Vertically and Horizontally Interacting Newsvendors

Abstract

In this working paper general conditions for a global optimum of the production quantity of several vertically respectively horizontally interacting newsvendors are derived.

Alexander Dobhan ${ }^{1}$
University of Bamberg
Chair of Production Management \& Business Logistics
Feldkirchenstrasse 21
96052 Bamberg
Germany

Michael Oberlaender ${ }^{2}$
University of Regensburg
Faculty of Business, Economics and Management Information Systems
Universitaetsstrasse 31
93040 Regensburg
Germany

[^0]
1 Vertically interacting newsvendors

We propose a supply chain structure of N value stages, where every production site is responsible for one value stage. Horizontal interaction is not considered. We further assume a typical newsvendor situation with a normal distributed demand D $\sim N(\mu, \sigma)$, where μ represents the mean and σ denotes the standard deviation. The short sales season allows only one order point, capacities are unrestricted, and deci-sion-makers behave rational. We further consider one season and one product. In order to produce a certain production quantity on a value stage, the same quantity of the upstream value stage is required. Hence, defectives are not considered. As all relevant production processes have to be finished before the sales season, lead times can be neglected. We further assume that a production process started at site 1 have to be finished at site N. Each site's production costs are given by c_{1} to C_{N}. The revenue r is paid by end customers for one unit of the product. The salvage value v_{0} of a product is the value of a product after the season.

Figure 1: Decision situation for vertical interaction

The supply chain can be coordinated by the transfer prices w_{1} to $\mathrm{w}_{\mathrm{N}-1}$, where w_{1} represents the price, which site 1 achieves from site 2 for one unit. The buyback prices v_{1} to $\mathrm{v}_{\mathrm{N}-1}$ are paid by the supplying site for every unit, which has not been sold during sales season.

Theorem 1:

If $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{N}-1}$ and $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}-1}$ are determined in a way that $\mathrm{CR}_{\mathrm{j}}=\mathrm{CR}_{\mathrm{j}-1}$ holds for every j between 2 and N , then $\mathrm{CR}_{\mathrm{j}}=\mathrm{CR}_{\mathrm{g}}$ is true for every j between 1 and N , where

$$
\begin{equation*}
\mathrm{CR}_{1}=\frac{\mathrm{W}_{1}-\mathrm{C}_{1}}{\mathrm{v}_{1}-\mathrm{V}_{0}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
C R_{j}=\frac{w_{j}-w_{j-1}-c_{j}}{v_{j}-v_{j-1}} \text { for } 2 \leq j \leq N-1 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{CR}_{\mathrm{N}}=\frac{\mathrm{r}-\mathrm{w}_{\mathrm{N}-1}-\mathrm{c}_{\mathrm{N}}}{\mathrm{r}-\mathrm{v}_{\mathrm{N}-1}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
C R_{g}=\frac{r-\sum_{k=1}^{N} c_{k}}{r-v_{0}} \tag{4}
\end{equation*}
$$

Proof:

First it is shown by induction that the statement

$$
\begin{equation*}
\left(\mathrm{CR}_{\mathrm{m}}=\mathrm{CR}_{\mathrm{m}-1} \forall 2 \leq \mathrm{m} \leq \mathrm{j}\right) \Leftrightarrow \mathrm{v}_{\mathrm{j}}=\frac{\mathrm{v}_{1}-\mathrm{v}_{0}}{\mathrm{w}_{1}-\mathrm{c}_{1}}\left(\mathrm{w}_{\mathrm{j}}-\mathrm{w}_{1}-\sum_{\mathrm{k}=2}^{\mathrm{j}} \mathrm{c}_{\mathrm{k}}\right)+\mathrm{v}_{1} \tag{5}
\end{equation*}
$$

is true for every j between 2 and $\mathrm{N}-1$.

