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Abstract

The basic philosophy behind Gibrat’s rule of proportionate effect has been
to find some common mechanism in the growth process of business firms,
based on the idea that growth rates are independent of size and drawn from
the same distribution. After decades of research, however, it seems fair to say
that the “law” fails to provide a universal mechanism for the growth of firms.
Here we take the position that it is more plausible for Gibrat’s approach to
apply to firm profitability rather than firm growth, in line with the classical
idea of economic competition as a dynamic process of capital reallocation.
Considering a sample of more than five hundred long-lived US corporations
from virtually all sectors, we compare the statistical properties of growth and
profit rates over a time span of thirty years, and find that profit rates and
their volatilities are independent of size, which is not true of growth rates. We
also find that the empirical densities of both profitability and growth can be
described by exponential power (or Subbotin) distributions, but there are pro-
nounced differences in their parameterizations and autocorrelation structures.
We argue that a recently proposed diffusion process not only reproduces the
cross-sectional distribution of profit rates, but is also consistent with the em-
pirical time series of individual firms and their autocorrelations. In the natural
sciences such a situation is commonly referred to as a statistical equilibrium,
while econometricians speak of ergodicity and stationarity. Our economic in-
terpretation of this property is that all surviving firms are subject to the same
competitive pressures of capital reallocation, irrespective of their industry or
particular line of business. They all face the same profitability benchmark and
volatility, while their idiosyncratic efforts merely have an effect on the persis-
tence of abnormal profits. In other words, survivors have to participate in the
same game and can only choose to do so at different “speeds”. We conclude
with the empirical observation that the speed of convergence from abnormal
profits to the system-wide average depends negatively on firm size, diversifi-
cation, and capital intensity.

JEL classifications: C16, L10, D21, E10.
Keywords: Profit rates, diffusion process, statistical equilibrium, dynamic
competition, persistence.
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1 Introduction
Our main argument is that the profitability of surviving corporations exhibits re-
markable regularity across space and time, and can be conveniently characterized
by one and the same diffusion process for all firms. We show that the process is not
only consistent with the cross-sectional distribution of profit rates across firms at
a given point in time, but is also a reasonable description of the time evolution of
profit rates for each surviving firm. Thus we refer to the profitability of surviving
corporations as a statistical equilibrium outcome.1 The implications of statistical
equilibrium for our understanding of individual firm destinies are stark and unex-
pected, since the model and data suggest that idiosyncratic firm characteristics are
not influencing the aggregate distributional outcome. Instead, idiosyncratic efforts
merely seem to have an impact on the individual persistence of abnormal profits
from the system-wide average, that is their speed of adjustment or convergence. We
find that large, capital intensive, or broadly diversified survivors exhibit the slowest
speed of adjustment across all non-banking sectors of the economy.

The idea that market economies are driven by the reallocation of capital
in search of profit rate equalization dates back to classical economics, and is cer-
tainly one of the most widely accepted theories of capitalism (see, e.g., Foley, 2006).
Traditionally, however, the literature on industrial dynamics has not focused on prof-
itability, but rather on firm size and growth. Starting with Gibrat (1931), the most
influential idea to explain the dynamics of individual firms was to claim that firm
growth rates should be independent of firm size and usually also of each other.2 Ac-
cording to the central limit theorem, this would imply normally distributed growth
rates, and a log-normal distribution of firm sizes. Subsequent empirical analyses
have shown that size, age, and the life-cycle of firms influence the growth perfor-
mance in ambiguous ways (see, for instance, the surveys by Santarelli et al., 2006;
Sutton, 1997), while the distributional implications of Gibrat’s rule, in particu-
lar with respect to the unconditional growth rate distribution, have received less
attention until recently.3 The empirical density of growth rates is not Gaussian,
however, and therefore at odds with Gibrat’s rule. The non-normality of the growth
rate distribution is most likely an imprint of the complex interactions and inter-
dependencies among firms, and would indicate that the independence assumption
is violated. Instead, the unconditional distribution of growth rates approximates
a double-exponential (or Laplace) distribution, for instance for US manufacturing
companies (Stanley et al., 1996), the world’s largest pharmaceutical firms (Bottazzi
et al., 2001), and Italian manufacturing sectors (Bottazzi et al., 2002), even at higher
levels of sectoral disaggregation (Bottazzi and Secchi, 2006).

Our dataset suggests that the growth rates of long-lived US non-banking
corporations are even more leptokurtic than the Laplace distribution, which has
recently also been observed in French manufacturing (see Bottazzi et al., 2011).
The rate of profit, on the other hand, seems to be much closer to the Laplace
distribution than the corresponding growth rates in our sample. At the same time,

1Foley (1994) and Garibaldi and Scalas (2010) provide useful background reading for readers
who might not be entirely familiar with the concept of statistical equilibrium.

2To be more precise, growth rates are iid random variables with finite variance.
3The distribution of firm sizes, on the other hand, has received more attention, and dates back

to the work of Simon (see, e.g., Ijiri and Simon, 1977; Simon and Bonini, 1958). More recent
findings are essentially concerned with the question whether the size distribution is log-normal
(see, e.g., Hart and Oulton, 1996; Stanley et al., 1995) or power-law (see, e.g., Axtell, 2001).
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it is not clear how or whether the size of corporations might influence the rate of
profit. While Baumol (1967) argues that size could confer market power and lead
to abnormally high profit rates, the empirical findings generally do not support his
claim (see, e.g., Alexander, 1949; Amato and Wilder, 1985; Goddard et al., 2005;
Hall and Weiss, 1967; Marcus, 1969; Whittington, 1980), and we also find that the
profitability of surviving US corporations is largely independent of size, in line with
classical economic thinking.

A crucial aspect of Gibrat’s model concerns the autocorrelation structure of
firm growth rates. Identification of serially dependent growth rates would speak
against Gibrat’s hypothesis of random walk growth in firm size, but unfortunately
empirical studies of the autocorrelation structure of growth rates yield inconclu-
sive results: positive autocorrelations in firm growth rates are reported by Chesher
(1979) and Geroski et al. (1997) for the UK, and by Weiss (1998) for Austria, while
Boeri and Cramer (1992) and Goddard et al. (2002) observe negative serial corre-
lations in German and Japanese data. Other studies do not find any significant
autocorrelations in firm growth rates (see, for instance, Almus and Nerlinger, 2000;
Geroski and Mazzucato, 2002; Lotti et al., 2003), whereas Coad (2007) reports that
smaller French manufacturing firms exhibit negatively correlated growth rates, while
larger firms display positive autocorrelations. Our results regarding long-lived US
corporations indicate that there are no statistically significant autocorrelations in
firm growth rates. In contrast, profit rates do exhibit significantly positive autocor-
relations in our sample.

