University of Bamberg

Migration and Labor Market STATA II: An Introduction into Panel Regression Models

Bamberg, June, 15, 2020

Dr. Ehsan Vallizadeh

Department of Economics – Integration of European Labor Markets

Last Meeting

1 Generating dummy variables

- Gen command, replace command
- Advanced generation (forvalues 1/3 {....})

2 Organise your work with globals

- glo name varlist
- \$name

3 Summary statistics

sum varlist

Last Meeting

Making Graphs

- One Y-axis:
- graph twoway line var1 var2 if ed == 1 & ex ==1
- Two Y-axes:
- graph twoway line (var1 var2) (var3 var2, yaxis(2)) if...
- Scatter plots:
- graph scatter var1 var2 if ...
- Scatter plots with regression line:
- graph scatter var1 var2 || lfit var1 var2 if ...

Today's Meeting

- 1 Discussing your 'homework'
 - Generating the data sets and dummy variable
 - Descriptive statistics
 - Graphs
 - Problems?
- 2 Introduction into regressions commands in STATA
- 3 Discussing the next steps

 $y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \ldots + \beta_k x_{ki} + \varepsilon_i$

The general econometric model:

- y_i indicates the dependent (or: endogenous) variable
- $x_{1i,ki}$ exogenous variable, explaining the independent variable
- β_0 constant or the y-axis intercept (if x = 0)
- $\beta_{1,2,k}$ regression coefficient or parameter of regression
- ε_i residual, disturbance term.

The OLS estimator

- The **ordinary least square (OLS)** estimator minimizes the squared deviations from the linear regression line
- Under the assumption that (i) the error term is normally distributed and has an expected mean value of zero, and (ii) the variance of the error term is constant and limited, the OLS estimator delivers unbiased results.
- Depending on the sample size, you can draw inference on the total population
- For the example, you can use the standard errors or t-statistics of the coefficients of the explanatory variables to test the nullhypothesis whether the estimated coefficient is zero

The OLS estimator: problems

- Endogeneity (simultaneous equation bias): if your
 - explanatory variables are not truly exogenous but correlated with the explanatory variable, the mean value of the error term isn't zero and you obtain biased estimates.
 - Solutions: Instrumental Variable (IV) estimation, natural experiments
- Omitted variable bias: If you have omitted relevant explanatory variables (i) the estimates of the remaining coefficients might be biased and (ii) the error term might be not zero.

The OLS estimator: problems (cont.)

- **Multicollinearity:** If your explanatory variables are correlated, you may have problems to identify the true correlation coefficient for the individual regressors, in particular when your sample is small. Is less serious.
- Heteroscedasticity: If the variance is not constant across groups in your sample (e.g. education groups) the standard errors are not properly estimated and the coefficients might be biased as well.
 Solutions: Robust Standard Error estimates, Generalized Least Square (GLS) estimation, and others.

The OLS estimator: problems (cont.)

- Contemporary correlation of the error term: If your error term across the panels is contemporaneously correlated, e.g. due to simultaneous time shocks, you obtain biased estimates
- Solutions: GLS-, Generalized Methods of Moments estimators
- And many, many others

University of Bamberg

Regression Analysis with STATA

Theory and Politics of European Integration | Dr. Ehsan Vallizadeh | Department of Economics – Integration of European Labor Markets

Regression Analysis with STATA

General Syntax

- The standard OLS regression syntax in STATA is:
 - regress depvar [list of indepvar] [if], [options]

Example:

