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Abstract 

We develop a nonlinear duopoly model in which the heuristic expectation 

formation and learning behavior of two boundedly rational firms may engender 

complex dynamics. Most importantly, we assume that the firms employ different 

forecasting models to predict the behavior of their opponent. Moreover, the firms 

learn by leaning more strongly on forecasting models that yield more precise 

predictions. An eight-dimensional nonlinear map drives the dynamics of our 

approach. We analytically derive the conditions under which its unique steady 

state is locally stable and numerically study its out-of-equilibrium behavior. In 

doing so, we detect multiple scenarios with coexisting attractors at which the 

firms’ behavior yields distinctively different market outcomes. 
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1 Introduction 

For firms that operate in oligopoly markets, it is of utmost importance to form 

expectations about the supply decisions of their competitors. In the classical 

duopoly model by Cournot (1838), for instance, firms have naïve expectations, 

that is, they expect their rival to continue to produce the same amount in the next 

period as it produces in the current period. Naïve expectations combined with a 

linear demand, constant marginal costs and a perfect knowledge of the market 

features (demand schedules, cost functions) lead to the global stability of the so-

called Cournot-Nash equilibrium.1 While the experimental evidence by Cox and 

Walker (1998) suggests that naïve expectations may be a reasonable description 

of firms’ expectation formation behavior, the experimental evidence by Stahl 

(1996), Offerman et al. (2002), Bigoni (2010) and Assenza et al. (2015) paints a 

richer picture. In particular, these studies suggest that firms switch between a 

limited number of heuristic forecasting models to form their expectations.2 

Importantly, firms’ boundedly rational expectation formation and learning 

behavior, rendering the dynamics of the underlying market nonlinear, may 

prevent them from reaching correct forecasts. As a result, firms may continuously 

revise their expectations, with the consequence that prices and quantities never 

reach their equilibrium values. 

Against this backdrop, we propose a novel duopoly model in which two boundedly 

rational firms display a heuristic expectation formation and learning behavior. 

Within our nonlinear duopoly model, the firms use competing forecasting models 

to predict their opponent’s behavior. To simplify matters, we assume that the firms 

rely on a growth forecasting model, which predicts that the opponent will increase 

its production, and a reduction forecasting model, which predicts that the 

opponent will decrease its production. Moreover, the firms learn in the sense that 

they adjust the weight they assign to a forecasting model according to an 

                                                           
1 Puu and Sushko (2002), Kopel (2009) and Bischi et al. (2010) provide excellent surveys of 

dynamics duopoly models. 
2 Duffy (2006), Hommes (2011) and Bao et al. (2021) review related experimental evidence with 

respect to finance and macroeconomics. Indeed, such behavior is widespread. 
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evolutionary fitness measure based on prediction accuracy. The dynamics of our 

nonlinear duopoly model is driven by an eight-dimensional nonlinear map. Our 

nonlinear duopoly model possesses a unique steady state at which prices and 

quantities correspond to the Cournot-Nash solution of the classical linear duopoly 

model with naïve expectations. While the steady state of that model is globally 

stable, we demonstrate that a Flip bifurcation may compromise the local stability 

of the steady state of our nonlinear duopoly model. In fact, our bifurcation analysis 

reveals that the stability loss of the steady state of our nonlinear duopoly model 

– which may occur, for instance, when firms predict that their opponent will 

strongly adjust its supply – is accompanied by the emergence of a period-two 

cycle.  

We furthermore find that our nonlinear duopoly model is able to produce complex 

dynamics, involving, amongst others, multiple scenarios with coexisting 

attractors. Interestingly, these coexisting attractors may be associated with 

distinctively different market outcomes. For certain parameter constellations, for 

instance, the following two attractors coexist. One attractor implies that the supply 

of both firms evolves asynchronously, resulting in a relatively stable behavior of 

the firms’ total supply and, ultimately, in rather calm price dynamics. The other 

attractor implies that the supply of both firms evolves synchronously, resulting in 

a relatively unstable behavior of the firms’ total supply and, ultimately, in rather 

turbulent price dynamics. Observing the behavior of our nonlinear duopoly model 

from the outside, one may arrive at wrong policy conclusions. When the firms’ 

supply evolves asynchronously, they alternately dominate the market, a situation 

that may appear as fierce competition. In contrast, the synchronous evolution of 

the firms’ production decisions may be confused with collusion. However, both 

market outcomes are emergent phenomena of our nonlinear duopoly model; they 

result from different sets of initial conditions.  

We continue as follows. In Section 2, we comment on related literature. In Section 

3, we recall the classical linear duopoly model with naïve expectations. In Section 

4, we present our nonlinear duopoly model. In Section 5, we conclude our paper. 

