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Abstract 

We propose a simple agent-based version of Paul de Grauwe’s chaotic exchange 

rate model. In particular, we assume that each speculator follows his own 

technical and fundamental trading rule. Moreover, a speculator’s choice between 

these two trading philosophies depends on his individual assessment of current 

market circumstances. Our agent-based model setup is able to explain a number 

of important stylized facts of foreign exchange markets, including bubbles and 

crashes, excess volatility, fat-tailed return distributions, serially uncorrelated 

returns and volatility clustering. A stability and bifurcation analysis of its 

deterministic skeleton provides us with useful insights that foster our 

understanding of exchange rate dynamics. 
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1 Introduction 

According to the triennial survey of the Bank for International Settlements (2019), 

the foreign exchange market is the largest financial market in the world. 

Moreover, its trading volume largely reflects speculative orders. Questionnaire 

studies, summarized by Menkhoff and Taylor (2007), reveal that speculators rely 

on technical and fundamental trading rules when determining their orders. 

Technical trading rules derive trading signals from past price movements. Due to 

their extrapolative nature, technical trading rules typically trigger buy (sell) signals 

when they detect positive (negative) exchange rate trends. Fundamental analysis 

presumes that the exchange rate will return towards its fundamental value, 

suggesting to buy (sell) undervalued (overvalued) currencies. Foreign exchange 

market models by, for instance, Frankel and Froot (1986), Kirman (1991), 

Westerhoff (2003a), de Grauwe and Grimaldi (2005, 2006a), Manzan and 

Westerhoff (2007), Beine et al. (2009), de Grauwe and Kaltwasser (2012), 

Federici and Gandolfo (2012), de Grauwe and Markiewicz (2013), Goldbaum and 

Zwinkels (2014), Gori and Ricchiuti (2018) and Gardini et al. (2022), are based 

on such observations. The overarching message of the latter contributions is that 

the interplay between speculators relying on technical and fundamental trading 

rules accounts for a substantial part of the dynamics of exchange rates.1 

In this paper, we revisit the seminal exchange rate model proposed by de Grauwe 

and Dewachter (1992, 1993) and de Grauwe et al. (1993). For ease of exposition, 

we refer to their work hereafter as “Paul de Grauwe’s chaotic exchange rate 

model”. Let us recall the main assumptions on which this model rests.2 First of 

all, the exchange rate is driven by the expectations of two types of speculators, 

namely chartists and fundamentalists. Chartists base their expectations on past 

movements of the exchange rate, using extrapolative forecasting rules. In 

contrast, fundamentalists predict that the exchange rate will converge towards its 

                                                           
1 Zeeman (1974), Beja and Goldman (1980), Day and Huang (1990), Chiarella (1992), Lux (1992), 

Brock and Hommes (1998) and Farmer and Joshi (2002) propose similar chartist-fundamentalist 

models to study the dynamics of stock markets. 
2 The aforementioned contributions share the same view with respect to the functioning of foreign 

exchange markets. Here, we follow the setup presented in Chapter 3 of the book by de Grauwe 

et al. (1993), which is the most elementary but also the most prominent contribution.  
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fundamental value. Moreover, speculators’ perceptions of the fundamental value 

of the exchange rate are normally distributed around its true fundamental value. 

Finally, the market impact of chartists and fundamentalists depends on market 

circumstances. In particular, the market impact of fundamental analysis increases 

with mispricing in the foreign exchange market.   

We can outline the main mechanism that causes endogenous exchange rate 

dynamics in Paul de Grauwe’s chaotic exchange rate model as follows. Chartists’ 

extrapolative expectations are destabilizing. Since chartists dominate the foreign 

exchange market near its fundamental value, their behavior tends to drive the 

exchange rate away from its fundamental value. Fundamentalists have stabilizing 

regressive expectations. These expectations become increasingly relevant for 

the determination of the exchange rate as its mispricing worsens, pushing back 

the exchange rate towards its fundamental value. Since this development 

automatically leads to a revival of technical analysis in the foreign exchange 

market, the exchange rate remains in constant motion. Interactions between 

chartists and fundamentalists may even lead to chaotic exchange rate dynamics. 

In this case, the exchange rate oscillates almost erratically around its 

fundamental value, an outcome that triggers, at least in a stylized way, bubbles 

and crashes and excess volatility. 

The goal of our paper is to show that Paul de Grauwe’s chaotic exchange rate 

model is more powerful than previously appreciated. In fact, we demonstrate that 

a simple agent-based version of Paul de Grauwe’s chaotic exchange rate model 

is able to replicate a number of important stylized facts of foreign exchange 

markets. Within our agent-based model setup, each speculator places orders 

based on his own technical and fundamental trading rule. We model this aspect 

by assuming that speculators’ technical and fundamental trading rules contain 

two elements – a common deterministic element and an agent-specific random 

element. Moreover, a speculator’s choice between technical and fundamental 

analysis is probabilistic and depends on his individual assessment of current 

market circumstances. To be precise, the probability that a speculator opts for 

fundamental analysis increases with the distance between the exchange rate and 

what he regards as its true fundamental value. Clearly, each speculator has his 

own view about the true fundamental value of the exchange rate. Finally, 
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speculators also manage their speculative investment position. Overall, there are 

three agent-specific sources of randomness in our agent-based model setup, 

related to speculators’ probabilistic rule-selection behavior, their perception of the 

exchange rate’s fundamental value and their actual trading rules. Simulations 

reveal that our agent-based model setup is able to produce bubbles and crashes, 

excess volatility, fat-tailed return distributions, serially uncorrelated returns and 

volatility clustering.  

A stability and bifurcation analysis of the deterministic skeleton of our agent-

based model setup helps us to understand why this is the case. As it turns out, 

the exchange rate of the deterministic skeleton of our agent-based model setup 

is due to a three-dimensional nonlinear map, which, in turn, possesses a unique 

steady state at which the exchange rate is equal to its fundamental value. The 

local stability of this steady state depends, amongst other things, on how 

aggressively speculators rely on their trading rules. Simulations furthermore 

reveal that the map’s nonlinearities may produce chaotic exchange rate 

dynamics, similar to those observed in Paul de Grauwe’s chaotic exchange rate 

model. Essentially, we observe that the exchange rate runs away from (towards) 

its fundamental value when chartists (fundamentalists) dominate the foreign 

exchange market. 

Activating the three agent-specific random elements of our agent-based model 

setup, simulated exchange rates start to mimic the behavior of actual exchange 

rates much more closely. The key functioning of our agent-based model remains 

as just described. Due to speculators’ probabilistic rule-selection behavior, their 

perception of the exchange rate’s fundamental value and their reliance on trading 

rules that contain random elements, however, the path of the exchange rate now 

resembles a random walk. Nevertheless, distinct bubbles may emerge when the 

majority of speculators opt for technical analysis. During these periods, we 

typically witness volatility outbreaks, occasionally associated with extreme 

changes in the exchange rate. The latter require that speculators receive similar 

trading signals. When fundamentalists regain control over the foreign exchange 

market, bubbles disappear and the volatility of the exchange rate decreases. As 

in the deterministic skeleton of our agent-based model setup, speculators 

eventually return to technical analysis. Investigating the trading activity of 
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individual speculators reveals that their inventory management behavior has a 

stabilizing impact on the dynamics of the foreign exchange market.  

Against this backdrop, we are tempted to draw the following general conclusions. 

While the modeling of realistic exchange rate dynamics apparently requires the 

acknowledgement of some kind of stochastic influence factors, the main forces 

accountable for the dynamics of the exchange rate are deeply rooted in the 

nonlinear interplay between chartists and fundamentalists. In this sense, we 

argue that it is important to develop stylized chartist-fundamentalist models that 

offer new perspectives on the emergence of endogenous exchange rate 

dynamics. Of course, it is also necessary to check whether stochastic versions of 

these models have the power to explain the dynamics of the exchange rate in 

greater detail.  

We continue as follows. In Section 2, we present a number of stylized facts of 

foreign exchange markets. In Section 3, we propose a simple agent-based 

version of Paul de Grauwe’s chaotic exchange rate model. In Section 4, we study 

the behavior of this model’s deterministic skeleton. In Section 5, we demonstrate 

that our agent-based model setup is able to mimic the behavior of actual 

exchange rates. Section 6 concludes our paper. Appendix A contains a number 

of robustness checks. 

 

2 Stylized facts of foreign exchange markets 

In this section, we recall five important stylized facts of foreign exchange markets. 