The empirical distribution of profit rates has previously been considered by
Alfarano et al. (2012), who propose a diffusion model to account for the cross-
sectional Laplace distribution of profit rates. Their model will guide our present
investigation, and relies on three parameters: a system-wide average rate of profit,
a system-wide dispersion measure of profit rates, and an idiosyncratic noise factor
that determines the persistence of abnormal profits for individual firms. The model
turns out to be consistent with the observed autocorrelation structure of profit rates,
and the model’s assumption of a common location and dispersion parameter across
all firms is reflected in the data as well. This strongly suggests that the process is a
useful description of the time evolution of individual firm profitability. Closed-form
solutions for the transient density and the autocorrelation function of the diffusion
process enable us to estimate the idiosyncratic noise levels with maximum likelihood,
and to compute the adjustment speed from abnormal profits for each firm.

2 Data
The data for this study are taken from Thomson Reuters’ Datastream and con-
sist of annual observations for the sales, operating income, total assets, number of
employees, and market value of publicly traded US companies. According to the
database, a total of 6, 860 firms have been present in the market for at least one
year from 1980–2011, and have operated in at least one of the 78 different sectors
listed in Table 1. Unlike many previous studies that typically focus on the manu-
facturing sectors (SIC codes 20 to 39), our present analysis considers a diverse set
of firms across the different sectors, and merely excludes banks (SIC codes 60 and
61) because their balance sheets exceed those in other sectors by at least an order
of magnitude.
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Table 1: Sector definitions and number of firms in each sector. Firms operating in more than
one sector are classified according to the business segment that generated the most revenue. The
fourth column refers to the whole dataset, while the fifth column represents long-lived firms.

Division SIC Sector No. of firms No. of long-lived firms

Agriculture,
forestry, and
fishing

01 Agricultural production - crops 20 1
02 Agricultural production - livestock and animal specialities 3 0
07 Agricultural services 4 0
08 Forestry 3 0
09 Fishing, hunting and trapping 2 0

Mining

10 Metal mining 139 4
12 Coal mining 27 1
13 Oil and gas extraction 336 15
14 Mining and quarrying of nonmetallic minerals, except fuels 19 1

Construction
15 Building construction - general contractors & operative builders 37 5
16 Heavy construction, except building construction - contractors 26 3
17 Special trade contractors 21 1

Manufacturing

20 Food and kindred products 141 20
21 Tobacco products 8 2
22 Textile mill products 19 2
23 Apparel, finished products from fabrics & similar materials 35 4
24 Lumber and wood products, except furniture 25 5
25 Furniture and fixtures 27 8
26 Paper and allied products 36 8
27 Printing, publishing and allied industries 71 15
28 Chemicals and allied products 636 36
29 Petroleum refining and related industries 31 10
30 Rubber and miscellaneous plastic products 55 6
31 Leather and leather products 19 3
32 Stone, clay, glass and concrete products 30 6
33 Primary metal industries 70 9
34 Fabricated metal products, except machinery & transport equipment 79 15
35 Industrial and commercial machinery and computer equipment 297 36
36 Electronic, electronical equipment & components, except computer equipment 555 33
37 Transportation equipment 147 24
38 Measuring, analyzing and controlling instruments 422 33
39 Miscellaneous manufacturing industries 59 4

Transportation,
communica-
tions, elec-
tric, gas,
and sanitary
services

40 Railroad transportation 9 5
41 Local, suburban transit and interurban highway passenger transportation 3 0
42 Motor freight transportation 30 3
44 Water transportation 41 2
45 Transportation by air 34 4
46 Pipelines, except natural gas 10 0
47 Transportation services 24 0
48 Communications 227 8
49 Electric, gas, and sanitary services 191 62

Wholesale trade 50 Wholesale trade-durable goods 145 10
51 Wholesale trade-nondurable goods 100 11

Retail trade

52 Building materials, hardware, garden supply and mobile home dealers 8 1
53 General merchandise stores 29 7
54 Food stores 25 5
55 Automotive dealers and gasoline service stations 29 1
56 Apparel and accessory stores 62 7
57 Home furniture, furnishings, and equipment stores 28 3
58 Eating and drinking places 85 7
59 Miscellaneous retail 92 3

Finance, in-
surance and
real estate

62 Security and commodity brokers, dealers, exchanges, and services 72 1
63 Insurance carriers 141 20
64 Insurance agents, brokers, and service 19 3
65 Real estate 85 1
67 Holding and other investment offices 334 11

Services

70 Hotels, rooming houses, camps, and other lodging places 42 1
72 Personal services 15 4
73 Business services 1018 19
75 Automotive repair, services, and parking 12 1
76 Miscellaneous repair services 3 1
78 Motion pictures 54 0
79 Amusement and recreation services 68 1
80 Health services 118 5
81 Legal services 2 0
82 Educational services 49 1
83 Social services 5 0
84 Museums, art galleries, and botanical and zoological gardens 1 0
86 Membership organizations 1 0
87 Engineering, accounting, research, management, and related services 187 4
89 Services, not elsewhere classified 27 0

Public ad-
ministration

92 Justice, public order, and safety 1 0
95 Administration of environmental quality and housing programs 1 0
97 National security and international affairs 8 0
99 Nonclassifiable establishments 26 0

Total 6860 522
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We focus on long-lived or “surviving” firms that we define as companies oper-
ating in the market for the entire time span from 1980 to 2011. This panel contains
522 companies that account for more than seventy percent of market capitalization,
total assets and employment in the sample, and are therefore a major determinant
of macroeconomic activity. The importance of such a ‘granular’ view of the econ-
omy has recently been forcefully argued by Gabaix (2011), who finds that about
one third of variations in GDP growth in the United States can be attributed to the
idiosyncratic destinies of the largest one hundred corporations in the US, and the
contribution of the firms in our sample must therefore be considerably larger.4

For each company, we compute annual (logarithmic) growth rates g for the
different measures of firm size S,

gi,t = log(Si,t+1)− log(Si,t) , (1)

where i runs over firms and t denotes time. We consider sales, total assets, number
of employees, and market value as proxies for firm size. Our proxy for the profit
rate p is the return on assets,

pi,t =
Ii,t
Ai,t

, (2)

where I denotes operating income, and A denotes total assets.

2.1 Descriptive statistics

To understand the distributional properties of growth and profit rates, it is instruc-
tive to consider the time evolution of the first four centralized moments of these
two quantities, shown in Figure 1. It is noteworthy that the mean and standard
deviation of profit rates are relatively stable compared to their growth rate counter-
parts, indicating that the distribution of profit rates remains stable during the period
1980-2011. The stability of the average profit rate becomes most apparent when we
look at the dot-com bubble and the recent financial crisis. During those years a
massive drop in market demand was reflected in sizable decreases in firm growth
and sometimes even in firm size, with the most extreme fluctuations occurring in
the financial market, that is in the growth of market value. The adverse effects
on firm profitability, however, appear very moderate in comparison to the growth
rate series.5 Although Figure 1 merely shows the average behavior, we do observe a
decline in growth rates that is more pronounced than the decline in profitability.6

As one might expect, the growth rate of market value turns out to be the most
volatile quantity. On average, its standard deviation exceeds the standard deviation
of profit rates by a factor greater than three. Employment growth appears more
volatile than growth in sales or total assets, yet the latter are still approximately
twice as volatile as profit rates. The third moments fluctuate around zero, indicating
that neither the distribution of growth nor profit rates is systemically skewed, in line

4This is particularly true in light of the power law distribution of firm sizes. We will address
concerns regarding a potential ‘survivorship bias’ in the final section.