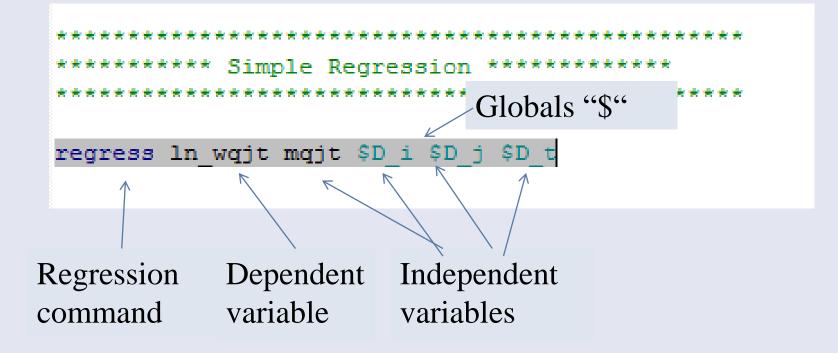
- Regress log wage on migration share, controlling for education, working experience and time
 - regress ln_wqjt m_qjt \$D_i \$D_j \$D_t

University of Bamberg

 $y_{ijt} = \theta p_{ijt} + s_i + x_j + \pi_t + (s_i \times x_j) + (s_i \times \pi_t) + (x_j \times \pi_t) + \varphi_{ijt},$

This model in STATA Syntax:

regress ln_wqjt m_qjt \$D_i \$D_j \$D_t \$D_ed_ex \$D_ed_t \$D_ex_t

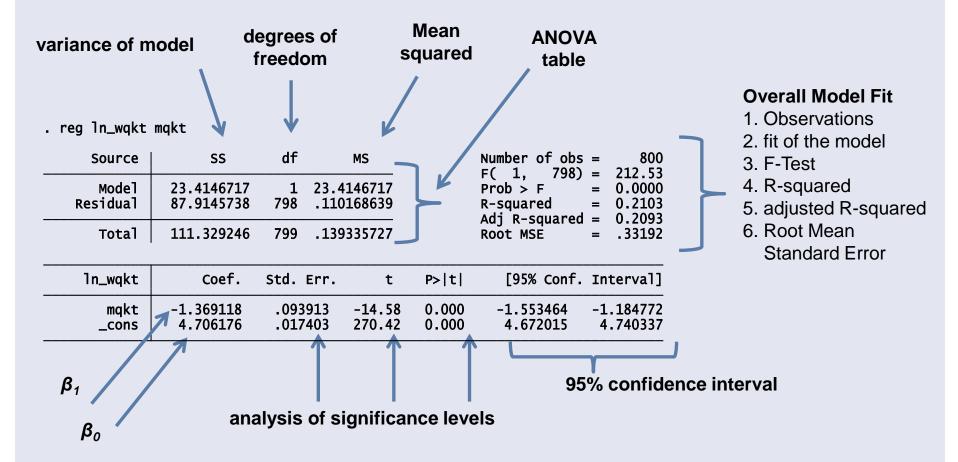

where

- In_wqjt: dependent variable (log wage)
- mgit: migration share in educatipn-experience cell
- \$D_i: global for education dummies
- \$D_j: global for experience dummies
- \$D_t: global for time dummies
- \$D_ed_ex: global for interaction education-experience dummies
- \$D_ed_t : global for education-time interaction dummies
- \$D_ex_t: global for experience-time interaction dummies