As we will see, actual exchange rates give rise to (i) bubbles and crashes, (ii) 

excess volatility, (iii) fat-tailed return distributions, (iv) serially uncorrelated returns 

and (v) volatility clustering. Our attention focuses on the behavior of three major 

exchange rates, namely the US dollar versus the euro, the US dollar versus the 

British pound and the Japanese yen versus the US dollar, downloaded from the 

FRED database of the Federal Reserve Bank of St. Louis. All three time series 

run from January 1999 to September 2022 and comprise 5,959 daily 

observations. For more background on the statistical properties of actual 

exchange rates and tools to quantify them, we refer the reader to de Vries (1994), 

Guillaume (1997), de Grauwe and Grimaldi (2006b) and Westerhoff (2009). 

https://en.wikipedia.org/wiki/Federal_Reserve_Bank_of_St._Louis
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Figure 1 illustrates the behavior of the USD/EUR exchange rate. The black line 

in the first panel of Figure 1 presents the evolution of the USD/EUR exchange 

rate in the time domain; the gray line marks its mean. The boom-bust behavior of 

the USD/EUR exchange rate is truly remarkable. Between 1999 and 2003, for 

instance, the USD/EUR exchange rate decreased by around 30 percent. Over 

the next five years, the USD/EUR exchange rate not only recovered from this 

sharp decline, but also increased by nearly 100 percent. The second panel of 

Figure 1 reports the corresponding returns, defined as changes in log exchange 

rates in percent. The average absolute return of the USD/EUR exchange rate is 

about 0.44 percent, i.e. the USD/EUR exchange rate changed by 0.44 percent 

per trading day over this period. The largest and smallest returns for this time 

series are equal to 4.62 percent and -3.00 percent, respectively. Most economists 

regard such exchange rate fluctuations as excessive. The black dots in the third 

panel of Figure 1 visualize the log probability density function of normalized 

returns of the USD/EUR exchange rate; the gray line depicts what we would 

expect to see from standard normally distributed returns. Obviously, the returns 

of the USD/EUR exchange rate are not normally distributed. In particular, their 

distribution displays fat tails. The fourth panel of Figure 1 shows autocorrelation 

functions of raw returns (gray line) and absolute returns (black line) for the first 

100 lags. Almost all autocorrelation coefficients of raw returns are within their 95 

percent confidence intervals (thin gray lines), reflecting the random-walk-like 

nature of the USD/EUR exchange rate path. In contrast, the autocorrelation 

coefficients of absolute returns are significant for more than 100 lags, a clear sign 

of volatility clustering. Of course, the fact that periods of low volatility alternate 

with periods of high volatility is already visible from the second panel of Figure 1.  

*** Figures 1 to 3 about here *** 

Figures 2 and 3 show the same statistical properties for the USD/GBP and the 

JPY/USD exchange rate, respectively. Note that these time series display 

bubbles and crashes, excess volatility, fat-tailed return distributions, serially 

uncorrelated returns and volatility clustering, too. Besides the visual evidence 

witnessed so far, we report in Table 1 estimates of key summary statistics for our 

exchange rate data. The first block of Table 1 contains the smallest return, the 

largest return and the first four moments of the distribution of the returns. The 
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second and third blocks of Table 1 present selected autocorrelation coefficients 

for raw returns and absolute returns, respectively. In Section 5, we explore the 

extent to which our simple agent-based version of Paul de Grauwe’s chaotic 

exchange rate model is able to replicate these statistical properties.  

*** Table 1 about here *** 
 

3 A simple agent-based exchange rate model 

In this section, we propose a simple agent-based model of the foreign exchange 

market that is consistent with the key assumptions of Paul de Grauwe’s chaotic 

exchange rate model. However, we deviate from that model as follows. First, our 

starting point for modeling the foreign exchange market is that a market maker 

adjusts the exchange rate with respect to speculators’ excess demand.3 Second, 

our agent-based model contains a discrete number of heterogeneous 

speculators. Third, each speculator places orders based on his own technical and 

fundamental trading rule. Fourth, a speculator’s choice between these two trading 

philosophies depends on his individual assessment of current market 

circumstances. Fifth, each speculator has his own view about the true 

fundamental value of the exchange rate. Sixth, in order to prevent speculators’ 

buying and selling activity from causing unreasonably large speculative 

investment positions in the foreign exchange market, we also consider their 

inventory management behavior. As we will see in Section 4, however, the 

dynamics of the deterministic skeleton of our stochastic agent-based model setup 

is very close to the original dynamics. 

Let us turn to the details of our agent-based model setup. As already mentioned, 

we consider two types of market participants – a market maker and 𝑁𝑁 

heterogeneous speculators. The market maker mediates speculators’ orders out 

of equilibrium and adjusts the exchange rate in response to their excess demand. 

We denote the order placed by speculator 𝑖𝑖 in period 𝑡𝑡 by 𝐷𝐷𝑡𝑡𝑖𝑖. Then, the market 

                                                           
3 Such a modeling scenario is in line with the empirical evidence provided by Evans and Lyons 
(2002), according to which the order flow is the dominant driver of the exchange rate. A market-
maker scenario is also used in the exchange rate models by Manzan and Westerhoff (2007), de 
Grauwe and Kaltwasser (2012) and Gardini et al. (2022). In de Grauwe et al. (1993), the exchange 
rate depends directly on speculators’ exchange rate expectations. 
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maker quotes the log exchange rate for period 𝑡𝑡 + 1 as  

𝑆𝑆𝑡𝑡+1 = 𝑆𝑆𝑡𝑡 + 𝑚𝑚∑ 𝐷𝐷𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=1 ,                                                                                           (1) 

where parameter 𝑚𝑚 > 0 indicates how strongly the market maker changes the 

exchange rate with respect to speculators’ order imbalances. Obviously, the 

market maker increases the exchange rate when speculators’ buying orders 

exceed their selling orders, and vice versa.  

Although the log fundamental value 𝐹𝐹 of the exchange rate is constant, 

speculators have heterogeneous views about it. Within Paul de Grauwe’s chaotic 

exchange rate model, these views are normally distributed around the true 

fundamental value of the exchange rate. We formalize speculator 𝑖𝑖’s perception 

of the log fundamental value in period 𝑡𝑡 as  

𝐹𝐹�𝑡𝑡𝑖𝑖 = 𝐹𝐹 + 𝜎𝜎𝐹𝐹𝜀𝜀𝑡𝑡𝑖𝑖,                                                                                                         (2) 

where 𝜀𝜀𝑡𝑡𝑖𝑖~𝑁𝑁(0,1). Parameter 𝜎𝜎𝐹𝐹 > 0 regulates the dimension of speculators’ 

perception errors. However, speculators display no systematic prediction error. 

In a given period, speculator 𝑖𝑖 uses either a technical or a fundamental trading 

rule. The probability that speculator 𝑖𝑖 will pick the technical trading rule is equal 

to 

𝜋𝜋𝑡𝑡
𝑖𝑖,𝐶𝐶 = 1

1+𝑠𝑠0+𝑠𝑠1(𝐹𝐹�𝑡𝑡
𝑖𝑖−𝑆𝑆𝑡𝑡)2

,                                                                                                     (3) 

where 𝑠𝑠0 and 𝑠𝑠1 are positive switching parameters. Naturally, the probability that 

speculator 𝑖𝑖 will opt for fundamental analysis is then 

𝜋𝜋𝑡𝑡
𝐹𝐹,𝑖𝑖 = 1 − 𝜋𝜋𝑡𝑡

𝐶𝐶,𝑖𝑖.                                                                                                  (4) 

Let us discuss the rationale behind (3) and (4). If the exchange rate is near its 

fundamental value, speculator 𝑖𝑖 chooses the technical trading rule with a 

relatively high probability, hoping to benefit from exchange rate trends. As 

mispricing of the foreign exchange market increases, however, speculator 𝑖𝑖 is 

more and more convinced that a fundamental market correction is about to set 

in. In such an environment, speculator 𝑖𝑖 selects the fundamental trading rule with 

a relatively high probability.4 Parameters 𝑠𝑠0 and 𝑠𝑠1 influence the bell-shaped 

                                                           
4 The same argument is also used in the empirically supported chartist-fundamentalist models by 

Westerhoff (2003a), Franke and Westerhoff (2012, 2016) and Schmitt and Westerhoff (2017a, 

2021). 
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function of 𝜋𝜋𝑡𝑡
𝐶𝐶,𝑖𝑖 as follows. Parameter 𝑠𝑠0 marks the maximum probability with 

which speculator 𝑖𝑖 will rely on technical analysis. For 𝑠𝑠0 = 0.05 and 𝐹𝐹�𝑡𝑡𝑖𝑖 = 𝑆𝑆𝑡𝑡, for 

instance, we obtain 𝜋𝜋𝑡𝑡
𝑖𝑖,𝐶𝐶 ≈ 0.95. In contrast, larger values of parameter 𝑠𝑠1 make it 

more likely that speculator 𝑖𝑖 will switch to fundamental analysis as the 

misalignment in the foreign exchange market increases.  

The actual order placed by speculator 𝑖𝑖 in period 𝑡𝑡 depends on two components 

– a speculative component and an inventory control component. Let 𝐷𝐷𝑡𝑡
𝐶𝐶,𝑖𝑖 and 𝐷𝐷𝑡𝑡

𝐹𝐹,𝑖𝑖 

stand for speculator 𝑖𝑖’s speculative order component, as suggested by his 

technical and fundamental trading rule, and 𝐼𝐼𝑡𝑡𝑖𝑖 for his inventory control operations. 