5One could speculate that adverse demand shocks induce firms to reduce costs (number of em-
ployees) or the scope of their operations (total assets), thereby mitigating the effects of decreasing
sales on profitability.

6This non-trivial stability of the profit rate over time has also been pointed out by Mundt
et al. (2013), who analyze data from more than 30,000 publicly traded firms in more than forty
countries that account for about ninety percent of world GDP. Therefore we would like to think
that our present findings do not just reflect a peculiarity of the US data.
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Figure 1: Time evolution of the first four centralized moments of profit rates and the different
measures of firm growth rates. Lines between data points are a visual aid.

with previous empirical studies focusing on the profit or growth rates of long-lived
firms (see, for instance, Alfarano et al., 2012; Bottazzi and Secchi, 2003; Stanley
et al., 1996). The time evolution of the fourth moments indicates fat tails, yet
excess kurtosis seems to be more pronounced for growth than for profit rates, in
particular growth in number of employees and sales.7 The first four moments still
provide less information than the distributions of growth and profit rates, so we
examine their empirical densities next.

2.2 Empirical densities

In the recent literature on growth rate distributions, it is common practice to elim-
inate possible trends in firm size by considering the normalized (logarithmic) size

si,t = log(Si,t)−N−1
N∑
i=1

log(Si,t), (3)

which is obtained by subtracting the average (log) size of all long-lived firms from
the (log) size of company i. Then the normalized growth rate is defined as the first
difference of (3)

g̃i,t = si,t+1 − si,t. (4)

7It turns out that the most extreme kurtosis realizations in 1981, 1987, 1994 and 2006 originate
from the firms Vornado Realty Trust, Public Storage REIT, Harbinger Group, all with two-digit
SIC code 67 (holding and other investment offices), and Arabian American Development (petroleum
refining, SIC code 29).
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Figure 2: Pooled empirical densities of annual profit rates (left) and growth rates (right) for
522 publicly traded non-bank companies in the United States during the period 1980-2011. The
mode of the profit rate distribution is m̂ = 9.3%. Due to the normalization of the data, all growth
rate distributions are centered around zero. The solid curves show the Subbotin fit obtained by
maximum likelihood estimation of the parameters α and σ. Note the log-scale on the vertical axes.

Profit rates, on the other hand, are not normalized in any way and simply remain in
the raw form (2). In order to fit the empirical distributions of growth and profit rates
in our sample, we follow standard procedure in the field and employ the exponential
power distribution first suggested by Subbotin (1923). Its functional form reads

f(x) =
1

2σα1/αΓ(1 + 1/α)
exp

(
− 1

α

∣∣∣∣x−mσ
∣∣∣∣α) , (5)

where α, σ ∈ R+,m ∈ R, and Γ(·) denotes the Gamma function. The Subbotin is
characterized by three parameters: a location parameterm, a scale parameter σ, and
a shape parameter α that is responsible for qualitative differences in the distribution,
in particular its kurtosis. It is readily verified that the Subbotin density includes
the Laplacian (α = 1) and the Gaussian (α = 2) as special cases.

Figure 2 presents the pooled empirical densities of profit rates and normal-
ized growth rates, as well as the corresponding Subbotin fit obtained from maxi-
mum likelihood estimation of the parameters, reported in Table 2. The parameter
estimates of the pooled empirical distribution of profit rates are denoted by α̂, σ̂
and m̂. We find that the empirical densities of profit and growth rates are clearly
non-Gaussian, and can be reasonably well approximated by a symmetric Subbotin
distribution. The empirical density of profit rates exhibits a “linear tent-shape” on
a semi-log scale that is characteristic of the Laplace distribution. Except for market
value growth, the various growth rate distributions are more leptokurtic than the

Table 2: Maximum likelihood estimates of the Subbotin parameters α and σ. Standard errors
are shown in parentheses.

shape parameter α̂ scale parameter σ̂

profit rate 0.95 (0.01) 0.0570 (0.0005)
sales growth rate 0.74 (0.01) 0.0999 (0.0011)
total assets growth rate 0.76 (0.01) 0.0977 (0.0010)
employment growth rate 0.62 (0.01) 0.0806 (0.0009)
market value growth rate 1.01 (0.01) 0.2467 (0.0024)
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Figure 3: Year-by-year maximum likelihood estimates of the Subbotin shape and scale parameters
for profit (left panel) and growth rates (right panel). Error bars show two standard errors.

Laplace.8 The visual impression is confirmed by the estimates of the shape parame-
ter α, which are significantly smaller than unity for the growth of sales, total assets
and employment.9 In spite of large fluctuations in the mean and standard devia-
tion, the closest Laplace fit is obtained for growth rates of market value. Finally,
the estimates for the scale parameter confirm that growth rates (in particular for
market value) are more volatile than profit rates, while the growth of employment
is the most leptokurtic distribution of all.

To check whether our results are affected by the aggregation of data from
different years, we have also estimated α and σ for every single year during the period
1980-2011. As Figure 3 illustrates, there is a remarkable year-to-year stability of the
Laplace distribution for profit rates, with rather small fluctuations in the parameter
values over time. In 25 out of 32 years the estimated shape parameter is consistent
with a Laplace distribution at the 95% confidence level. Since maximum likelihood
estimates of the shape parameter are quite sensitive to outliers, we investigated the
relatively small values of the shape parameter in the last four years, and it turns out
that they are in fact due to very few extreme observations. Eliminating, for instance,
merely the two most extreme profit rates at both sides of the spectrum leads to

8Some studies (see, for instance Amaral et al., 1997; Bottazzi et al., 2011) investigate the
empirical distribution of “rescaled” growth rates that are divided by their standard deviations
conditional on firm size. To a certain extent, this procedure brings the parameters estimates closer
to a Laplace fit, yet we still obtain a significantly better Laplace fit for profit rates using merely
the raw data on the ratio of operating income to total assets in our dataset.

9Similar estimates of the Subbotin shape parameter are reported by Bottazzi et al. (2011) for
the distribution of sales growth rates of French manufacturing firms.
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estimates for α that cannot be distinguished from the Laplace benchmark (α = 1) at
the 95% confidence level. As far as growth rates are concerned, we can reject the null
hypothesis α = 1 in approximately 87% (84%) of cases when firm size is measured
in terms of sales (total assets), while in the case of employment growth rates the
Laplacian null hypothesis is rejected for every single year. The distribution of market
value growth rates is consistent with the Laplacian null hypothesis in 20 out of 31
years, however, the time evolution of the shape parameter is considerably more
volatile than for any other variable, in particular profit rates. Moreover, the scale
parameter of the growth rate distribution also exhibits pronounced fluctuations over
time, suggesting that the Laplacian nature of the pooled market value growth rate
distribution is an artefact of aggregation. We will continue under the assumption
that the Laplace distribution is a reasonable benchmark for the distribution of profit
rates, while growth rates are more leptokurtic.