Basis: Showing that the statement (5) holds for $\mathrm{j}=2$ and $\mathrm{j}=3$.
$j=2$:

$$
\begin{align*}
& C R_{2}=C R_{1} \\
& \Leftrightarrow \frac{w_{2}-w_{1}-C_{2}}{v_{2}-v_{1}}=\frac{w_{1}-c_{1}}{v_{1}-v_{0}} \tag{6}\\
& \Leftrightarrow v_{2}=\frac{v_{1}-v_{0}}{w_{1}-c_{1}}\left(w_{2}-w_{1}-c_{2}\right)+v_{1}
\end{align*}
$$

$j=3:$

$$
\begin{align*}
& \mathrm{CR}_{3}=\mathrm{CR}_{2} \\
& \Leftrightarrow \mathrm{v}_{3}=\frac{\mathrm{v}_{2}-\mathrm{v}_{1}}{\mathrm{w}_{2}-\mathrm{w}_{1}-\mathrm{c}_{2}}\left(\mathrm{w}_{3}-\mathrm{w}_{2}-\mathrm{c}_{3}\right)+\mathrm{v}_{2} \tag{7}
\end{align*}
$$

Replacing v_{2} with the expression from (6) gives

$$
\begin{align*}
v_{3} & =\frac{\left(v_{1}-v_{0}\right)\left(w_{2}-w_{1}-c_{2}\right)}{\left(w_{1}-c_{1}\right)\left(w_{2}-w_{1}-c_{2}\right)}\left(w_{3}-w_{2}-c_{3}\right)+\frac{v_{1}-v_{0}}{w_{1}-c_{1}}\left(w_{2}-w_{1}-c_{2}\right)+v_{1}= \\
& =\frac{v_{1}-v_{0}}{w_{1}-c_{1}}\left(w_{3}-w_{2}-c_{3}+w_{2}-w_{1}-c_{2}\right)+v_{1}= \tag{8}\\
& =\frac{v_{1}-v_{0}}{w_{1}-c_{1}}\left(w_{3}-w_{1}-c_{3}-c_{2}\right)+v_{1}
\end{align*}
$$

Inductive step:

Induction hypothesis: Statement (5) holds for j-1 and for j .

Showing that Statement (5) then also holds for $\mathrm{j}+1$:

$$
\begin{align*}
& C R_{j+1}=C R_{j} \\
& \Leftrightarrow v_{j+1}=\frac{v_{j}-v_{j-1}}{w_{j}-w_{j-1}-c_{j}}\left(w_{j+1}-w_{j}-c_{j+1}\right)+v_{j} \tag{9}
\end{align*}
$$

Using the induction hypothesis $\mathrm{v}_{\mathrm{j}+1}$ can be transformed to

$$
\begin{align*}
v_{j+1} & =\frac{\left(v_{1}-v_{0}\right)\left(w_{j}-w_{j-1}-c_{j}\right)}{\left(w_{j}-w_{j-1}-c_{j}\right)\left(w_{1}-c_{1}\right)}\left(w_{j+1}-w_{j}-c_{j+1}\right)+\frac{v_{1}-v_{0}}{w_{1}-c_{1}}\left(w_{j}-w_{1}-\sum_{k=2}^{j} c_{k}\right)+v_{1}= \\
& =\frac{v_{1}-v_{0}}{w_{1}-c_{1}}\left(w_{j+1}-w_{j}-c_{j+1}+w_{j}-w_{1}-\sum_{k=2}^{j} c_{k}\right)+v_{1}= \tag{10}\\
& =\frac{v_{1}-v_{0}}{w_{1}-c_{1}}\left(w_{j+1}-w_{1}-\sum_{k=2}^{j+1} c_{k}\right)+v_{1}
\end{align*}
$$