We formalize speculator 𝑖𝑖’s order placement in period 𝑡𝑡 as follows 

𝐷𝐷𝑡𝑡𝑖𝑖 = �
𝐷𝐷𝑡𝑡
𝐶𝐶,𝑖𝑖 + 𝐼𝐼𝑡𝑡𝑖𝑖   𝑤𝑤𝑖𝑖𝑡𝑡ℎ  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝜋𝜋𝑡𝑡

𝐶𝐶,𝑖𝑖

𝐷𝐷𝑡𝑡
𝐹𝐹,𝑖𝑖 + 𝐼𝐼𝑡𝑡𝑖𝑖  𝑤𝑤𝑖𝑖𝑡𝑡ℎ  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝜋𝜋𝑡𝑡

𝐹𝐹,𝑖𝑖 .                                                                             (5) 

Two aspects deserve attention here. First, speculators’ probabilistic rule-

selection behavior adds a random element to the dynamics of the exchange rate. 

Second, probabilities 𝜋𝜋𝑡𝑡
𝐶𝐶,𝑖𝑖 and 𝜋𝜋𝑡𝑡

𝐹𝐹,𝑖𝑖 depend on the perceived fundamental value 

𝐹𝐹�𝑡𝑡𝑖𝑖, which, in turn, is subject to normally distributed random shocks. 

Speculators’ fundamental trading rules presume that the exchange rate will return 

to its fundamental value. Hence, we formulate speculator 𝑖𝑖’s fundamental 

exchange rate forecast for period 𝑡𝑡 + 1 in period 𝑡𝑡 as 

𝐸𝐸𝑡𝑡
𝐹𝐹,𝑖𝑖(𝑆𝑆𝑡𝑡+1) = 𝑆𝑆𝑡𝑡 + 𝑓𝑓′(𝐹𝐹�𝑡𝑡𝑖𝑖 − 𝑆𝑆𝑡𝑡).                                                                                              (6) 

Parameter 0 < 𝑓𝑓′ < 1 denotes speculators’ expected mean reversion speed. 

Since the fundamental trading rule suggests submitting buying (selling) orders 

when the fundamental forecasting rule indicates that the exchange rate increases 

(decreases), we express the speculative order component triggered by 

speculator 𝑖𝑖’s fundamental trading rule as 

𝐷𝐷𝑡𝑡
𝐹𝐹,𝑖𝑖 = 𝑓𝑓 ′′�𝐸𝐸𝑡𝑡

𝐹𝐹,𝑖𝑖(𝑆𝑆𝑡𝑡+1) − 𝑆𝑆𝑡𝑡� = 𝑓𝑓�𝐹𝐹�𝑡𝑡𝑖𝑖 − 𝑆𝑆𝑡𝑡� = 𝑓𝑓(𝐹𝐹 − 𝑆𝑆𝑡𝑡) + 𝑓𝑓𝜎𝜎𝐹𝐹𝜀𝜀𝑡𝑡𝑖𝑖,                                     (7) 

where 𝑓𝑓 ′′ > 0 and 𝑓𝑓 = 𝑓𝑓 ′𝑓𝑓 ′′ > 0. Due to speculator 𝑖𝑖’s perception of the exchange 

rate’s fundamental value, his fundamental trading rule entails a random element. 

Technical trading rules rely on past movements of the exchange rate as an 

indicator of market sentiment, which are extrapolated into the future. Although de 

Grauwe et al. (1993) discuss several technical trading rules, their main attention 
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focuses on a rule that bets on an increase (decrease) in the exchange rate when 

a short-term moving average of the exchange rate crosses a long-term moving 

average of the exchange rate from below (above). Following their lead, we 

formalize the exchange rate’s short-term moving average by 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 = (𝑆𝑆𝑡𝑡 − 𝑆𝑆𝑡𝑡−1) 

and the exchange rate’s long-term moving average by 𝐿𝐿𝑆𝑆𝑆𝑆𝑡𝑡 = 0.5(𝑆𝑆𝑡𝑡 − 𝑆𝑆𝑡𝑡−2). 

According to Murphy’s (1999) survey on technical analysis in financial markets, 

there is a myriad of different technical forecasting rules. To capture at least part 

of the variety of the technical predictors applied in foreign exchange markets, we 

add a random element to speculator 𝑖𝑖’s technical forecasting rule. Together, this 

results in 

𝐸𝐸𝑡𝑡
𝐶𝐶,𝑖𝑖(𝑆𝑆𝑡𝑡+1) = 𝑆𝑆𝑡𝑡 + 𝑐𝑐′(𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 − 𝐿𝐿𝑆𝑆𝑆𝑆𝑡𝑡) + 𝜎𝜎𝐶𝐶′𝛿𝛿𝑡𝑡𝑖𝑖,                                                (8) 

where 𝛿𝛿𝑡𝑡𝑖𝑖~𝑁𝑁(0,1).5 The relevance of the deterministic and random element of 

speculator 𝑖𝑖’s technical forecasting rule hinges on parameters 𝑐𝑐′ > 0 and 𝜎𝜎𝐶𝐶′ > 0, 

respectively. Since speculator 𝑖𝑖’s technical trading rule suggests submitting 

buying (selling) orders when the exchange rate is expected to increase 

(decrease), we arrive at 

𝐷𝐷𝑡𝑡
𝐶𝐶,𝑖𝑖 = 𝑐𝑐′′(𝐸𝐸𝑡𝑡

𝐶𝐶,𝑖𝑖(𝑆𝑆𝑡𝑡+1) − 𝑆𝑆𝑡𝑡) = 𝑐𝑐�(𝑆𝑆𝑡𝑡 − 𝑆𝑆𝑡𝑡−1) − 0.5(𝑆𝑆𝑡𝑡 − 𝑆𝑆𝑡𝑡−2)� + 𝜎𝜎𝐶𝐶𝛿𝛿𝑡𝑡𝑖𝑖,                      (9) 

where 𝑐𝑐′′ > 0, 𝑐𝑐 = 𝑐𝑐′𝑐𝑐′′ > 0 and 𝜎𝜎𝐶𝐶 = 𝜎𝜎𝐶𝐶′𝑐𝑐′′ > 0. Obviously, chartists’ trading 

behavior contains a random element, too. 

Over time, speculators’ fundamental and technical trading behavior may lead to 

the build-up of larger speculative investment positions in the foreign exchange 

market. In fact, speculator 𝑖𝑖’s position in the foreign exchange market evolves as  

𝑃𝑃𝑡𝑡𝑖𝑖 = 𝑃𝑃𝑡𝑡−1𝑖𝑖 + 𝐷𝐷𝑡𝑡𝑖𝑖.                                                                                                     (10) 

Due to the strong variability of the exchange rate, such positions may entail a 

substantial level of risk, which is why speculators may seek to limit their 

speculative investment positions. We formalize speculators’ inventory 

                                                           
5 Alternatively, it is possible to set up a more elaborate agent-based model in which speculators 

have the choice between a large number of technical trading rules, such as in LeBaron et al. 

(1999). Our modeling strategy, which is also used by Westerhoff and Dieci (2006), Franke and 

Westerhoff (2012) and Schmitt and Westerhoff (2017a, 2017b), may be regarded as a convenient 

shortcut to take account of the complexity associated with technical analysis, without risk of 

creating an unfathomable black box.    



11 
 

management behavior as follows. Let 𝑃𝑃�𝑖𝑖 stand for speculator 𝑖𝑖’s desired (long-

run) speculative investment position in the foreign exchange market. To manage 

his inventory, speculator 𝑖𝑖 engages in inventory control orders 

𝐼𝐼𝑡𝑡𝑖𝑖 = 𝑑𝑑(𝑃𝑃�𝑖𝑖 − 𝑃𝑃𝑡𝑡−1𝑖𝑖 ),                                                                                                 (11) 

where parameter 0 < 𝑑𝑑 < 1 marks the strength of speculator 𝑖𝑖’s inventory 

management. For instance, speculator 𝑖𝑖 submits inventory control buying orders 

in addition to his speculative buying or selling orders if his current speculative 

investment position in the foreign exchange market falls short of his desired 

position. While speculators are obviously risk-averse, our agent-based model 

setup implies that the market maker is risk-neutral. Since the market maker 

absorbs speculators’ excess demand, his position is the opposite of speculators’ 

aggregate speculative investment positions, say  

𝑆𝑆𝑡𝑡 = −∑ 𝑃𝑃𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=1 .                                                                                              (12) 

As we will see in Section 5, one consequence of speculators’ inventory 

management is that the market maker’s position remains bounded, too. For this 

reason, we abstain from modeling the market maker’s inventory management. 