2.3 Autocorrelations

Visual inspection of the line charts for a dozen randomly chosen time series of
growth and profit rates in our sample indicates that profit rates are substantially
more persistent than growth rates. To properly quantify this first impression, we
consider here the autocorrelation function (acf)

ρ(τ) =
γ(τ)

γ(0)
, (6)

where γ(·) denotes the autocovariance function, and τ is the time lag. Several
estimators have been proposed for the autocovariance function. If the true mean is
unknown, Hamilton (1994) suggests to use the estimator

γ̂(τ) = T−1
T−τ∑
t=1

(Xt − x̄T )(Xt+τ − x̄T ), (7)

where

x̄T = T−1
T∑
t=1

Xt (8)

is the mean of a time series Xt with length T . For the estimation of the autoco-
variance function, however, we must consider that the number of observations per
time series is quite small in our sample. In case of an autocorrelated process and
a small number of observations, using the sample mean in equation (7) leads to
a systematic underestimation of the true autocorrelation (see, for instance, Fuller,
1996). Intuitively, this negative bias stems from the fact that the autocorrelation
coefficient is a scaled sum of cross-products of deviations of Xt from its mean. For
each time series these deviations must sum to zero by construction, so that negative
deviations must eventually be followed by positive deviations on average and vice
versa. Therefore, the expected value of cross-products of deviations is negative (see
Campbell et al., 1996). In order to mitigate this negative bias, we replace the esti-
mated mean of each individual time series in (7) with the median m̂ of the pooled

9
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Figure 4: Box-and-whisker plot for the estimated autocorrelation functions of profit rates. The
boxes include the 25 percent quantile, the median, and the 75 percent quantile. The red dashed
lines show the 95 percent confidence interval under the null hypothesis of zero autocorrelations.
The interval has been computed as ±1.96/

√
T , where T = 32 is the length of the profit rate time

series.

empirical density, that is we always set x̄T = m̂ in estimating the auto-correlation
for each time series.10

Figure 4 presents a box-and-whisker plot for the 522 estimated autocorrela-
tion functions of the profit rate time series, while the corresponding results for the
various growth rates are illustrated in Figure 5. Our analysis suggests that statisti-
cally significant autocorrelations in growth rates can only be found in relatively few
time series: serial correlation seems to be completely absent in annual growth rates
of market value (in line with the weak-form efficient market hypothesis of Fama,
1991), which is consistent with many previous findings in the pertinent empirical
literature (see, for instance, Cont, 2001, for a review of the stylized facts of financial
returns). The annual growth rates of sales, total assets, and employment appear to
be slightly more persistent, yet the estimated autocorrelation coefficients cannot be
distinguished from zero at the 95% confidence level in the vast majority of cases.
If present at all, we find that autocorrelation in growth rates is very weak, consis-
tent with previous results by Bottazzi et al. (2001) and Bottazzi and Secchi (2005).
These findings can be interpreted as evidence against the “optimal size” hypothesis
since one should observe pronounced positive autocorrelations in growth rates as
firms approach some (system-wide) optimal size.

Profit rates, on the other hand, exhibit strong positive autocorrelations. Sim-
ilar results have been reported in the so-called persistence of profits literature, which
finds significantly positive first-order autoregressive coefficients in time-series regres-
sions of profit rates (for a recent take on the subject see, for instance, Cable and
Mueller, 2008). Notice, however, that these models typically approach the dynam-
ics of firm profitability via stationary AR(1) processes, and hence are misspecified
because their stationary distribution is Gaussian, yet the previous subsection shows
that empirical profit rate distributions are much closer to the Laplace. Since we

10The relevance of the negative bias for our subsequent diffusion model is illustrated in Figure 12
of appendix B. The reason why the particular substitution x̄T = m̂ is preferable will be clarified in
section 2.4, and is essentially based on the statistical equilibrium property of the profit rate time
series.
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(a) Growth in sales
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(b) Growth in total assets
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(c) Growth in number of employees
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(d) Growth in market value

Figure 5: Box-and-whisker plots for the estimated autocorrelation functions of firm growth rates.
The boxes include the 25% quantile, the median, and the 75% quantile. The red dashed lines show
the 95% confidence interval under the null hypothesis of zero autocorrelations. The interval has
been computed as ±1.96/

√
T , where T = 31 is the length of the growth rate time series.
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Figure 6: Location (mi) and dispersion (σi) of firm profit rates as a function of firm size. Points
represent binned data and have been computed in the following way: for each profit rate time series,
i = 1, . . . , 522, we calculate a firm’s median mi and mean absolute deviation σi. Then we split the
firms according to their median sizes into ten (almost) equipopulated bins. The points represent
the average mi and σi of the approximately 52 firms in each bin. Linear regressions indicate
that a statistically significant relationship between size and average profitability (or size and profit
dispersion) breaks down as soon as the first bin is excluded. Regression results are summarized in
Tables 4 and 5 of appendix C. The horizontal lines represent the unconditional estimates of the
location and dispersion parameters m̂ = 0.093 and σ̂ = 0.057 of the pooled empirical density of
profit rates. Error bars corresponding to one median absolute deviation are shown for sales and
number of employees (error bars for the other size definitions are nearly identical and have been
omitted for visual clarity).

cannot rule out a negative bias in the estimated autocorrelation coefficients of profit
rates, it seems imprudent to specify the number of statistically significant time lags
for the non-parametric analysis in Figure 4. Instead we will introduce the corre-
lation time of our subsequent diffusion model as an alternative measure of profit
persistence in section 4.1.

2.4 Size (in)dependence of m and σ

The law of proportionate effect is conventionally understood as a multiplicative
stochastic process whereby a firm’s current size is the result of a sequence of inde-
pendent growth shocks. According to the central limit theorem, the growth rate
distribution should then be Gaussian, and the corresponding firm size distribution
should be log-normal. While the hypothesis of proportionate random growth is use-
ful to explain the considerable heterogeneity in firm size, it still lacks an economic
justification, or as Sutton (1997, p. 42) puts it, “[t]here is no obvious rationale for
positing any general relationship between a firm’s size and its expected growth rate.”

There is, on the other hand, good reason for profit rates to be independent
of size.11 Profit rates are central to economic competition since they guide the
allocation of capital across competing uses in different sectors and industries. Capital
seeks out abnormally profitable activities independent of their size, because it is the
rate of return to invested capital (say, ten percent), and not the absolute return
(say, ten million currency units) that guides the allocation of capital. In the absence
of further information, one should therefore expect both the location parameter m

11That does not mean, however, that profit rates will be independent of each other. After all, the
distribution of profit rates is not Gaussian and therefore strongly suggests that the independence
assumption of the central limit theorem is violated.
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Figure 7: Location (mi) and dispersion (σi) of growth rates as a function of firm size. The binning
procedure is the same as in Figure 6. Least squares power law fits for the relation between the
dispersion of growth rates and size yield the following scaling exponents: −0.10 ± 0.02 for sales,
−0.06±0.01 for total assets, −0.10±0.02 for the number of employees, and −0.09±0.02 for market
value. The black solid lines in the right panel have slopes of -0.1 (growth in number of employees)
and -0.08 (growth in sales, total assets, and market value) respectively. Error bars corresponding
to one median absolute deviation are shown for sales and number of employees, while values for
the other size definitions are nearly identical and have been omitted for visual clarity.

of the profit rate distribution, and the dispersion parameter σ to be independent of
firm size. In order to judge how well the data reflect this prediction, we consider
the median and mean absolute deviation as the location and dispersion measures,
because they correspond to the maximum likelihood estimators of m and σ when
sampling from a Laplace distribution (see, for instance, Johnson et al., 1995; Kotz
et al., 2001). As illustrated in Figure 3, the Laplace is a reasonable benchmark for
the pooled profit rate distribution, and hence we denote the parameter estimates
from the pooled cross-sectional distribution by m̂ and σ̂.

