in repli-
cating a diverse set of central statistical features of financial market time series. In this
endeavour, the present paper has focussed on a new class of models which is based on
the concept of structural stochastic volatility. This framework lets the market partici-
pants choose between a noisy technical and a noisy fundamental trading strategy, where
generally the choice is governed by four socio-economic principles. In short, they include
differential wealth, herding, a behavioral predisposition towards one of the strategies,
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and a misalignment correction mechanism, i.e. a propensity to withdraw from chartism
as the gap between prices and the fundamental value widens. A switching index into
which a combination of these components is aggregated is then the driving variable in,
alternatively, the discrete choice approach or the transition probability approach, which
are two convenient devices from the literature to determine the market shares of the two
groups of traders. Simulations show that the resulting variations in the overall noise level
and in the stabilizing and destabilizing tendencies of the strategies can lead to irregular
switches between rather volatile and rather calm market regimes. More specifically, phe-
nomena such as volatility clustering, long memory effects and fat tails may thus come
about.

Having thus a promising collection of different models at hand, we put them to more
formal tests. To this end we estimated them with two variants of the method of simulated
moments, both of which seek to bring certain model-implied summary statistics (the
‘moments’), which correspond to the stylized facts of interest, as close as possible to
their empirical counterparts. In the first case, ‘closeness’ is represented by the distance
between these moments as it is measured by a quadratic loss function. For the second case
we introduced the concept of a (joint) moment coverage ratio (MCR). Here the models
are repeatedly simulated over the empirical time horizon and we count the number of
times where all of the simulated moments are contained in the empirical confidence
intervals. MCR is therefore another, apparently new way of summarizing how often the
data from a model and the real market could not be told apart.

Accepting our (or a similar) choice of moments, both approaches provide us with a
transparent and not too technical criterion to assess the overall fit of a model. This is
indeed something that the burgeoning field of agent-based financial market models is
currently in need of. So many models have been put forward that we are now facing the
“wilderness of bounded rationality problem” (Hommes, 2011, p. 2), meaning that there
are too many degrees of freedom to set up good models. At this stage some guidance is
required to judge which models can mimic the stylized facts, say, “fairly well” and which
are even “very good” in this way. A basic methodological message of our paper is that
the method of simulated moments, with the specifications here proposed, is a superb tool
to serve this purpose.

Actually, the present study suggests a general call for model contest—and its results
are a good point of departure for that. On the one hand, we have identified mechanisms
that are already quite efficient in matching the desired moments, the clear winner of
the model contest in this paper being DCA–HPM: the discrete choice approach that
incorporates herding with a certain predisposition towards chartism, which is however
tamed by the misalignment correction mechanism.

On the other hand, concerning the quantitative performance of this model, it may
be recalled that we bootstrapped a (moment-specific) p-value of 32.6% for it, and that
according to the MCR criterion no less than 26.6 per cent of the simulations are indis-
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tinguishable from the empirical data. Our view is that these statistics set a standard for
model validation and model selection, and raising these benchmarks may be accepted
as a challenge to existing models and to future model building. This is not to say that
goodness-of-fit along these or similar lines is the only criterion to evaluate competing
models. In future research it should, however, be worked out clearly what other features
might compensate for a possible inferiority in this respect.

Appendix: Standard errors of the empirical moments

Let us begin with the Hill moment, which we base on a conventional tail size of five per
cent. Arranging the absolute returns in descending order, v(1) ≥ v(2) ≥ . . . ≥ v(T ), and
putting k = 0.05 · T (rounded to an integer number), the Hill estimator is equal to the
reciprocal of

γ̂ := (1/k)
k∑

i=1

ln v(i) − ln v(k)

The fact that this estimator is necessarily biased need not concern us here since it applies
to the empirical and model-generated data alike. Its asymptotic normality has been shown
by, e.g., Goldie and Smith (1987) or Hall (1990), for which they obtain the variance

Var(γ̂) = γ2 / k

Certainly, in applications the ‘true’ value γ is replaced with the estimate γ̂. The moment
coverage ratios relate to γ̂ rather than the Hill estimator 1/γ̂ itself.