Instead, we assume that the market maker is risk-neutral, which makes his 

exchange rate quotation economically consistent.6 

Before we continue, we note that our simple agent-based version of Paul de 

Grauwe’s chaotic exchange rate model has – besides the exchange rate’s log 

fundamental value 𝐹𝐹, the total number of speculators 𝑁𝑁 and speculators’ desired 

inventory positions 𝑃𝑃�𝑖𝑖 – eight additional parameters that need to be set to 

simulate its dynamics. These are 𝑚𝑚 > 0, 𝑐𝑐 > 0, 0 < 𝑑𝑑 < 1, 𝑓𝑓 > 0, 𝑠𝑠0 > 0, 𝑠𝑠1 > 0, 

𝜎𝜎𝐹𝐹 > 0 and 𝜎𝜎𝐶𝐶 > 0. Moreover, the model features three agent-specific sources of 

randomness, associated with speculators’ perception of the true fundamental 

value, their probabilistic switching between technical and fundamental analysis 

and their actual trading rules.  

 

                                                           
6 Unfortunately, market participants’ inventory management is not yet well understood and, 

consequently, deserves more attention in the future. See Westerhoff (2003b), Franke and Asada 

(2008), Zhu et al. (2009), Carraro and Ricchiuti (2015) and Bargigli (2021) for some preliminary 

work in this direction. 
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4 Properties of the deterministic skeleton  

To facilitate the understanding of the functioning of our simple agent-based model 

setup, we first explore the behavior of its deterministic skeleton. Setting 𝜎𝜎𝐶𝐶 =

𝜎𝜎𝐹𝐹 = 0 implies that (1) speculators correctly perceive the exchange rate’s true 

fundamental value, i.e.  

𝐹𝐹�𝑡𝑡𝑖𝑖 = 𝐹𝐹                                                                                                              (13) 

and that (2) speculators’ technical and fundamental trading rules lose their agent-

specific stochastic elements. For analytical tractability, we furthermore do not 

keep track of the behavior of individual speculators, an aspect that also precludes 

modeling their inventory management behavior. Hence, a speculator’s technical 

and fundamental trading rules reduce to 

𝐷𝐷𝑡𝑡𝐶𝐶 = 𝑐𝑐((𝑆𝑆𝑡𝑡 − 𝑆𝑆𝑡𝑡−1) − 0.5(𝑆𝑆𝑡𝑡 − 𝑆𝑆𝑡𝑡−2)),                                                                    (14) 

and 

𝐷𝐷𝑡𝑡𝐹𝐹 = 𝑓𝑓(𝐹𝐹 − 𝑆𝑆𝑡𝑡),                                                                                           (15) 

respectively. Assuming that there is a continuum of speculators with mass 𝑁𝑁, we 

can express the market shares of speculators relying on technical and 

fundamental analysis as 

𝑊𝑊𝑡𝑡
𝐶𝐶 = 1

1+𝑠𝑠0+𝑠𝑠1(𝑆𝑆𝑡𝑡−𝐹𝐹)2                                                                                                  (16) 

and 

𝑊𝑊𝑡𝑡
𝐹𝐹 = 1 −𝑊𝑊𝑡𝑡

𝐶𝐶,                                                                                                (17) 

respectively. Consequently, the equation that describes the market maker’s 

exchange rate adjustment simplifies to  

𝑆𝑆𝑡𝑡+1 = 𝑆𝑆𝑡𝑡 + 𝑚𝑚𝑁𝑁(𝑊𝑊𝑡𝑡
𝐶𝐶𝐷𝐷𝑡𝑡𝐶𝐶 + 𝑊𝑊𝑡𝑡

𝐹𝐹𝐷𝐷𝑡𝑡𝐹𝐹),                                                                         (18) 

which completes the description of the model setup.  

Combining (13) to (18) yields the deterministic skeleton of our agent-based model 

setup. Using the auxiliary variables 𝑋𝑋𝑡𝑡+1 = 𝑆𝑆𝑡𝑡 and 𝑌𝑌𝑡𝑡+1 = 𝑋𝑋𝑡𝑡, we obtain the three-

dimensional nonlinear deterministic map 

𝑆𝑆 ≔

⎩
⎨

⎧𝑆𝑆𝑡𝑡+1 = 𝑆𝑆𝑡𝑡 + 𝑚𝑚𝑁𝑁�𝑐𝑐�(𝑆𝑆𝑡𝑡−𝑋𝑋𝑡𝑡)−0.5(𝑆𝑆𝑡𝑡−𝑌𝑌𝑡𝑡)�−𝑓𝑓(𝐹𝐹−𝑆𝑆𝑡𝑡)
1+𝑠𝑠0+𝑠𝑠1(𝑆𝑆𝑡𝑡−𝐹𝐹)2 + 𝑓𝑓(𝐹𝐹 − 𝑆𝑆𝑡𝑡)�

𝑋𝑋𝑡𝑡+1 = 𝑆𝑆𝑡𝑡                                                                                            
𝑌𝑌𝑡𝑡+1 = 𝑋𝑋𝑡𝑡                                                                                            

,               (19) 

which determines the behavior of the exchange rate. Parameters 𝑚𝑚, 𝑁𝑁, 𝑐𝑐, 𝑓𝑓, 𝑠𝑠0 

and 𝑠𝑠1 are positive; parameter 𝐹𝐹 is unrestricted. 
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In the following, we explore map 𝑆𝑆. Straightforward computations reveal that map 

𝑆𝑆 possesses the unique (fundamental) steady state 

𝐹𝐹𝑆𝑆𝑆𝑆 = (𝑆𝑆̅,𝑋𝑋�,𝑌𝑌�) = (𝐹𝐹,𝐹𝐹,𝐹𝐹).                                                                                           (20) 

Accordingly, the exchange rate corresponds to its fundamental value when the 

dynamics is at rest. The Jacobian matrix of map 𝑆𝑆 at the steady state 𝐹𝐹𝑆𝑆𝑆𝑆 reads 

𝐽𝐽(𝐹𝐹𝑆𝑆𝑆𝑆) = �
1 + 𝑚𝑚𝑁𝑁𝑐𝑐−2𝑠𝑠0𝑓𝑓𝑚𝑚𝑁𝑁

2(1+𝑠𝑠0)
−𝑚𝑚𝑁𝑁𝑐𝑐

1+𝑠𝑠0

𝑚𝑚𝑁𝑁𝑐𝑐
2(1+𝑠𝑠0)

1 0 0
0 1 0

�.                                                                     (21) 

From (21), we obtain the characteristic polynomial  

𝑃𝑃(𝜆𝜆) = 𝜆𝜆3 + 𝑎𝑎1 𝜆𝜆2 + 𝑎𝑎2𝜆𝜆 + 𝑎𝑎3,                                                                                   (22) 

where 𝑎𝑎1 = −1 − 𝑚𝑚𝑁𝑁𝑐𝑐−2𝑠𝑠0𝑓𝑓𝑚𝑚𝑁𝑁
2(1+𝑠𝑠0)

, 𝑎𝑎2 = 𝑚𝑚𝑁𝑁𝑐𝑐
1+𝑠𝑠0

 and 𝑎𝑎3 = − 𝑚𝑚𝑁𝑁𝑐𝑐
2(1+𝑠𝑠0)

. Using the stability and 

bifurcation results by Lines et al. (2020) and Gardini et al. (2021), we can 

conclude that the steady state 𝐹𝐹𝑆𝑆𝑆𝑆 of map 𝑆𝑆 loses its local stability if one of the 

following three stability conditions becomes broken: (i) 1 + 𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎3 > 0; (ii) 

1 − 𝑎𝑎1 + 𝑎𝑎2 − 𝑎𝑎3 > 0; and (iii) 1 − 𝑎𝑎2 + 𝑎𝑎1𝑎𝑎3 − 𝑎𝑎32 > 0. Moreover, a separate 

violation of stability condition (i), (ii) or (iii), while the other two stability conditions 

hold, is associated with the emergence of a fold, a flip and a Neimark-Sacker 

bifurcation, respectively. Stability condition (i) is always satisfied, as can easily 

be checked. Stability condition (ii) results in 

𝑓𝑓 < 2(1+𝑠𝑠𝑜𝑜+𝑚𝑚𝑁𝑁𝑐𝑐)
𝑠𝑠0𝑚𝑚𝑁𝑁

.                                                                                                           (23) 

If this inequality becomes violated, the steady state 𝐹𝐹𝑆𝑆𝑆𝑆 of map 𝑆𝑆 loses its local 

stability via a flip bifurcation, giving rise to zigzag exchange rate dynamics. In 

contrast, stability condition (iii) requires that 

𝑐𝑐 < 2(1+𝑠𝑠0)2

𝑚𝑚𝑁𝑁�1+𝑠𝑠0(1+𝑓𝑓𝑚𝑚𝑁𝑁)�
.                                                                                            (24) 

If this inequality becomes violated, the steady state 𝐹𝐹𝑆𝑆𝑆𝑆 of map 𝑆𝑆 loses its local 

stability via a (supercritical) Neimark-Sacker bifurcation, giving rise to quasi-

periodic exchange rate dynamics. Hence, the exchange rate becomes unstable 

when speculators rely too heavily on their technical or fundamental trading 

signal.7 Stability conditions (i) to (iii) determine when a steady state of a three-

                                                           
7 Note that an increase in parameter 𝑁𝑁, reflecting an increase in the mass of speculators, may 

lead to a violation of stability conditions (ii) and (iii). Future work may try to endogenize parameter 
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dimensional map loses its local stability. To derive necessary and sufficient 

conditions for such a steady state to be locally stable, it is relevant to check a 

fourth stability condition, namely (iv) |𝑎𝑎3| < 1. Since the latter condition is 

automatically met when (24) holds, (23) and (24) constitute necessary and 

sufficient conditions for the steady state 𝐹𝐹𝑆𝑆𝑆𝑆 to be locally stable. 