To further fix notation, let mi and σi denote the median and mean absolute
deviation of the profit rate time series of firm i. Figure 6 suggests that both the
median and mean absolute deviation of profit rates are rather homogeneous across
different size classes, and are reasonably close to the unconditional values m̂ = 0.093
and σ̂ = 0.057 of the pooled empirical profit rate distribution. We cannot rule out
the existence of a small negative bias for the smallest size bin, yet this bias is caused
by around 15 to 25 out of 522 firms, that is by about 3 to 5 percent of all long-lived
companies.12 The visual impression that mi and σi are virtually the same for the
vast majority of firms is mostly confirmed by linear regressions, which yield slope
coefficients that cannot be distinguished from zero at the usual confidence levels
once the smallest size bin is excluded from the analysis (see Tables 4 and 5 in the
appendix for details). The intercept in the linear regressions provides rather limited
information since firm sizes span several orders of magnitude and are very large to
begin with, so that an extrapolation of any linear relationship to size zero is hardly
meaningful. In any case, the values of mi and σi in each bin cannot be distinguished
from m̂ and σ̂ at the usual significance levels.13 The remarkable similarity between

12Twelve (thirteen) of the twenty-five corporations with the lowest mi (highest σi) operate in
just four industries with SIC codes 13, 36, 38, and 67.

13Notice that one median absolute deviation error bars, as shown in Figure 6, correspond to
a 63% confidence interval when sampling from a Laplace distribution, while ±2σ ≈ 87% and
±3σ ≈ 95%.
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the parameters of the cross-sectional distribution and the individual location and
dispersion parameters of firm-level time series suggests that profit rates are ergodic
and stationary.

Figure 7 repeats the analysis for the growth rates of firm size. While the
location parameter of the growth rates is not markedly affected by size, we find a
clear inverse relation between the dispersion of growth rates and company size, in
line with previous studies that report power-laws with scaling exponents close to
−0.15 (see, for instance, Amaral et al., 1997; Bottazzi and Secchi, 2003; Stanley
et al., 1996). Fitting a power law to our data yields scaling exponents ranging from
−0.06 ± 0.01 for growth in total assets to −0.10 ± 0.02 for sales and employment
growth rates. In contrast to profit rates, removing the smallest size bin from the
growth rate analysis does not lead to significantly different slope coefficients,14 and
preserves the scaling of the dispersion of growth rates with firm size, which the
pertinent literature typically ascribes to firm diversification.

3 Model
The preceding analysis suggests that profit rates are characterized by a stationary
cross-sectional distribution, and that firm-level time series exhibit persistent auto-
correlations. In addition, the location and dispersion of the individual series are
independent of size and very close to the location and dispersion estimates m̂ and
σ̂ of the cross-sectional distribution. These properties of corporate profit rates es-
tablish a major difference to growth rates, and would seem to represent a more
immediate way to study the competitive behavior of corporations, at the very least
from a statistical point of view. Inspired by the empirical densities of cross-sectional
profit rates, Alfarano et al. (2012) have recently introduced a diffusion process with
a stationary Laplace distribution. We argue here that their process is not only con-
sistent with the observed cross-sectional distribution, but also with the time series
properties of surviving corporations, including their autocorrelation structures.

3.1 Diffusion

They propose the stochastic differential equation

dXt = −D
2σ

sign(Xt −m)dt+
√
DdWt, (9)

to model the dynamic evolution of firm profitability, where Xt denotes the profit
rate, σ is a dispersion parameter, sign(·) denotes the signum function, m is the
average rate of profit, and dWt are Wiener increments. The (square root of the)
constant term D determines the noise level in the (random) second term, but notice
that it also influences the strength of the reversion to m in the (deterministic) first
term. From an economic point of view, this part of the stochastic process reflects the
negative feedback mechanism of classical competition: capital will seek out sectors
or industries where the profit rate is higher than the economy-wide average, typically
attracting labor, raising output, and reducing prices and profit rates in the sector.
This provides an incentive for capital to leave the sector, leading in turn to higher

14To be precise, the cited papers consider the relationship between size and the standard devi-
ation of growth rates. We have also estimated the power law exponents for this relationship and
find that the results are very similar to the ones we report for the mean absolute deviation.
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prices and profit rates for the surviving firms. Notice that the first term (or drift
function) of the stochastic model (9) does not depend on the current profitability
of a firm. The second term (or diffusion function) is governed by random Wiener
increments, which incorporate all idiosyncratic factors affecting firm profitability. In
the particular case (9), the noise level

√
D is constant over time and independent of

the profit rate. Another particular feature of the diffusion (9) is that the drift and
the diffusion function are intertwined, since the variance of the idiosyncratic noise
term affects the speed of adjustment towards the system-wide average. It can be
interpreted in the sense that competition simultaneously generates fluctuations in
individual corporate destinies and convergence to the average rate of profit.

The notion of statistical equilibrium rests on the idea that all surviving cor-
porations are subject to the same stochastic process (9), with common parameters
m and σ that match the location and dispersion parameters of the stationary dis-
tribution of the process,

fS(x;m,σ) =
1

2σ
exp

(
−
∣∣∣∣x−mσ

∣∣∣∣) . (10)

It is easily verified that (10) is obtained from (5) for α = 1. The empirical analysis
in the preceding section therefore suggests that m and σ can be readily observed
from the pooled empirical density of profit rates, and would apply to the individual
destinies of all surviving corporations, regardless of their size or industry. In other
words, statistical equilibrium describes a situation where the profit rate of each
surviving corporation reverts to the same systemic rate of profit, and fluctuates
around it with the same (systemic) variability. That means that the only source of
firm-specific effects in the model originates from the diffusion coefficient D, because
the unconditional equilibrium distribution (10) does not depend on this parameter.
Accordingly, the statistical equilibrium model leaves a single degree of freedom for
idiosyncrasies in corporate profitability.