STATA: Running a regression model

University of Bamberg

STATA: Output a regression model



ess ln_wqj	t mqjt \$D_i	\$D_j \$D_ t				
Source	55	df	MS		Number of obs	
Model sidual	21.7438431 .224021026				Prob > F R-squared	= 0.0000 = 0.9898
Total	21.9678641	203 .108	8216079		Root MSE	= .03518
n_wqjt	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
year15 year16 year17	0394645 0524586 0586402	. 0501982 . 0133158 . 0141016 . 0070443 . 0074409 . 0072256 . 0143728 . 0143728 . 0143947 . 0144253 . 014442 . 014444 . 0144567 . 0144624 . 0144725 . 0144624 . 0144725 . 0144864 . 0144755 . 0144583 . 0144155 . 0144263 . 0144264 . 0144264 . 0144264 . 0144264 . 0144264 . 0144264 . 0144264 . 0144264 . 0144264 . 0144265 . 01465 . 0146565 . 0146565555555555555555555555555555555555	6.29 16.72 54.02 27.58 39.82 49.70 1.01 0.44 1.24 0.93 0.41 0.16 0.18 0.08 0.54 1.49 1.28 0.91 -1.10 -2.74 -3.64 -4.07	0.000 0.000 0.000 0.000 0.000 0.315 0.659 0.216 0.354 0.681 0.876 0.856 0.938 0.588 0.139 0.200 0.363 0.271 0.007 0.000 0.000	. 2167948 . 1963548 . 7339682 . 1803825 . 2815972 . 3448537 0138761 0220429 0105362 0150657 0225488 0262668 0259086 0274373 0207297 0070589 00995 0153357 044404 0679161 0809146 087088 2 006086	.4148927 .2489033 .7896176 .2081816 .3109612 .3733681 .0428437 .0347632 .0463904 .0419358 .0344519 .0307839 .0311646 .0296759 .036438 .050066 .0471068 .0416551 .0125268 0110129 0240025 0301924 3.975217
	Source Model sidual Total Total n_wqjt mqjt Ded_2 Ded_3 Dex_2 Dex_3 Dex_4 year2 year3 year4 year5 year6 year7 year8 year10 year11 year12 year13 year14 year15 year16	Source S5 Model sidual 21.7438431 .224021026 Total 21.9678641 n_wqjt Coef. mqjt .3158438 Ded_2 .2226291 Ded_3 .7617929 Dex_2 .1942821 Dex_3 .2962792 Dex_4 .3591109 year2 .0144838 year3 .0063602 year4 .0179271 year5 .013435 year6 .0059516 year7 .0022585 year8 .002628 year10 .0078542 year11 .0215036 year13 .0131597 year14 .0159386 year15 0394645 year16 0524586 year17 0586402	Model sidual 21.7438431 .224021026 22 988 .001 Total 21.9678641 203 .104 m_wqjt Coef. Std. Err. mqjt .3158438 .0501982 Ded_2 .2226291 .0133158 Ded_3 .7617929 .0141016 Dex_2 .1942821 .0070443 Dex_3 .2962792 .0074409 Dex_4 .3591109 .0072256 year2 .0144838 .0143728 year3 .0063602 .0143947 year4 .0179271 .0144253 year5 .013435 .0144442 year6 .0059516 .0144442 year7 .0022585 .0144567 year8 .002628 .0144567 year10 .0078542 .0144864 year11 .0215036 .0144755 year12 .0185784 .0144583 year13 .0131597 .0144415 year14 0159386 .0144263	Source SS df MS Model sidual 21.7438431 22 .988356504 sidual .224021026 181 .001237685 Total 21.9678641 203 .108216079 n_wqjt Coef. Std. Err. t mqjt .3158438 .0501982 6.29 Ded_2 .2226291 .0133158 16.72 Ded_3 .7617929 .0141016 54.02 Dex_2 .1942821 .0070443 27.58 Dex_3 .2962792 .0074409 39.82 Dex_4 .3591109 .0072256 49.70 year3 .0063602 .0143947 .44 year4 .0179271 .0144253 1.24 year5 .013435 .014444 0.41 year6 .002585 .01444624 0.18 year10 .0078542 .0144864 .54 year11 .0215036 .0144755 .49 year12 .0185784 .	Source SS df Ms Model 21.7438431 22 .988356504 sidual .224021026 181 .001237685 Total 21.9678641 203 .108216079 m_wqjt Coef. Std. Err. t P> t mqjt .3158438 .0501982 6.29 0.000 Ded_2 .2226291 .0133158 16.72 0.000 Ded_3 .7617929 .0141016 54.02 0.000 Dex_2 .1942821 .0070443 27.58 0.000 Dex_3 .2962792 .0074409 39.82 0.000 Dex_4 .3591109 .0072256 49.70 0.000 year3 .0063602 .0143947 .44 0.659 year4 .0179271 .0144253 1.24 0.216 year5 .013435 .0144442 0.93 0.354 year6 .0059516 .014444 0.41 0.681 year7 .0022585	SourceSSdfMSNumber of obs $F(22, 181)$ Prob > F R-squared Adj R-squared Root MSEModel sidual21.7438431 .22402102622 .988356504 181 .001237685Prob > F R-squared Adj R-squared Root MSETotal21.9678641203 .108216079Prob > Fm_wqjtCoef.Std. Err.tP> t [95% Conf.mqjt.3158438.05019826.290.000.2226291.013315816.720.000.1963548Ded_2.2226291.013315816.720.000.7339682Dex_2.1942821.007044327.580.000.1803825Dex_3.2962792.007440939.820.000.2815972Dex_4.3591109.007225649.700.000.3448537year3.0063602.01439470.440.6590220429year4.0179271.01442531.240.216.0105362year5.013435.01444620.180.8560259086year7.0022585.01446240.180.856.0225488year10.0078542.01448640.540.588.0207297year11.0215036.01447551.490.139.0070589year12.0185784.01445831.280.20000995year13.0131597.01444150.910.363.0153357year14.0139766.0144263-1.100.271.04404year15.039464