The following proposition summarizes our analytical results. 

Proposition 1: The (fundamental) steady state 𝐹𝐹𝑆𝑆𝑆𝑆 = (𝑆𝑆̅,𝑋𝑋�,𝑌𝑌�) = (𝐹𝐹,𝐹𝐹,𝐹𝐹) of map 

𝑆𝑆 is locally stable if and only if inequalities 𝑓𝑓 < 2(1+𝑠𝑠𝑜𝑜+𝑚𝑚𝑁𝑁𝑐𝑐)
𝑠𝑠0𝑚𝑚𝑁𝑁

 and 𝑐𝑐 < 2(1+𝑠𝑠0)2

𝑚𝑚𝑁𝑁�1+𝑠𝑠0(1+𝑓𝑓𝑚𝑚𝑁𝑁)�
 

jointly hold. A separate violation of the first inequality results in a flip bifurcation 

and the onset of zigzag dynamics. A separate violation of the second inequality 

is associated with a (supercritical) Neimark-Sacker bifurcation and the birth of 

quasi-periodic dynamics.  

Let us illustrate the dynamics of the deterministic skeleton of our agent-based 

model setup. The flip bifurcation scenario, while theoretically possible, requires 

extreme values for parameter 𝑓𝑓. Setting 𝑠𝑠𝑜𝑜 = 0.1, for instance, implies that 

parameter 𝑓𝑓 has to be at least 20 times larger than parameter 𝑐𝑐. We therefore 

focus on the (supercritical) Neimark-Sacker bifurcation scenario. Figure 4 

displays bifurcation diagrams for parameter 𝑐𝑐, assuming that 𝐹𝐹 = 0, 𝑚𝑚 = 1, 𝑁𝑁 =

1, 𝑓𝑓 = 0.3, 𝑠𝑠0 = 0.05 and 𝑠𝑠1 = 2,500. The first panel of Figure 4 is based on initial 

conditions 𝑆𝑆0 = 0.01, 𝑋𝑋0 = 0 and 𝑌𝑌0 = 0, while the second panel of Figure 4 is 

based on 𝑆𝑆0 = −0.01, 𝑋𝑋0 = 0 and 𝑌𝑌0 = 0. The third panel of Figure 4 combines 

the outcomes of both bifurcation diagrams. We increase parameter 𝑐𝑐 from 0 to 

10 in 250 discrete steps, omitting for each value of parameter 𝑐𝑐 a transient period 

of 5,000 observations. As is visible from the bifurcation diagrams, the log 

exchange rate converges towards its log fundamental value for 0 < 𝑐𝑐 ≲ 2.07. In 

line with Proposition 1, a (supercritical) Neimark-Sacker bifurcation occurs at 𝑐𝑐 ≈

2.07, associated with the emergence of endogenous quasi-periodic exchange 

rate dynamics. As parameter 𝑐𝑐 increases further, additional bifurcations arise and 

the exchange rate becomes more volatile. The deterministic skeleton of our 

                                                           
𝑁𝑁. For instance, Blaurock et al. (2018) demonstrate that market entry waves may cause volatility 

outbursts in financial markets.  
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agent-based model setup may also give rise to coexisting attractors, e.g. for 4 <

𝑐𝑐 < 6. Overall, Figure 4 underlines the destabilizing nature of technical trading. 

*** Figure 4 about here *** 

Figure 5 presents the dynamics of the deterministic skeleton of our agent-based 

model setup for 𝐹𝐹 = 0, 𝑚𝑚 = 1, 𝑁𝑁 = 1, 𝑐𝑐 = 10, 𝑓𝑓 = 0.3, 𝑠𝑠0 = 0.05 and 𝑠𝑠1 = 2,500. 

Note that this parameter setting corresponds to the uttermost right scenarios 

depicted in Figure 4 in which 𝑐𝑐 = 10. The first two panels of Figure 5 show the 

development of the log exchange rate and the corresponding weights of chartists 

in the time domain. These two panels are useful to understand what is going on 

in the foreign exchange market. Note that the majority of speculators opt for the 

technical trading rule when the log exchange rate is near its log fundamental 

value. Since the trading behavior of chartists is destabilizing, their orders push 

the log exchange rate away from its log fundamental value. However, when the 

log exchange rate is far away from the log fundamental value, speculators favor 

the fundamental trading rule. The orders placed by fundamentalists have a 

stabilizing effect on the dynamics of the foreign exchange market and drive the 

log exchange rate closer towards its log fundamental value. As the log exchange 

rate returns to its log fundamental value, chartists regain control over the foreign 

exchange market and the above pattern repeats itself, albeit in an intricate 

manner. Indeed, the dynamics of the exchange rate is chaotic. We can conclude 

this from the fact that a strange attractor appears when we plot the log exchange 

rate in period 𝑡𝑡 + 1 against the log exchange rate in period 𝑡𝑡. See the third panel 

of Figure 5.8 

*** Figure 5 about here *** 

 

5 Matching the stylized facts of foreign exchange markets 

In the previous section, we have seen that the deterministic skeleton of our agent-

                                                           
8 Despite some differences in the model setup, as listed at the beginning of Section 3, the 

dynamics depicted in Figure 5 closely resembles that presented in de Grauwe et al. (1993). See 

Mignot and Westerhoff (2022) for an analytical treatment of the original model proposed by de 

Grauwe et al. (1993). Moreover, they demonstrate that agent-based versions of that model may 

produce complex endogenous dynamics, including noisy chaotic attractors.  
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based model setup may generate endogenous exchange rate dynamics. From a 

qualitative perspective, this dynamics demonstrates that Paul de Grauwe’s 

chaotic exchange rate model is able to explain the boom-bust behavior of foreign 

exchange markets. Moreover, the simulated exchange rate evolves quite 

erratically and, since the fundamental value of the exchange rate is constant, we 

may regard its fluctuations as excessive. The goal of this section is to show that 

our agent-based model setup, as specified in Section 3, has the potential to mimic 

the behavior of actual exchange rates in greater detail.  

Figures 6 to 9 show three representative simulation runs of our agent-based 

model setup. The simulation runs contain 6,000 observations, reflecting a time 

span of 24 years with 250 trading days per year, comparable to the actual 

exchange rate data depicted in Figures 1 to 3. The underlying parameter setting 

is given by 𝐹𝐹 = 0, 𝑁𝑁 = 100, 𝑃𝑃�𝑖𝑖 = 0 for all 𝑖𝑖, 𝑚𝑚 = 1, 𝑐𝑐 = 0.002, 𝑑𝑑 = 0.005, 𝑓𝑓 =

0.00001, 𝑠𝑠0 = 0.05, 𝑠𝑠1 = 2600, 𝜎𝜎𝐹𝐹 = 0.01 and 𝜎𝜎𝐶𝐶 = 0.0013.  

A few comments are in order:  

• Simulations indicate that parameter 𝐹𝐹 merely controls the level around which 

exchange rate fluctuations occur. For ease of exposition, we assume that the 

log fundamental value is equal to 𝐹𝐹 = 0.  

• It is clear from our analysis in Section 4 that parameter 𝑚𝑚 is a scaling 

parameter, which is why we set 𝑚𝑚 = 1.  

• We also assume that speculators prefer a net position of zero in the foreign 

exchange market. Hence, we fix 𝑃𝑃�𝑖𝑖 = 0 for all speculators.  

• Moreover, 𝑑𝑑 = 0.005 reflects a half-life of speculators’ inventory position of 

about 138 trading periods, roughly equivalent to 6 months.  

• Since questionnaire evidence by Menkhoff and Taylor (2007) reveals that a 

small fraction of speculators always rely on fundamental analysis, we decided 

to set 𝑠𝑠0 = 0.05.  

• To reduce the computational burden of our simulations, we focus on 𝑁𝑁 = 100 

speculators, representing, for instance, large institutional players in the foreign 

exchange market. Keeping track of all the quantities captured by building 

blocks (1) to (11) requires simulating 1,001 model equations for 𝑁𝑁 = 100 

speculators. Doubling the number of speculators would increase the number 
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of model equations to 2,001 equations, and so on. However, Appendix A 

contains a number of robustness checks that suggest that our agent-based 

model setup may also yield reasonable exchange rate dynamics when the 

number of speculators increases to 𝑁𝑁 = 1,000 and 𝑁𝑁 = 2,500.9 

• We identified the remaining five model parameters, i.e. 𝑐𝑐, 𝑓𝑓, 𝑠𝑠1, 𝜎𝜎𝐹𝐹 and 𝜎𝜎𝐶𝐶, via 

a cumbersome trial and error process with the aim of matching the behavior of 

actual exchange rates.  