3.2 Transient density

A useful alternative representation of a diffusion process is provided by its transient
density (or Fokker-Planck equation, see Risken, 1996), which describes the time
evolution of the stochastic system by means of a second-order partial differential
equation,

∂p(x, t)

∂t
= − ∂

∂x
(A(x;D)p(x, t)) +

1

2

∂2

∂x2
(B(x;D)p(x, t)), (11)

where A(x;D) and B(x;D) are the drift and diffusion functions of the underlying
diffusion process, and

p(x, t) = f(x, t|x0, t0) (12)

denotes the conditional probability density for a transition from state x0 at time
t0 = 0 to state x at time t. For the particular diffusion (9) with zero mean, that is

Zt = Xt −m, (13)
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and initial condition f(z, 0|z0, 0) = δ(z − z0), where δ(·) denotes Dirac’s delta func-
tion, Toda (2012) demonstrates that a closed-form solution to (11) exists and is
given by

f(z, t|z0, 0) =
1√

2Dπt
· exp

(
−(z − z0)2

2Dt
− 1

2σ
(|z| − |z0|)−

D

8σ2
t

)
+

1

2σ
exp

(
− 1

σ
|z|
)

Φ

(
−|z|+ |z0| − (Dt)/(2σ)√

Dt

)
, (14)

where Φ(·) denotes the cumulative distribution function of the standard normal.
The closed-form solution of the Fokker-Planck equation in (14) allows us to estimate
the idiosyncratic diffusion coefficient by maximum likelihood, and it is also helpful
in finding a closed-form solution for the autocorrelation function of the diffusion
process (9).

3.3 Autocorrelation function

For stationary Markov processes, the autocorrelation function obeys the textbook
formula (see, for instance, van Kampen, 1992)

κ(τ) =

∫ ∞
−∞

dz

∫ ∞
−∞

dz0 zz0f(z, τ |z0, 0)fS(z0), (15)

where fS denotes the stationary density. Here the stationary density corresponds
to (the zero-mean-shifted version of) equation (10), and the transient density f
obeys (14). In this case, Touchette et al. (2010) show that the autocorrelation
function of (9) is characterized by an (asymptotic) exponential decay,15

κ(τ) =
1

6
√

2πDτ
σ2

exp

(
−Dτ

8σ2

){
√

πDτ
2σ2

2
exp

(
Dτ

8σ2

)
erfc


√

Dτ
σ2

2
√

2

− 1

 (16)

(
D3τ 3

8σ6
+

3D2τ 2

2σ4
− 6Dτ

σ2
+ 24

)
+
D2τ 2

2σ4
+ 24

}
.

Figure 11 in the appendix illustrates the probability density and autocor-
relation function of simulated realizations of the diffusion process in equation (9).
While the model is consistent with the distributional and autocorrelation proper-
ties of empirical profit rates, the good fit between the estimated and theoretical
autocorrelation function only occurs for time series that are sufficiently long. For
shorter time series, we do observe a negative bias in the estimated autocorrelation
function. This, however, implies that the persistence of abnormal profits is actu-
ally even stronger than Figure 4 suggests. If (9) provides a meaningful description
of firm profitability, we can avoid the negative bias in the persistence of abnormal
profits by using the theoretical autocorrelation function. Estimating the persistence
of abnormal profits then boils down to estimating the diffusion coefficient D from
the transient density (14).

15The pre-factor stems from the non-linear nature of the drift function in (9).
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4 Results
In the diffusion model (9), the persistence of profits is determined by the drift func-
tion, hence the speed of convergence towards the systemic rate of profit depends on
two parameters: the diffusion coefficient D and the scale parameter σ. In statistical
equilibrium all firms are subject to the same location and scale parameters m and σ,
so the diffusion coefficient D remains as the only source of idiosyncratic differences
in the profitability of surviving corporations. If σ is the same for all corporations,
then the noise level Di measures the persistence of abnormal profits directly, and
can be interpreted in the sense that firms with larger diffusion coefficients are prone
to larger shocks in their profitability, while their abnormal profits do not persist for
long. Conversely, firms with smaller diffusion coefficients are on average subject to
smaller shocks, while their abnormal profits are more persistent. In order to estimate
the diffusion coefficient for each profit rate series, we apply the maximum likelihood
method to the solution (14) of the Fokker-Planck equation.

4.1 Estimation of the diffusion coefficient

Given discrete annual observations, we estimate the diffusion coefficients for each
firm by numerically minimizing the negative log-likelihood

− logL(Di) = − log fS(zi,0)−
T−1∑
t=0

log f(zi,t+1|zi,t;Di) (17)

with respect to Di, where fS(zi,0) is the stationary Laplace density of some initial
state zi,0, and f(zi,t+1|zi,t;Di) is the solution of the transient density (14) evaluated
for each observation zi,t+1 = pi,t+1 − m̂ at time t + 1 conditional on the previous
observation zi,t at time t. Equipped with the estimated coefficients, we then compute
the speed of adjustment (or characteristic time scale or relaxation time) of the profit
diffusion from (16) as the number of years that are necessary for the autocorrelation
function to reach the value one half.16

Figure 8 presents the estimated diffusion coefficients and corresponding half-
life of abnormal profits, where we observe a pronounced variability in the diffusion
coefficients that translates into heterogeneous time horizons for the dissipation of
abnormal profits. The median diffusion coefficient is Dmed ≈ 1.1× 10−3, implying a
standard deviation of the idiosyncratic noise in the diffusion equation of

√
Dmed ≈

3.3% per annum, which corresponds to a longitudinal relaxation time of about nine
years. For some firms, however, the diffusion coefficients are very small and imply
relaxation times that are much longer than the length of the observed time series.
Analyzing these firms in more detail, we find that considerable fractions are made up
by utilities or insurance companies, with total assets far above the sample average,
high capital intensity, and relatively steady profit series in comparison to other
sectors. At this point we can merely speculate that entry and exit barriers in these
sectors, probably stemming from large capital requirements, prevent a smooth and
frictionless reallocation of capital in search of profit rate equalization.

Firms with relatively short relaxation times, on the other hand, dispropor-
tionately often operate in business sectors with SIC code 36 (electronical equipment),

16We consider the half-life definition in order to account for the non-linear nature of the diffusion
process. The usual choices that are typically based on the dominant exponential term would in
fact neglect such effects.
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Figure 8: Sorted estimates of the diffusion coefficient (left axis) and corresponding relaxation
times of abnormal profits (right axis) for long-lived US corporations. The latter shows the number
of years that are necessary for the autocorrelation function (15) to reach the value 1/2. The
arrows indicate the median noise level of around 3.3% p.a., and the corresponding median half-life
of abnormal profits (around 9 years).

38 (measuring instruments), and 13 (oil and gas extraction). Intuitively, the latter
is characterized by a high degree of uncertainty, while large changes in profitability
for the former two sectors might be caused by operating leverage effects.17

4.2 What determines the diffusion coefficient?

The observed heterogeneity in the diffusion coefficient raises the question whether
firm or industry characteristics affect the persistence of abnormal profits. We will
focus on what are perhaps merely the most obvious attributes, and consider here the
impact of size, diversification, and capital intensity on the persistence of abnormal
profits.