This way, it is proven that statement (5) holds for every j between 2 and $\mathrm{N}-1$. We can now calculate an expression for v_{1} from $\mathrm{CR}_{\mathrm{N}}=\mathrm{CR}_{\mathrm{N}-1}$:

$$
\begin{align*}
& \mathrm{CR}_{\mathrm{N}}=C R_{N-1} \\
& \Leftrightarrow \frac{r-w_{N-1}-c_{N}}{r-v_{N-1}}=\frac{w_{N-1}-w_{N-2}-c_{N-1}}{v_{N-1}-v_{N-2}} \tag{11}\\
& \Leftrightarrow\left(r-w_{N-1}-c_{N}\right)\left(v_{N-1}-v_{N-2}\right)=\left(w_{N-1}-w_{N-2}-c_{N-1}\right)\left(r-v_{N-1}\right)
\end{align*}
$$

Replacing $\mathrm{v}_{\mathrm{N}-1}$ and $\mathrm{v}_{\mathrm{N}-2}$ with the expression from (5):

$$
\begin{align*}
& \Leftrightarrow\left(r-w_{N-1}-c_{N}\right) \frac{v_{1}-v_{0}}{W_{1}-c_{1}}\left(w_{N-1}-w_{N-2}-c_{N-1}\right)= \\
& \quad=\left(w_{N-1}-w_{N-2}-c_{N-1}\right)\left[r-\frac{v_{1}-v_{0}}{W_{1}-c_{1}}\left(w_{N-1}-w_{1}-\sum_{k=2}^{N-1} c_{k}\right)-v_{1}\right] \\
& \Leftrightarrow\left(r-w_{N-1}-c_{N}\right) \frac{v_{1}-v_{0}}{W_{1}-c_{1}}=r-\frac{v_{1}-v_{0}}{W_{1}-c_{1}}\left(w_{N-1}-w_{1}-\sum_{k=2}^{N-1} c_{k}\right)-v_{1} \\
& \Leftrightarrow
\end{aligned} \begin{aligned}
& r\left(w_{1}-c_{1}\right)= \\
& \quad=\left(v_{1}-v_{0}\right)\left(w_{N-1}-w_{1}-\sum_{k=2}^{N-1} c_{k}\right)+v_{1}\left(w_{1}-c_{1}\right)+\left(r-W_{N-1}-c_{N}\right)\left(v_{1}-v_{0}\right) \\
& \Leftrightarrow r\left(w_{1}-c_{1}\right)=v_{1}\left(w_{N-1}-w_{1}-\sum_{k=2}^{N-1} c_{k}+w_{1}-c_{1}+r-w_{N-1}-c_{N}\right)- \\
& r-\sum_{k=1}^{N} c_{k}
\end{align*}
$$

v_{1} in CR_{1} gives:

$$
\begin{align*}
C R_{1} & =\frac{\left(w_{1}-c_{1}\right)\left(r-\sum_{k=1}^{N} c_{k}\right)}{r\left(w_{1}-c_{1}\right)+v_{0}\left(r-w_{1}-\sum_{k=2}^{N} c_{k}\right)-v_{0}\left(r-\sum_{k=1}^{N} c_{k}\right)}= \tag{13}\\
& =\frac{\left(w_{1}-c_{1}\right)\left(r-\sum_{k=1}^{N} c_{k}\right)}{r\left(w_{1}-c_{1}\right)-v_{0}\left(w_{1}-c_{1}\right)}=\frac{r-\sum_{k=1}^{N} c_{k}}{r-v_{0}}=C R_{g}
\end{align*}
$$

So $\mathrm{CR}_{\mathrm{j}}=\mathrm{CR}_{\mathrm{g}}$ is true for every j between 1 and N .

2 Horizontally interacting newsvendors

In order to transfer the vertical model to horizontal supply chain interaction we assume an assembly chain without substitution. Each production competence is unique in the supply chain. The parameters $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{N}}$ and r are defined as in section 1 . Site N
assembles components, which are supplied by the sites 1 to $\mathrm{N}-1$. The transfer prices W_{1} to $\mathrm{W}_{\mathrm{N}-1}$ are paid by site N to the sites 1 to $\mathrm{N}-1$ for one unit of a component to be assembled. The salvage value v_{0} is paid directly to the assembly site. The prices v_{1} to $\mathrm{v}_{\mathrm{N}-1}$ represent transfer payments, which are introduced to share the overage risk. Vertical supply chain interaction between more than two value stages is not considered (cf. figure 2).