• Initial conditions for the log exchange rate and speculators’ positions are equal 

to zero, i.e. identical to their steady-state values. Exchange rate fluctuations 

are set in motion via the random elements of our agent-based model setup. 

Let us start with Figure 6. Its first panel shows that the exchange rate (black line) 

circles in a complex fashion around its fundamental value (gray line). Note that 

the exchange rate’s boom-bust behavior may span several years, although such 

behavior can also be rather short-lived. The second panel of Figure 6 reports the 

corresponding return dynamics. Since the fundamental value is constant, 

changes in the exchange rate are excessive. The third panel of Figure 6 reveals 

that the distribution of the returns possesses fat tails. Indeed, extreme exchange 

rate movements occur more frequently than warranted by a comparable normal 

distribution. The gray line in the fourth panel of Figure 6 depicts the 

autocorrelation coefficients of raw returns. Since the autocorrelation coefficients 

of raw returns are not significant, the evolution of the exchange rate resembles a 

random walk. The black line in the fourth panel portrays the autocorrelation 

function of absolute returns. Obviously, there is significant evidence of volatility 

clustering.  

*** Figures 6 to 8 about here *** 

                                                           
9 We performed all computations using Mathematica 12.2. The last degree of freedom we had 

was in initializing Mathematica’s random number generator. To prevent manipulation, we used 

random seeds 1, 2 and 3 to generate three representative simulation runs. The computation of a 

single simulation run took about 12 seconds for 𝑁𝑁 = 100, 120 seconds for 𝑁𝑁 = 1,000 and 300 

seconds for 𝑁𝑁 = 2,500, which prohibited the estimation of our agent-based model setup with 

numerically intensive tools such as the method of simulated moments. It goes without saying that 

we explored many more simulation runs – the ones we discuss in our paper appeared to us to be 

representative. 



18 
 

The simulated exchange rate depicted in Figure 6 oscillates within a rather static 

band that is centered around its constant fundamental value. We conduct two 

further experiments to address this issue. In Figure 7, we model the evolution of 

the log fundamental value of the exchange rate in the form of a random walk, i.e.  

𝐹𝐹𝑡𝑡 = 𝐹𝐹𝑡𝑡−1 + 𝜎𝜎𝜂𝜂𝜂𝜂𝑡𝑡,                                                                                                (25) 

with 𝜂𝜂𝑡𝑡~𝑁𝑁(0,1). In our simulations, we set 𝜎𝜎𝜂𝜂 = 0.0015. Clearly, the term 𝜎𝜎𝜂𝜂𝜂𝜂𝑡𝑡 

reflects a random fundamental (news) shock. The path of the fundamental value 

of the exchange rate is shown by the gray line in the first panel of Figure 7. 

Moreover, we assume that the market maker takes into account the fundamental 

(news) shock when adjusting the log exchange rate, resulting in  

𝑆𝑆𝑡𝑡+1 = 𝑆𝑆𝑡𝑡 + 𝑚𝑚∑ 𝐷𝐷𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=1 + 𝜎𝜎𝜂𝜂𝜂𝜂𝑡𝑡.                                                                                (26) 

Since the standard deviation of simulated changes in the log exchange rate, 

equal to 0.00622, is about four times higher than 𝜎𝜎𝜂𝜂, the simulated exchange rate 

is still excessively volatile. In Figure 8, the log fundamental value of the exchange 

rate follows an AR(1) process, represented by  

𝐹𝐹𝑡𝑡 = 𝛼𝛼𝐹𝐹𝑡𝑡−1 + 𝜎𝜎𝜂𝜂𝜂𝜂𝑡𝑡,                                                                                        (27) 

with 𝜂𝜂𝑡𝑡~𝑁𝑁(0,1). Again, the market maker takes into account the change in the log 

fundamental value when adjusting the log exchange rate, yielding   

𝑆𝑆𝑡𝑡+1 = 𝑆𝑆𝑡𝑡 + 𝑚𝑚∑ 𝐷𝐷𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=1 + (𝛼𝛼 − 1)𝐹𝐹𝑡𝑡−1 + 𝜎𝜎𝜂𝜂𝜂𝜂𝑡𝑡.                                                                      (28) 

For 𝜎𝜎𝜂𝜂 = 0.0015 and 𝛼𝛼 = 0.999, the standard deviation of simulated changes in 

the log exchange rate, equal to 0.00620, is again about four times higher than 

𝜎𝜎𝜂𝜂. Note that both experiments lend the simulated exchange rate a less static 

appearance, without interfering with its ability to mimic the statistical properties of 

actual exchange rates. 

In fact, Figures 6 to 8 highlight that our calibrated agent-based model setup is 

capable of producing bubbles and crashes, excess volatility, fat-tailed returns 

distribution, serially uncorrelated returns and volatility clustering. Table 2 

supports this finding. Estimates of the summary statistics for actual exchange rate 

data, reported in Table 1, and simulated exchange rate data, reported in Table 2, 

are quite similar. Extreme returns may be larger than 3 percent. The level of the 

volatility of simulated and actual exchange rates is comparable. Estimates of the 

mean and skewness indicate that the distribution of returns is symmetric. In 

addition, there is clear evidence of excess kurtosis. While returns are serially 
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uncorrelated, autocorrelation coefficients of absolute returns indicate significant 

volatility clustering. However, the autocorrelation coefficients for absolute returns 

seem to us to be slightly too high at shorter lags and slightly too low at larger lags.  

*** Table 2 about here *** 

Having established that the behavior of simulated exchange rate data closely 

resembles the behavior of actual exchange rate data, let us now turn to the 

question why this is the case. Figures 9 and 10 shed light on the internal 

functioning of our agent-based model setup, focusing on an excerpt of simulation 

run #1 that extends from period 4,000 to period 5,000 (see Figure 6 for the whole 

simulation run). Since we calibrated our agent-based model setup to daily data, 

1,000 observations reflect a time span of four years. The four panels of Figure 9 

depict the evolution of the exchange rate, the corresponding returns, speculators’ 

average probability of selecting the technical trading rule and their aggregate 

speculative investment position in the foreign exchange market, respectively. The 

four panels of Figure 10 show the probabilities of selecting the technical trading 

rule, the speculative investment positions, the speculative orders and the 

inventory control operations of three speculators, marked purple, pink and cyan, 

respectively. 

*** Figures 9 and 10 about here *** 

According to the first panel of Figure 9, the exchange rate is below its 

fundamental value between periods 4,000 and 4,200. As a result, the clear 

majority of speculators decide in favor of fundamental analysis and, not 

surprisingly, their trading behavior pushes the exchange rate slowly upwards, 

reducing mispricing in the foreign exchange market. Around period 4,300, the 

market impact of chartists starts to increase. Speculators are now convinced that 

the current exchange rate trend will persist for a while, which is why they seek to 

exploit it. Their behavior sparks a self-fulfilling prophecy. Chartists’ extrapolative 

trading behavior drives the exchange rate higher and higher, and a bubble 

process materializes. Since the exchange rate is a relative price, we may refer to 

this as a “positive bubble”. Note that chartists’ trading behavior also increases the 

volatility of the exchange rate. As can be seen, the volatility outburst contains a 

number of more pronounced changes in the exchange rate. Extreme changes in 
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the exchange rate occur when sufficiently many chartists receive similar trading 

signals. Their orders then result in greater excess demand, prompting the market 

maker to adjust the exchange rate more significantly. 

Overall, the exchange rate evolves quite erratically during this bubble episode. 

For instance, there are brief periods when fundamental analysis is the dominant 

trading strategy, pulling the exchange rate temporarily back towards its 

fundamental value. In addition, technical analysis may also initiate downward 

movements of the exchange rate. Ultimately, the collapse of the bubble originates 

from both technical and fundamental trading.10 Around period 4,500, chartists’ 

trading behavior creates a negative bubble, pushing the exchange rate far below 

its fundamental value. Consequently, the majority of speculators start to return 

towards fundamental analysis, resulting in rather calm exchange rate movements 

between periods 4,500 and 4,700. As fundamental orders eventually reduce 

mispricing of the exchange rate, a new market phase occurs. Many speculators 

now opt for technical analysis, thereby initiating the next bubble process, 

associated with another volatility outburst and extreme changes in the exchange 

rate. Once again, the exchange rate behaves quite erratically during the bubble 

process. This has to do with the fact that speculators’ rule-selection behavior is 

probabilistic, and that their perception of the exchange rate’s fundamental value 

and their trading rules are subject to random influence factors.11  

The bottom panel of Figure 9 presents speculators’ aggregate investment 

position in the foreign exchange market. As can be seen, speculators’ aggregate 

investment position in the foreign exchange market evolves proportionally to the 

                                                           
10 An interesting feature of the deterministic element of speculators’ technical trading rules, as 

proposed by de Grauwe et al. (1993), is that it may already generate a sell signal when the 

exchange rate’s upward movement starts to slow down. Of course, sell signals may also originate 

from the technical trading rules’ random elements.  
11 For the current parameter setting, the fundamental steady state of the deterministic skeleton of 

our agent-based model setup is locally stable. In a sense, it could therefore be argued that the 

dynamics of the exchange rate results from an “everlasting transient” behavior. The crucial force 

in this process is the nonlinear interplay between chartists and fundamentalists, which amplifies 

and transforms the agent-specific random elements of our agent-based model setup, keeping its 

dynamics alive. 
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exchange rate, as quoted by the market maker. Moreover, the position of the 

market maker in the foreign exchange market is the mirror image of those of 

speculators, as is also clear from (12). This suggests that as long as the path of 

the exchange rate remains bounded – which is always the case in our simulations 

– the positions of the market maker in the foreign exchange market as well as 

those of speculators remain bounded, too. Naturally, this relationship works in 

both directions. Speculators’ inventory control keeps the market maker’s position 

in check and limits mispricing in the foreign exchange market. 