Appendices A and B contain proofs of our main analytical results. 
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2 Literature review  
Our modeling approach is inspired by the seminal papers by Brock and Hommes 

(1997, 1998). In their cobweb (asset pricing) model, a farmer (speculator) 

switches between heterogeneous forecasting models according to an 

evolutionary fitness measure. In our nonlinear duopoly model, a firm aggregates 

the predictions of competing forecasting models using weights that reflect their 

forecasting performance. Such an approach was also taken in the famous 

exchange rate model by Frankel and Froot (1986, 1990) in which a portfolio 

manager pools the predictions of different forecasting models. One of the first 

models to explore the possibility of switching between different expectation 

formation rules in a Cournotian setting is that by Droste et al. (2002). They study 

a route to complex dynamics that may emerge when a simple expectation rule 

competes with a sophisticated but costly expectation rule, using a replicator 

dynamics approach with mutational noise. Anufriev et al. (2013) consider a 

Bertrand oligopoly model in which firms switch between least squares learning 

and gradient leaning for determining the price. Switching between such learning 

rules may induce endogenous dynamics. Kopel et al. (2014) adopt a similar 

mechanism for analyzing a scenario in which firms switch between a socially 

concerned and a profit-maximizing behavior. Cerboni Baiardi et al. (2015) build 

an evolutionary exponential replicator oligopoly model, focusing on the 

coexistence of strong and weak attractors. Similar switching principles are used 

in Bischi et al. (2015), Anufriev and Kopányi (2018), Lamantia and Radi (2018) 

and Bischi and Lamantia (2020).  

Of course, endogenous duopoly dynamics may also emerge via other channels. 

Theocharis (1960), Puu (2008) and Hommes et al. (2018) show that the 

equilibrium of the classical linear duopoly model with naïve expectations 

becomes unstable in the presence of three or more firms. Moreover, Huang 

(2008) demonstrates that there are situations in which an improvement of the 

accuracy of information (e.g. a reduction in information lags) may be detrimental 

to the stability of an equilibrium. However, Huang (2003) proves that oligopoly 

firms which display simple supply strategies because of limited information may 

achieve higher relative profits than their competitors. By replacing the hypothesis 
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of linearity of the demand function with a microfounded nonlinear (isoelastic) 

demand schedule, Puu (1991) shows that the steady state of the classical linear 

duopoly model with naïve expectations may become unstable, leading to 

persistent periodic and chaotic fluctuations. Bischi and Naimzada (2000) endow 

firms with a gradient learning rule that does not require the full knowledge of the 

demand and profit functions, but only a local one. According to this rule, firms are 

able to estimate, by market experiments, the slope of the profit function at the 

point corresponding to the current values of the strategic variables, and move 

towards the direction of the profit maximum at a speed regulated by a behavioral 

parameter. Another learning rule is the so-called Local Monopolistic 

Approximation (LMA), first proposed by Tuinstra (2004), to model a dynamic 

oligopoly where demand is not known by firms but estimated through market 

experiments. Bischi et al. (2007) show that the dynamics generated through LMA 

behavior may converge to a Nash equilibrium, also in cases where the classic 

best-response dynamics does not converge to it.  

 

3 The classical linear duopoly model with naïve expectations 

The goal of our paper is to show that the heuristic expectation formation and 

learning behavior of boundedly rational firms may give rise to complex duopoly 

dynamics. As a workhorse, we use the classical linear duopoly model in which 

firms have naïve expectations. In the remainder of this section, we first recall this 

model and then discuss some of its main properties. Our exposition follows 

Gandolfo (2009) and Kopel (2009).  

Let us turn to the details of this model. Market equilibrium implies that consumers’ 

demand equals the firms’ total supply in each time step, i.e. 

𝐷𝐷𝑡𝑡 = 𝑆𝑆𝑡𝑡.                                                                                                           (1) 

Moreover, consumers’ demand depends negatively on the current market price 

𝐷𝐷𝑡𝑡 = 𝑎𝑎−𝑃𝑃𝑡𝑡
𝑏𝑏

,                                                                                                     (2) 

where 𝑎𝑎 and 𝑏𝑏 are positive parameters. The firms’ total supply consists of the 

supply of firms A and B 

𝑆𝑆𝑡𝑡 = 𝑞𝑞𝑡𝑡𝐴𝐴 + 𝑞𝑞𝑡𝑡𝐵𝐵 .                                                                                           (3) 
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Obviously, the market price adheres to 

𝑃𝑃𝑡𝑡 = 𝑎𝑎 − 𝑏𝑏(𝑞𝑞𝑡𝑡𝐴𝐴 + 𝑞𝑞𝑡𝑡𝐵𝐵).                                                                                       (4)  

We assume that parameters 𝑎𝑎 and 𝑏𝑏 are such that prices and quantities are 

positive, both at the steady state and out of equilibrium.3 

Let us next derive the supply of firm A. Firm A maximizes its expected profits. 