4.2.1 Firm size

While the data suggest that size basically does not influence the rate of profit, we
can ask whether size instead has an impact on the diffusion coefficient? On average
larger corporations appear more stable and are affected by smaller idiosyncratic
shocks to their profitability than smaller entities. The double-logarithmic plot in
Figure 9 suggests that the standard deviation of the idiosyncratic noise scales with
size according to a power law √

D ∼ αS−β. (18)

17Operating leverage increases with the proportion of fixed in relation to variable operating
costs. During demand surges, high operating leverage could well lead to larger profits, but it also
makes firms more vulnerable as they cannot readily cut expenses to absorb plummeting demand
when most costs are tied up in machinery, plants, real estate, or distribution networks.
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Figure 9: Standard deviation of the idiosyncratic noise term in the Laplace diffusion vs firm
size on double-logarithmic scale. Error bars corresponding to one median absolute deviation are
shown for sales and number of employees, while the values for the other quantities are very similar
and have been omitted for visual clarity. Least-squares power-law fits yield a scaling exponent of
0.17 ± 0.03 for sales, 0.18 ± 0.03 for total assets, 0.16 ± 0.02 for the number of employees, and
0.16± 0.03 for market value. The black solid lines are regression fits with slopes of -0.16 (left) and
-0.17 (right).

To avoid distortions arising from booms and busts in single years, we calculated the
mean size of each surviving corporation during the period 1980-2011,18 and divided
the sorted values into deciles, calculating the median size and

√
Di in each decile.

Fitting a power relation
log
√
D = logα− β · s (19)

to the data yields least squares estimates of β = 0.17±0.03 for sales, β = 0.18±0.03
for total assets, β = 0.16 ± 0.02 for the number of employees, and β = 0.16 ± 0.03
for market value. All estimates are significant at the one percent level and indicate
an inverse relationship between size and the noise level, so the larger a corporation
the more persistent its abnormal profits tend to be.

4.2.2 Diversification

In order to proxy the degree of corporate diversification, we consider Datastream’s
product segment decomposition of corporate revenues. The data associate segment-
level SIC codes with the corresponding revenues of each company, and we use the
product segment data to compute three common measures of corporate diversifica-
tion: segment count, Herfindahl index, and entropy.

The first measure literally counts the number of sectors a company operates
in. Since Datastream merely provides up to ten business segments per company, we
decided to group business sectors on a 3-digit SIC level. Table 3 illustrates that 66
of the 522 corporations concentrate their business activity in a single sector, while
the remaining 456 companies are diversified across different sectors. Around half of
the sample operates in four business segments or more. Considering the median D
in the third column of Table 3, we observe a tendency for the diffusion coefficient to

18Taking either the latest available observation of firm size or the maximum value per firm leads
to very similar results.
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decrease with the number of business segments. To further quantify this impression,
we have tested for differences between medians in the different groups. Comparing
firms operating in one business segment with companies that are active in four (or
more) sectors, a Mann-Whitney test rejects the null hypothesis that the average
diffusion coefficient of non-diversified corporations is smaller or equal to that of
diversified ones at the five percent level.

The business segment count, however, lacks information on the relative im-
portance of the different segments, that is on how much the respective revenues in
these segments contribute to a corporation’s overall sales. Therefore, Herfindahl
suggests a diversification index that computes the sum of squared shares of each
segment’s contribution to total sales

Hi =
n∑
j=1

P 2
ij, (20)

where Pij is the percentage share of company i’s sales that is generated in business
segment j. Notice that the measure decreases with increasing diversification. Al-
ternatively, the entropy methodology can be applied to calculate a sales diversity
index:19

Ei = −
n∑
j=1

Pij logPij. (21)

Unlike the Herfindahl index, which weighs the share of each business segment by
itself, the entropy measure weighs each Pj by the logarithm of 1/Pj, so that it is
more sensitive to small sales shares than the Herfindahl index, and largely ignores
small differences in large sectors. The entropy measure in equation (21) increases
with increasing diversification.

The Spearman rank correlation coefficient for the relationship between
√
Di

and the Herfindahl-index is 0.17, indicating a moderate negative effect of diversifi-
cation on the adjustment speed of the process.20 Based on the Spearman rank test,

Table 3: Median diffusion coefficient (and its square root) for firms that operate in a certain
number of business segments (3-digit SIC level). The persistence of abnormal profits seems to
increase with the business segment count of a corporation.

Business segment count Number of firms Dmed

√
Dmed

1 66 0.001764 0.042
2 99 0.001681 0.041
3 97 0.001369 0.037
4 101 0.000841 0.029
5 70 0.000961 0.031
6 49 0.000784 0.028
7 29 0.001024 0.032
8 11 0.000625 0.025

19For instance, Horowitz (1970) uses entropy as a measure of industry concentration, while
Jacquemin and Berry (1979) use the concept to measure corporate diversification.

20Again, notice that more diversification leads to a reduction of the Herfindahl index, thus a
positive correlation between Di and the Herfindahl index implies that the speed of convergence
toward the average profit rate decreases with increasing diversification.
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Figure 10: Standard deviation of the idiosyncratic noise as a function of asset turnover, measured
as the ratio of sales to total assets. Ordinary least squares regression of

√
Di on asset turnover

yields an intercept of 0.0227± 0.004 and a slope parameter of 0.0112± 0.003. Both parameters are
statistically significant at the one percent level; error bars represent one median absolute deviation.

we find that the null hypothesis of
√
Di and the Herfindahl index being independent

or negatively correlated can be rejected at the one percent level.
In case of the entropy measure, the correlation coefficient equals −0.15 and

the null hypothesis that
√
Di and the entropy measure are not negatively correlated

is also rejected at the 1 percent level. Furthermore, we have regressed the square root
of the diffusion coefficient on these two diversification measures and find coefficients
of 0.0246 ± 0.006 for the Herfindahl-index and −0.0142 ± 0.0038 for the entropy
measure. Both coefficients are statistically significant at the one percent level.

Overall, the results suggest that there is a moderate negative correlation
between the diffusion coefficient and firm diversification, which is nevertheless quite
robust with respect to several diversification measures. Abnormal profits would thus
seem to be more persistent for more diversified corporations.

4.2.3 Intensity of capital

The long relaxation times for insurance and utilities corporations indicate that cap-
ital intensity has an impact on the persistence of abnormal profits. According to
the DuPont identity, the profit rate of a firm i can be decomposed into the product
of its profit margin and asset turnover,

pi,t =
Ii,t
Si,t
· Si,t
Ai,t

, (22)

where (the inverse of) the latter measures capital intensity. The coefficient for the
rank correlation between asset turnover and the noise level

√
Di equals 0.27, implying

that abnormal profits are more persistent for capital intensive corporations (with
a correspondingly low asset turnover). A one-sided Spearman rank test rejects the
null hypothesis of nonpositive correlations at the one percent level.

Figure 10 provides an alternative illustration of the relationship between as-
set turnover and the noise level. We calculate the average asset turnover for each
corporation during the period 1980-2011, group them into deciles, and calculate the
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median for each bin as well as the median of the associated noise levels
√
Di. An

ordinary least squares regression yields an intercept of 0.0227 ± 0.004 and a slope
parameter of 0.0112 ± 0.003 that are both statistically significant at the one per-
cent level. In summary the abnormal profits of capital intensive corporations would
appear to be more persistent.