Our agent-based model setup allows us to keep track of the behavior of individual 

speculators. According to the third panel of Figure 10, the three speculators that 

we track here have a negative speculative investment position in the foreign 

exchange market between periods 4,000 and 4,200. Consequently, their 

inventory management operations result in buy orders, as witnessed by the fourth 

panel of Figure 10. Furthermore, all three speculators select the fundamental 

trading rule with a relatively high probability. Since the exchange rate is below its 

fundamental value, speculators opting for the fundamental trading rule tend to 

place speculative buy orders, which further reduces their speculative investment 

position in the foreign exchange market. Together, the fundamentally motivated 

speculative orders and the inventory control transactions reduce mispricing of the 

exchange rate.  

A regime change occurs between period 4,300 and 4,500. All three speculators 

now pick their technical trading rules with a relatively high probability. Although 

orders stemming from technical trading rules have a larger random element (see 

the second panel of Figure 10), the three speculators tend to place buy orders. 

This drives up the exchange rate and their speculative investment position in the 

foreign exchange market. In the long run, however, speculators’ investment 

positions in the foreign exchange market circle around their desired target levels, 

i.e. around zero in our simulations. Similarly, the exchange rate oscillates around 

its fundamental value in the long run. Once again, we note that the exchange 

rate’s random-walk-like evolution originates from agent-specific aspects of 

speculators’ trading behavior, as visible from the quantities plotted in Figure 10. 

 



22 
 

6 Concluding remarks 

De Grauwe and Dewachter (1992, 1993) and de Grauwe et al. (1993) proposed 

one of the first behavioral exchange rate models featuring nonlinear deterministic 

interactions between chartists and fundamentalists. Their ingenious work 

tremendously fostered our understanding of the behavior of foreign exchange 

markets. Simply speaking, there are two dominant regimes in their model. In the 

first regime, chartists reign the foreign exchange market. This is the case when 

the exchange rate is near its fundamental value. Since chartists’ behavior is 

destabilizing, the exchange rate disconnects from its fundamental value. In the 

second regime, fundamentalists govern the foreign exchange market. This is the 

case when the exchange rate is far from its fundamental value. Since 

fundamentalists’ behavior is stabilizing, the exchange rate eventually returns to 

its fundamental value. Via an everlasting competition between these two regimes, 

i.e. between chartists and fundamentalists, their model may produce chaotic 

exchange rate dynamics.  

In this paper, we sought to show that the explanatory power of Paul de Grauwe’s 

chaotic exchange rate model is richer than previously appreciated. In particular, 

we proposed a simple agent-based version of Paul de Grauwe’s chaotic 

exchange rate model that is capable of explaining a whole battery of stylized facts 

of foreign exchange markets. Most importantly, we assumed that each speculator 

places orders based on his own technical and fundamental trading rule. 

Moreover, a speculator’s choice between these two trading philosophies is 

probabilistic and depends on his individual assessment of current market 

circumstances. The latter aspect follows from the assumption that each 

speculator has his own view about the true fundamental value of the exchange 

rate. Speculators also monitor their speculative investment position in the foreign 

exchange market and adjust their order placement such that their speculative 

investment positions remain bounded. Based on our calibrated agent-based 

model setup, we documented that simulated exchange rates gave rise to bubbles 

and crashes, were excessively volatile, repeatedly displayed extreme 

movements, were hardly predictable and were subject to lasting volatility 

outbursts.  
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On a more general level, we dare to argue that speculators’ switching between 

destabilizing technical trading rules and stabilizing fundamental trading rules is 

the main driver of the dynamics of the exchange rate. While the modeling of 

realistic exchange rate dynamics apparently requires the consideration of some 

kind of stochastic influence factors, the main force accountable for the dynamics 

of the exchange rate seems to us to be deeply rooted in the nonlinear interplay 

between chartists and fundamentalists. Using analytical and numerical tools from 

the research field of nonlinear dynamical systems to investigate chartist-

fundamentalist models lends us the opportunity to better understand the 

endogenous component of the dynamics of the exchange rate. 

Since we kept our agent-based version of Paul de Grauwe’s chaotic exchange 

rate model relatively simple, we conclude our paper by pointing out five avenues 

for future research. First, while speculators have different views about the 

exchange rate’s fundamental value, their views are free from systematic 

perception errors. It may be interesting to add some kind of persistent optimism 

and pessimism in this respect. For instance, speculators may believe in a higher 

(lower) fundamental value when the exchange rate increases (decreases). 

Second, we have not yet considered social interactions between speculators, 

although there is evidence of herding behavior in foreign exchange markets. It 

may be worth placing speculators on a network and letting their switches between 

technical and fundamental trading rules also depend on their neighbors’ behavior. 

Third, the parameters that characterize the behavior of all speculators are 

identical. We could allow for more heterogeneity among speculators by relaxing 

this assumption, i.e. by drawing these parameters from certain distributions. 

Fourth, we added a random variable to the expectation rule of chartists to capture 

part of the variety of existing technical expectation rules. While this keeps the 

deterministic skeleton of our agent-based model setup analytically tractable, it 

adds an exogenous component to our approach. We may reduce the relevance 

of this exogenous component by considering more than one technical 

expectation rule. A speculator’s technical trading rules may even evolve over 

time. Fifth, we calibrated our agent-based model setup such that it mimics a 

number of important statistical properties of exchange rates. Future work may 

seek to estimate our agent-based model setup, i.e. by applying tools such as the 
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method of simulated moments. In this respect, it would be desirable to account 

also for characteristics that capture the trading behavior of individual speculators, 

e.g. their order placement and inventory management behavior. 

To sum up, we hope that our paper serves others as a playground to shed further 

light on the true potential of Paul de Grauwe’s chaotic exchange rate model. In 

general, we believe that empirically based chartist-fundamentalist models offer 

reasonable descriptions of what is going on in foreign exchange markets. 

Needless to say, much more can and needs to be done to understand the 

captivating behavior of exchange rates.  

 

Appendix A  

In this appendix, we present a number of robustness checks. In particular, we are 

interested in how changes in the number of speculators affect the performance 

of our agent-based model setup. Table 3 reports summary statistics for our three 

model versions, assuming that there are 𝑁𝑁 = 1,000 speculators. Simulations are 

based on the same parameter setting, except that parameters 𝑚𝑚, 𝜎𝜎𝐹𝐹 and 𝜎𝜎𝐶𝐶 are 

rescaled by 𝑚𝑚 = 𝑚𝑚/10, 𝜎𝜎𝐹𝐹 = 𝜎𝜎𝐶𝐶/√10 and 𝜎𝜎𝐹𝐹 = 𝜎𝜎𝐶𝐶/√10 (the number of 

speculators increased by a factor of 10). Table 4 reports the same for 𝑁𝑁 = 2,500 

speculators. Now parameters 𝑚𝑚, 𝜎𝜎𝐹𝐹 and 𝜎𝜎𝐶𝐶 are rescaled by 𝑚𝑚 = 𝑚𝑚/25, 𝜎𝜎𝐹𝐹 =

𝜎𝜎𝐹𝐹/√25, and 𝜎𝜎𝐶𝐶 = 𝜎𝜎𝐶𝐶/√25 (the number of speculators increased by a factor of 

25). Note that the summary statistics presented in Tables 3 and 4 are in line with 

those presented in Table 2, obtained for 𝑁𝑁 = 100 speculators. Overall, we may 

thus conclude that our agent-based model setup may also yield reasonable 

exchange rate dynamics when the number of speculators is set to 𝑁𝑁 = 1,000 and 

𝑁𝑁 = 2,500. 
*** Tables 3 and 4 about here *** 
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 min max mean variance skewness kurtosis 

USD/EUR -3.00 4.62 0.00 0.35 0.10 5.44 
USD/GBP -8.17 4.43 -0.01 0.35 -0.65 13.32 
JPY/USD -5.22 3.34 0.00 0.39 -0.28 7.17 

 
 lag 1 lag 2 lag 3 lag 4 lag 5 lag 6 

USD/EUR 0.01 -0.01 0.00 0.02 -0.03 0.01 
USD/GBP 0.03 0.01 -0.02 0.00 -0.05 0.02 
JPY/USD -0.02 -0.01 0.00 0.00 0.03 0.01 

 
 lag 1 lag 5 lag 10 lag 25 lag 50 lag 100 

USD/EUR 0.07 0.13 0.11 0.08 0.10 0.07 
USD/GBP 0.14 0.16 0.14 0.11 0.10 0.07 
JPY/USD 0.13 0.11 0.10 0.07 0.07 0.07 

 
Table 1: Descriptive statistics for actual exchange rate data. The first block of the table reports 
the smallest return, the largest return and the first four moments of the distribution of the returns. 
The second block of the table reports autocorrelation coefficients for raw returns at lags 1, 2, 3, 
4, 5 and 6, respectively. The third block of the table reports autocorrelation coefficients for 
absolute returns at lags 1, 5, 10, 25, 50 and 100, respectively. 
 