Figure 2: Decision situation for horizontal interaction

Theorem 2:

If $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{N}-1}$ and $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}-1}$ are determined in a way that $\mathrm{CR}_{\mathrm{j}}=\mathrm{CR}_{\mathrm{j}-1}$ holds for every j between 2 and N, then $\mathrm{CR}_{\mathrm{j}}=\mathrm{CR}_{\mathrm{g}}$ is true for every j between 1 and N , where

$$
\begin{equation*}
\mathrm{CR}_{\mathrm{j}}=\frac{\mathrm{w}_{\mathrm{j}}-\mathrm{C}_{\mathrm{j}}}{v_{\mathrm{j}}} \text { for } 1 \leq \mathrm{j} \leq \mathrm{N}-1 \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
C R_{N}=\frac{r-\sum_{k=1}^{N-1} w_{k}-c_{N}}{r-\sum_{k=0}^{N-1} v_{k}} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{CR}_{\mathrm{g}}=\frac{\mathrm{r}-\sum_{\mathrm{k}=1}^{\mathrm{N}} \mathrm{c}_{\mathrm{k}}}{\mathrm{r}-\mathrm{v}_{0}} \tag{16}
\end{equation*}
$$

Proof:

First it is shown by induction that the statement

$$
\begin{equation*}
\left(\mathrm{CR}_{\mathrm{m}}=\mathrm{CR}_{\mathrm{m}-1} \forall 2 \leq \mathrm{m} \leq \mathrm{j}\right) \Leftrightarrow \mathrm{v}_{\mathrm{j}}=\frac{\mathrm{w}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}}}{\mathrm{w}_{1}-\mathrm{c}_{1}} \mathrm{v}_{1} \tag{17}
\end{equation*}
$$

is true for every j between 2 and $\mathrm{N}-1$.

Basis: Showing that the statement (17) holds for $\mathrm{j}=2$:

$$
\begin{equation*}
\mathrm{CR}_{2}=\mathrm{CR}_{1} \Leftrightarrow \frac{\mathrm{w}_{2}-\mathrm{C}_{2}}{\mathrm{v}_{2}}=\frac{\mathrm{w}_{1}-\mathrm{c}_{1}}{\mathrm{v}_{1}} \Leftrightarrow \mathrm{v}_{2}=\frac{\mathrm{w}_{2}-\mathrm{C}_{2}}{\mathrm{w}_{1}-\mathrm{c}_{1}} \mathrm{v}_{1} \tag{18}
\end{equation*}
$$

Inductive step:

Induction hypothesis: Statement (17) holds for j.

Showing that Statement (17) then also holds for $\mathrm{j}+1$:

$$
\begin{align*}
& \mathrm{CR}_{j+1}=C R_{j} \\
& \Leftrightarrow \frac{w_{j+1}-c_{j+1}}{v_{j+1}}=\frac{w_{j}-c_{j}}{v_{j}} \Leftrightarrow v_{j+1}=\frac{w_{j+1}-c_{j+1}}{w_{j}-c_{j}} v_{j} \tag{19}
\end{align*}
$$

Using the induction hypothesis $\mathrm{v}_{\mathrm{j}+1}$ can be rewritten to

$$
\begin{align*}
v_{j+1} & =\frac{w_{j+1}-c_{j+1}}{w_{j}-c_{j}} v_{j}=\frac{\left(w_{j+1}-c_{j+1}\right)\left(w_{j}-c_{j}\right)}{\left(w_{j}-c_{j}\right)\left(w_{1}-c_{1}\right)} v_{1}= \\
& =\frac{w_{j+1}-c_{j+1}}{w_{1}-c_{1}} v_{1} \tag{20}
\end{align*}
$$