Theory and Politics of European Integration | Dr. Ehsan Vallizadeh | Department of Economics - Integration of European Labor Markets

STATA: How to interpret the output of a regression?

STATA: Instrumental Variable (IV) Model University of Bamberg

- Instrumental variables (IVs) are variables which are correlated with the (potentially) endogenous explanatory variable, but not the dependent variable and, hence, not the error term
- Syntax of a IV model in stata: ivregress depvar indepvar

(endogenous variable = iv)

• Example:

ivregress In_wqjt \$D_i \$D_j ... (mqjt = iv1 iv2 ...)

STATA: Panel Model

- Very often you use panel models, i.e. models which have a group and time series dimension
- There exist special estimators for this, e.g. fixed or random effects models
 - A **fixed effects** model is a model where you have a fixed (constant) effect for each individual/group. This is equivalent to a dummy variable for each group
 - A random effects model is a model where you have a random effect for each individual group, which is based on assumptions on the distribution of individual effects

Consider a simple linear model:

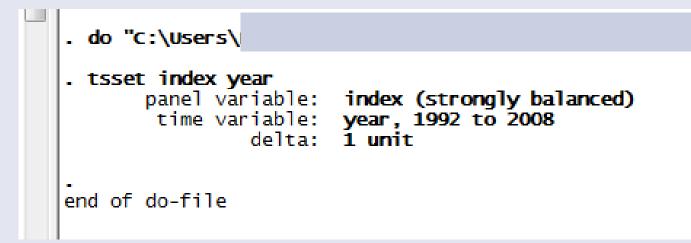
unobserved heterogeneity

University of Bamberg

$$Y_{it} = \beta_0 + \beta_1 X_{it} + \alpha_i^* + u_{it}$$

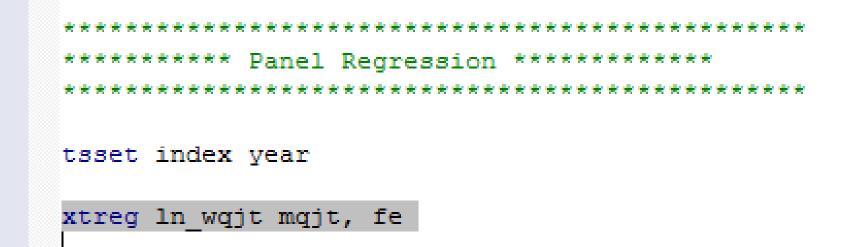
- **Assumption:** $Cov(\alpha_i, X_{it}) = 0$
- If assumption holds:
 - $\hat{\beta}_{RE}, \hat{\beta}_{FE}$ are consistent
 - $se(\hat{\beta}_{RE}) < se(\hat{\beta}_{FE})$
- If assumption does not hold
 - $\hat{\beta}_{FE}$ is solely consistent ($\hat{\beta}_{RE}$ no longer consistent)
- Hausman test RE vs FE