The computation of the standard errors of the other moments makes use of the delta
method. We first give the general argument and then apply it for our special purpose. To
this end, we refer to {zt}T

t=1 as a time series of a state vector zt of arbitrary dimension,
zt ∈ IRn. In particular, to deal with the autocovariances the components of zt may
be vt, vt−1, etc. Let there be k ‘raw’ moments, a suitable combination of which yield
our (composed) moments of the autocovariances or autocorrelations. Furthermore, let
f : IRn → IRk be a continuous function, and µ̂ ∈ IRk the corresponding vector of the
estimated (unconditional) raw moments,

µ̂ =
1
T

T∑
t=1

f(zt) (A15)

Since (A15) is a consistent and asymptotically normal estimator of µ = E[f(xt)], we
have with respect to its covariance matrix Σ ∈ IRk×k and the true raw moments µo,

√
T (µ̂− µo) a∼ N(0,Σ)

An HAC estimator of Σ is the following Newey-West matrix for some suitable lag length
p,
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Σ̂ = Γ(0) +
p∑

h=1

(1− h

p + 1
) [ Γ̂(h) + Γ̂(h)′ ]

Γ̂(h) =
1
T

T∑
t=h+1

[f(zt)− µ̂] [f(zt−h)− µ̂]′ , h = 0, 1, . . . , p

We follow a usual practice and set p equal to the smallest integer greater than or equal
to T 1/4 (Greene, 2002, p. 267, fn10).

Next, let θ ∈ IR be a summary statistic of zt which is determined by the raw moments
µ via a continuously differentiable and monotonic real function g : IRk → IR. That is, θ

is estimated as

θ̂ = g(µ̂)

Putting θo = g(µo) and employing the delta method (cf. Davidson and MacKinnon, 2004,
pp. 207f), we know that

√
T (θ̂ − θo) a∼ N(0, σ2)

and that the asymptotic variance σ2 can be estimated as

σ̂2 =
∂g(µ̂)
∂µ′

Σ̂
∂g(µ̂)
∂µ

(A16)

To obtain the standard error of the estimates of θ, it remains to divide σ̂ by
√

T .
We can then turn to the application of (A16) to the correlation coefficient ρ between

{xt} and {yt}. We only have to set

µ = (µx, µy, µxx, µyy, µxy)′ = [E(xt), E(yt), E(x2
t ), E(y2

t ), E(xtyt)]′

and express ρ as

ρ = g(µ) =
µxy − µx µy√

µxx − µ2
x
2
y

√
µyy − µ2

y

The specification of the corresponding functions fi = fi(xt, yt), i = 1, . . . , 5, is obvious
(f1(xt, yt) = xt, etc.) and with σx =

√
µxx − µ2

x
2
y, σy =

√
µyy − µ2

y , the vector of the
partial derivatives of g is computed as

∂g

∂µ′
=

(ρ µx

σ2
x

− µy

σxσy
,

ρ µy

σ2
y

− µx

σxσy
,
−ρ

2σ2
x

,
−ρ

2σ2
y

,
1

σxσy

)
The lower and upper boundaries of the confidence intervals around the empirical sum-
mary statistics that we thus obtain are documented in Table A1 (the autocorrelations of
the absolute returns being smoothed as described in footnote 5).
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vAC

rAC–1 1/Hill vMean 1 5 10 25 50 100

measured : −0.008 0.301 0.713 0.193 0.187 0.159 0.128 0.112 0.074

lower bound : −0.042 0.269 0.672 0.106 0.142 0.118 0.095 0.074 0.041
upper bound : 0.027 0.334 0.754 0.280 0.231 0.200 0.162 0.148 0.105

Table A1: The empirical moments and their 95% confidence intervals.
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