 
 

 min max mean variance skewness kurtosis 
run #1 -3.24 3.62 0.00 0.34 -0.14 5.76 
run #2 -3.24 3.41 0.00 0.39 0.00 5.13 
run #3 -3.80 3.23 0.00 0.39 -0.03 5.26 

 
 lag 1 lag 2 lag 3 lag 4 lag 5 lag 6 

run #1 0.03 -0.02 -0.01 -0.01 0.00 -0.01 
run #2 0.02 -0.05 0.01 0.00 -0.02 0.00 
run #3 0.04 -0.04 -0.02 -0.02 0.02 0.00 

 
 lag 1 lag 5 lag 10 lag 25 lag 50 lag 100 

run #1 0.20 0.16 0.15 0.09 0.05 0.04 
run #2 0.14 0.12 0.08 0.05 0.03 0.02 
run #3 0.15 0.14 0.12 0.06 0.03 0.03 

 
Table 2: Descriptive statistics for simulated exchange rate data. The first block of the table reports 
the smallest return, the largest return and the first four moments of the distribution of the returns. 
The second block of the table reports autocorrelation coefficients for raw returns at lags 1, 2, 3, 
4, 5 and 6, respectively. The third block of the table reports autocorrelation coefficients for 
absolute returns at lags 1, 5, 10, 25, 50 and 100, respectively. 
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 min max mean variance skewness kurtosis 
run #1 -3.86 4.06 0.00 0.33 0.06 6.38 
run #2 -3.58 4.07 0.00 0.37 0.05 6.17 
run #3 -3.34 4 0.00 0.35 -0.03 5.94 

 
 lag 1 lag 2 lag 3 lag 4 lag 5 lag 6 

run #1 0.03 -0.06 0.01 0.02 -0.01 -0.02 
run #2 0.02 -0.03 0.00 -0.02 -0.01 -0.02 
run #3 0.04 -0.03 -0.04 -0.03 -0.01 -0.03 

 
 lag 1 lag 5 lag 10 lag 25 lag 50 lag 100 

run #1 0.19 0.18 0.14 0.06 0.06 0.03 
run #2 0.17 0.13 0.12 0.10 0.05 0.03 
run #3 0.18 0.19 0.12 0.08 0.03 0.00 

 
Table 3: Descriptive statistics for the first robustness check. The first block of the table reports the 
smallest return, the largest return and the first four moments of the distribution of the returns. The 
second block of the table reports autocorrelation coefficients for raw returns at lags 1, 2, 3, 4, 5 
and 6, respectively. The third block of the table reports autocorrelation coefficients for absolute 
returns at lags 1, 5, 10, 25, 50 and 100, respectively. 
 
 

 min max mean variance skewness kurtosis 
run #1 -3.50 3.98 0.00 0.37 0.05 5.94 
run #2 -3.37 3.14 0.00 0.34 -0.24 5.59 
run #3 -3.89 3.74 0.00 0.36 -0.12 5.62 

 
 lag 1 lag 2 lag 3 lag 4 lag 5 lag 6 

run #1 0.02 -0.03 -0.02 0.00 0.01 0.00 
run #2 0.01 -0.04 -0.03 -0.04 0.02 0.01 
run #3 0.05 -0.01 -0.02 -0.01 -0.03 0.02 

 
 lag 1 lag 5 lag 10 lag 25 lag 50 lag 100 

run #1 0.19 0.15 0.12 0.07 0.04 0.01 
run #2 0.18 0.19 0.14 0.08 0.06 0.02 
run #3 0.19 0.15 0.14 0.06 0.05 0.02 

 
Table 4: Descriptive statistics for the second robustness check. The first block of the table reports 
the smallest return, the largest return and the first four moments of the distribution of the returns. 
The second block of the table reports autocorrelation coefficients for raw returns at lags 1, 2, 3, 
4, 5 and 6, respectively. The third block of the table reports autocorrelation coefficients for 
absolute returns at lags 1, 5, 10, 25, 50 and 100, respectively. 
 



30 
 

 
Figure 1: The USD/EUR exchange rate. The first panel shows the evolution of the USD/EUR 
exchange rate from January 1999 to September 2022, containing 5,959 daily observations. The 
second panel shows the corresponding return dynamics. The third panel shows the log probability 
density function of normalized returns. The fourth panel shows autocorrelation functions of raw 
returns (gray line) and absolute returns (black line). 
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Figure 2: The USD/GBP exchange rate. The first panel shows the evolution of the USD/EUR 
exchange rate from January 1999 to September 2022, containing 5,959 daily observations. The 
second panel shows the corresponding return dynamics. The third panel shows the log probability 
density function of normalized returns. The fourth panel shows autocorrelation functions of raw 
returns (gray line) and absolute returns (black line). 
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Figure 3: The JPY/USD exchange rate. The first panel shows the evolution of the USD/EUR 
exchange rate from January 1999 to September 2022, containing 5,959 daily observations. The 
second panel shows the corresponding return dynamics. The third panel shows the log probability 
density function of normalized returns. The fourth panel shows autocorrelation functions of raw 
returns (gray line) and absolute returns (black line). 
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Figure 4: Parameter 𝑐𝑐. The first two panels depict bifurcation diagrams in which the log exchange 
rate is portrayed as a function of parameter 𝑐𝑐 for two different sets of initial conditions, given 
by 𝑆𝑆0 = 0.01, 𝑋𝑋0 = 0, 𝑌𝑌0 = 0 and 𝑆𝑆0 = −0.01, 𝑋𝑋0 = 0, 𝑌𝑌0 = 0, respectively. The third panel displays 
both bifurcation diagrams. Remaining parameters: 𝐹𝐹 = 0, 𝑚𝑚 = 1, 𝑁𝑁 = 1, 𝑓𝑓 = 0.3, 𝑠𝑠0 = 0.05 and 
𝑠𝑠1 = 2,500. 
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Figure 5: Deterministic dynamics. The first two panels present the log exchange rate and the 
weight of chartists in the time domain. The third panel shows the log exchange rate in period 𝑡𝑡 +
1 versus the log exchange rate in period 𝑡𝑡. Parameter setting: 𝐹𝐹 = 0, 𝑚𝑚 = 1, 𝑁𝑁 = 1, 𝑐𝑐 = 10, 𝑓𝑓 =
0.3 and 𝑠𝑠 = 2,500. 
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Figure 6: Simulation run #1. The first panel shows the evolution of simulated exchange rates 
(black line) and their fundamental values (gray line) for 6,000 observations. The second panel 
shows the corresponding return dynamics. The third panel shows the log probability density 
function of normalized returns. The fourth panel shows autocorrelation functions of raw returns 
(gray line) and absolute returns (black line). 
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Figure 7: Simulation run #2. The first panel shows the evolution of simulated exchange rates 
(black line) and their fundamental values (gray line) for 6,000 observations. The second panel 
shows the corresponding return dynamics. The third panel shows the log probability density 
function of normalized returns. The fourth panel shows autocorrelation functions of raw returns 
(gray line) and absolute returns (black line). 
 



37 
 

 
Figure 8: Simulation run #3. The first panel shows the evolution of simulated exchange rates 
(black line) and their fundamental values (gray line) for 6,000 observations. The second panel 
shows the corresponding return dynamics. The third panel shows the log probability density 
function of normalized returns. The fourth panel shows autocorrelation functions of raw returns 
(gray line) and absolute returns (black line). 
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Figure 9: Excerpt of simulation run #1. The panels show the evolution of the exchange rate, the 
corresponding returns, speculators’ average weight of selecting the technical trading rule and 
their total speculative investment position, respectively.  
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Figure 10: Behavior of three individual speculators. The panels show the probability of selecting 
the technical trading rule, the speculative orders, the speculative investment position and the 
inventory control operations of three individual speculators, marked purple, pink and cyan, 
respectively. The dynamics corresponds to the simulations depicted in Figure 9. 
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