Preparation for Panel Models:


- For running panel models STATA needs to identify the group(individual) and time series dimension
- Therefore you need an index for each group and an index for each time period
- Then use the **tsset** command to organize you dataset as a panel data set
- Syntax:
 - tsset index year
- where index is the group/individual index and year the time index

University of Bamberg

Preparation: Running the tsset command



- Then you can use panel estimators, e.g. the xtreg estimator
- Syntax
 - xtreg depvar [list of indepvar] [if], [options]
 - xtreg ln_wqjt m_qjt, fe
- i.e. in the example we run a simple fixed effects panel regression model which is equivalent to include a dummy variable for each group (in this case education-experience group), <u>but:</u> no time or interaction dummies

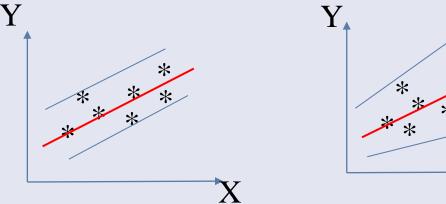
University of Bamberg

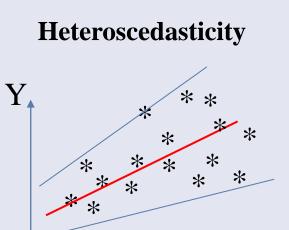
Running a Panel Regression: command

STATA: Panel Regression Output

sers\	. xtreg ln_wq	jt mqjt, fe						
sers\ sers\	Fixed-effects Group variable		Number (Number (of obs = of groups =				
sers\ <mark>sers\</mark> sers\	betweer	= 0.1569 = 0.2948 = 0.2471	Obs per group: min = 17 avg = 17.0 max = 17					
sers\ sers\ >	corr(u_i, xb)	= - 0.6051			F (1,191) Prob > F		0 0000	
×	ln_wqjt	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
	mqjt _cons	.4030928 4.466355	.0676135 .010334	5.96 432.20	0.000 0.000	.2697277 4.445971	. 536458 4. 486738	
	sigma_u sigma_e rho	. 37037033 . 03825941 . 98944169	(fraction	of varia	nce due to	o u_i)		
	F test that a	ll u_i=0:	F(11, 191) = 1009.83			Prob > F = 0.0000		
	end of do-file	2						

STATA: Panel Regression Model


- There are other features of panel estimators which are helpful
- Heteroscedasticity:
 - Heteroscedasticity: the variance is not constant, but varies across groups
 - xtpcse, p(h) corrects for heteroscedastic standard errors
 - xtgls, p(h) corrects coefficient and standard errors for panel heteroscedasticity, but may produce biased results depending on the group and time dimension of the panel
 - Note: p(h) after the comma is a so-called option in the STATA syntax


Theory and Politics of European Integration | Dr. Ehsan Vallizadeh | Department of Economics – Integration of European Labor Markets

Recourse: Homo- vs Heteroscedasticity

- Variance of errors given independent variable is constant: $Var(u_i|X_i) = \sigma$
- Variance of errors given independent variable varies: $Var(u_i|X_i) = f(X_i)$

Homoscedasticity

Х

University of Bamberg

STATA: Panel Regression Model

- Contemporary correlation across cross-sections
 - Contemporary correlation: the error terms are contemporarily correlated across cross-sections, e.g. due to macroeconomic disturbances
 - xtgls, p(c) corrects for contemporary correlation and panel heteroscedasticity, but may produce biased results depending on the group and time dimension of the panel.

Plan for the presentation

- Introduction into your country and outline of research question
- [Very brief sketch of state of research]
- Theoretical hypothesis/hypotheses
- Description of data
 - Data sources
 - Descriptive Statistics
 - Graphical presentation of descriptive evidence
- Econometric findings
 - Regression model
 - Regression results
 - Interpretation
- Conclusions

Next Meting: June 29

- Begin: 12:00 14:00
- Topic: Descriptive data analysis

THANKS FOR YOUR ATTENTION!