This way it is proven that statement (17) holds for every j between 2 and N-1. Now we can calculate an expression for v_{1} from $\mathrm{CR}_{\mathrm{N}}=\mathrm{CR}_{\mathrm{N}-1}$:

$$
\begin{align*}
& C R_{N}=C R_{N-1} \\
& \Leftrightarrow \frac{r-\sum_{k=1}^{N-1} w_{k}-c_{N}}{r-\sum_{k=0}^{N-1} v_{k}}=\frac{w_{N-1}-c_{N-1}}{v_{N-1}} \tag{21}\\
& \Leftrightarrow\left(r-\sum_{k=1}^{N-1} w_{k}-c_{N}\right) v_{N-1}=\left(w_{N-1}-c_{N-1}\right)\left(r-\sum_{k=0}^{N-1} v_{k}\right)
\end{align*}
$$

Replacing all v_{j} with the expression from (17):

$$
\begin{align*}
& \Leftrightarrow\left(r-\sum_{k=1}^{N-1} w_{k}-c_{N}\right) \frac{w_{N-1}-c_{N-1}}{w_{1}-c_{1}} v_{1}=\left(w_{N-1}-c_{N-1}\right)\left(r-v_{0}-\sum_{k=1}^{N-1} \frac{w_{k}-c_{k}}{w_{1}-c_{1}} v_{1}\right) \\
& \Leftrightarrow\left(r-\sum_{k=1}^{N-1} w_{k}-c_{N}\right) v_{1}=\left(r-v_{0}\right)\left(w_{1}-c_{1}\right)-\sum_{k=1}^{N-1}\left(w_{k}-c_{k}\right) v_{1} \\
& \Leftrightarrow v_{1}\left[r-\sum_{k=1}^{N-1} w_{k}-c_{N}+\sum_{k=1}^{N-1}\left(w_{k}-c_{k}\right)\right]=\left(r-v_{0}\right)\left(w_{1}-c_{1}\right) \tag{22}\\
& \Leftrightarrow v_{1}\left(r-\sum_{k=1}^{N} c_{k}\right)=\left(r-v_{0}\right)\left(w_{1}-c_{1}\right) \\
& \Leftrightarrow v_{1}=\frac{\left(r-v_{0}\right)\left(w_{1}-c_{1}\right)}{r-\sum_{k=1}^{N} c_{k}}
\end{align*}
$$

v_{1} in CR_{1} gives:

$$
\begin{align*}
\mathrm{CR}_{1} & =\frac{\left(\mathrm{w}_{1}-\mathrm{c}_{1}\right)\left(\mathrm{r}-\sum_{\mathrm{k}=1}^{\mathrm{N}} \mathrm{c}_{\mathrm{k}}\right)}{\left(\mathrm{r}-\mathrm{v}_{0}\right)\left(\mathrm{w}_{1}-\mathrm{c}_{1}\right)}= \tag{23}\\
= & \frac{r-\sum_{\mathrm{k}=1}^{\mathrm{N}} \mathrm{c}_{\mathrm{k}}}{\mathrm{r}-\mathrm{v}_{0}}=\mathrm{CR}_{\mathrm{g}}
\end{align*}
$$

So $C R_{j}=C R_{g}$ is true for every j between 1 and N.

3 Conclusion

In this paper we introduce the mathematical basis for a new and innovative solution method for the multi-location newsvendor problem. In particular, this method allows decentralized planning approaches in situations with incomplete information.

[^0]: ${ }^{1}$ P: +49 9518632522 , F: +49 951 8632520, alexander.dobhan@uni-bamberg.de
 ${ }^{2} \mathrm{P}:+499419432732$, F: +49 941 943812732, michael.oberlaender@wiwi.uni-regensburg.de