5 Discussion
The possibly most fundamental questions, pertaining to the origin of the particular
values of the systemic rate of profit and its dispersion, still remain unanswered here.
Yet the data suggest that statistical equilibrium provides a reasonable first approx-
imation to the profitability of surviving corporations. Conditional on survival, US
corporations generate an average rate of profit of about nine percent, along with
a rather tranquil playground that disperses profit rates by less than six percent
on average. Therefore it would appear that survival by itself warrants some sort
of autopilot mode for corporations, in which they cannot do better but, perhaps
surprisingly, also not worse than the system-wide average. Consequently, the id-
iosyncratic characteristics of corporations are independent of the systemic rate of
profit and merely have an impact on how quickly abnormal profits are dissipated.

There are undeniably second-order effects that are not accounted for by the
diffusion model. A substantial fraction of the deviations reported in sections 2
and 4 can be traced to a relatively small number of corporations in even fewer
industries: about a dozen corporations with SIC codes 13 (oil and gas extraction),
36 (electronic equipment excluding computers), 38 (measuring instruments), and 67
(holding and other investment offices) account for half the deviations, which stem
from the high volatility and leptokurtosis in the respective corporate time series.
At the other end of the spectrum the largest corporations, like insurance carriers
and utility companies, exhibit the least volatility and kurtosis in their profit rate
series, and therefore account for most of the deviations in the relaxation time of
abnormal profits. Recall that their estimated adjustment speeds exceed the length
of the observed series by almost an order of magnitude. So Baumol’s idea that the
most capitalized corporations are somehow privileged in a competitive environment
lives on in a modified form, however not relating to the rate of profit itself, but
rather to the long persistence of abnormal profits in capital intensive industries.21

Pronounced deviations from the diffusion model might help to identify imper-
fections in the competitive environment, and potentially have antitrust implications.
Since the diffusion model rests on the classical idea of a perpetual reallocation of
capital in search of profit rate equalization, large empirical deviations in profit per-
sistence should essentially be tied to frictions in the reallocation of capital.

Finally, and maybe most controversially, we would like to argue that concerns
of a ‘survivorship bias’ are perhaps the wrong way of framing the empirical analysis.
After all, Gabaix’s granular view of aggregate fluctuations in the US economy firmly
suggests that the surviving corporations in our sample account for the major share
of macroeconomic fluctuations, and are thus at the very least an interesting group
of firms to study in its own right. Since everything in our analysis is conditional
on (the uncertain and unpredictable) survival of corporations, one might instead

21Notice that stakeholders in these industries, once their profitability actually happens to be
below the systemic rate, might not consider it such a privilege after all.
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wonder whether there is a systemic cost for the survival of a certain number of
large corporations? Does capital need to be churned, do other corporations have to
die, in order to observe the tranquil dissipation of excess profits for a certain (and
ultimately interchangeable) set of surviving corporations? And if so, how much
capital needs to be metabolized in the process?
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Figure 11: Simulation of the model by Alfarano et al. (2012). The left panel illustrates the
probability density (black dots) of 1000 simulated time series with common parameters σ = 0.057,
D = 0.001, and zero mean. The empirical distribution of the simulated data fits the probability
density function of the Laplace distribution with identical location and scale parameters, which is
represented by the black solid line. The right panel shows the estimated autocorrelation function
of the diffusion process (black dots) together with the theoretical autocorrelation function, repre-
sented by the black sold line. The estimated autocorrelation function has been averaged over 1000
realizations of the diffusion process with time series length T = 10000.
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Figure 12: Autocorrelation function of the Laplace diffusion with parameters σ = 0.057,m = 0
and D = 0.001 as a function of time series length T . Autocorrelation coefficients are calculated
using the mean of each time series and are averaged over 1000 realizations of the process. For
comparison, we also show the bias-corrected estimate that emerges when m replaces the time
series mean in the autocovariance function (black stars).

Simulations of the diffusion process (9) reproduce the stationary density and
autocorrelation profile on a sufficiently long time scale, as illustrated in Figure 11.
To demonstrate the relevance of the negative bias in the estimated autocorrelation
function for shorter time scales, we have done Monte Carlo simulations of the Laplace
diffusion in equation (9) with different time series length T . We then calculated the
autocovariance function using the estimator suggested in equation (7). Figure 12
shows that subtracting the time series mean leads to a significant negative bias in
the estimated autocorrelation function which becomes smaller if the length of the
time series increases. In fact, for short time series as in our data (T ≈ 30), this par-
ticular shape of the autocorrelation function results from an exponentially decaying
autocorrelation function and a bias which is linear in the time lag τ . Subtracting m
instead of the sample mean of each time series leads to a considerable reduction of
the bias, without eliminating it completely. Thus, we also computed the correlation
time based on the analytical solution of the autocorrelation function which lead to
more accurate estimates of profit persistence if one subscribes to the model (9).
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C Regression results

Table 4: Estimates for the slope coefficient in linear ordinary least squares regressions of the
location parameter m on the logarithm of firm size. Standard errors are shown in parantheses.
Stars indicate statistical significance at the 1 (∗∗∗), 5 (∗∗), and 10 (∗) percent level, respectively.

Size measure Slope including first bin Slope excluding first bin

Profit rates
Sales 0.0054∗∗ (0.0020) 0.0021 (0.0019)
Total assets −0.0011 (0.0017) −0.0030 (0.0019)
No. of employees 0.0072∗∗ (0.0025) 0.0045 (0.0029)
Market value 0.0055∗∗∗ (0.0016) 0.0042∗ (0.0019)

Growth rates
Sales −0.0010 (0.0012) −0.0018 (0.0015)
Total assets −0.0002 (0.0016) −0.0016 (0.0020)
No. of employees 0.0013 (0.0008) 0.0009 (0.0011)
Market value 0.0107∗∗∗ (0.0029) 0.0054∗∗(0.0021)

Table 5: Estimates for the slope coefficient in linear ordinary least squares regressions of the
logarithm of the dispersion parameter σ on the logarithm of firm size. Standard errors are shown
in parantheses. Stars indicate statistical significance at the 1 (∗∗∗), 5 (∗∗), and 10 (∗) percent level,
respectively.

Size measure Slope including first bin Slope excluding first bin

Profit rates
Sales −0.0875∗∗ (0.0334) −0.0210 (0.0184)
Total assets −0.1015∗∗ (0.0303) −0.0506∗ (0.0232)
No. of employees −0.0831∗∗ (0.0301) −0.0267 (0.0198)
Market value −0.0602 (0.0361) −0.0200 (0.0412)

Growth rates
Sales −0.1044∗∗∗ (0.0165) −0.0821∗∗∗ (0.0175)
Total assets −0.0634∗∗∗ (0.0125) −0.0525∗∗∗ (0.0149)
No. of employees −0.0979∗∗∗ (0.0189) −0.0721∗∗∗ (0.0196)
Market value −0.0913∗∗∗ (0.0154) −0.0737∗∗∗ (0.0174)
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