Since firm A has a linear cost function with constant marginal costs 𝑐𝑐 > 0, its 

expected profits result in 

𝐸𝐸𝑡𝑡𝐴𝐴[𝜋𝜋𝑡𝑡𝐴𝐴] = 𝐸𝐸𝑡𝑡𝐴𝐴[𝑃𝑃𝑡𝑡𝑞𝑞𝑡𝑡𝐴𝐴 − 𝑐𝑐𝑞𝑞𝑡𝑡𝐴𝐴] = (𝑎𝑎 − 𝑏𝑏(𝑞𝑞𝑡𝑡𝐴𝐴 + 𝐸𝐸𝑡𝑡𝐴𝐴[𝑞𝑞𝑡𝑡𝐵𝐵]))𝑞𝑞𝑡𝑡𝐴𝐴 − 𝑐𝑐𝑞𝑞𝑡𝑡𝐴𝐴.                            (5) 

From the corresponding first-order condition, we can compute that the optimal 

supply of firm A is equal to 

𝑞𝑞𝑡𝑡𝐴𝐴 = 3
2
𝛼𝛼 − 1

2
𝐸𝐸𝑡𝑡𝐴𝐴[𝑞𝑞𝑡𝑡𝐵𝐵],                                                                                         (6) 

where, for ease of exposition, 𝛼𝛼 = 𝑎𝑎−𝑐𝑐
3𝑏𝑏

> 0 reflects an aggregate parameter. 

Importantly, the supply of firm A depends negatively on the expected supply of 

firm B. For simplicity, we assume that firms A and B have identical cost functions. 

The supply of firm B, resulting from analogous considerations, follows as 

𝑞𝑞𝑡𝑡𝐵𝐵 = 3
2
𝛼𝛼 − 1

2
𝐸𝐸𝑡𝑡𝐵𝐵[𝑞𝑞𝑡𝑡𝐴𝐴]                                                                                         (7) 

and depends negatively on the expected supply of firm A.  

Apparently, a crucial question in this strand of literature is how a duopoly firm 

predicts the behavior of its opponent. In the classical linear duopoly model with 

naïve expectations, we simply have that 

𝐸𝐸𝑡𝑡𝐴𝐴[𝑞𝑞𝑡𝑡𝐵𝐵] = 𝑞𝑞𝑡𝑡−1𝐵𝐵                                                                                                  (8) 

and 

𝐸𝐸𝑡𝑡𝐵𝐵[𝑞𝑞𝑡𝑡𝐴𝐴] = 𝑞𝑞𝑡𝑡−1𝐴𝐴 ,                                                                                         (9) 

respectively. Accordingly, firms A and B then predict that their opponent will not 

adjust its supply decision.  

Combining (6) to (9) then reveals that  

                                                           
3 For models that explicitly take such constraints into account, see Tramontana et al. (2010, 2011) 

and Gori and Sodini (2017). We also assume that firms are aware of the true demand function. 

For models that deviate from this assumption, see Bischi and Naimzada (2000), Tuinstra (2004) 

and Bischi et al. (2007). 
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𝑞𝑞𝑡𝑡𝐴𝐴 = 3
2
𝛼𝛼 − 1

2
𝑞𝑞𝑡𝑡−1𝐵𝐵                                                                                                     (10) 

and 

𝑞𝑞𝑡𝑡𝐵𝐵 = 3
2
𝛼𝛼 − 1

2
𝑞𝑞𝑡𝑡−1𝐴𝐴 ,                                                                                            (11) 

reflecting the firms’ best-response functions.                         

In Appendix A, we prove the following proposition (an overbar denotes steady-

state quantities). 

Proposition 1: The dynamics of the classical linear duopoly model with naïve 

expectations is driven by a two-dimensional linear map. Its unique steady state 

𝑆𝑆𝑆𝑆𝑆𝑆 = (𝑞𝑞�𝐴𝐴,𝑞𝑞�𝐵𝐵) = (𝛼𝛼,𝛼𝛼) is globally stable.  

With respect to the steady state of the classical linear duopoly model with naïve 

expectations, Proposition 1 reveals that the production quantities of firms A and 

B are given by 𝑞𝑞�𝐴𝐴 = 𝑞𝑞�𝐵𝐵 = 𝛼𝛼 = 𝑎𝑎−𝑐𝑐
3𝑏𝑏

, commonly referred to as Cournot-Nash 

equilibrium. Consequently, the total steady-state supply of firms A and B results 

in the steady-state price 𝑃𝑃� = 𝑎𝑎+2𝑐𝑐
3

 such that steady-state profits realized by firms 

A and B amount to 𝜋𝜋�𝐴𝐴 = 𝜋𝜋�𝐵𝐵 = 𝑏𝑏𝛼𝛼2 = (𝑎𝑎−𝑐𝑐)
9𝑏𝑏

2
. At the steady state, neither firm A nor 

firm B makes a prediction error, i.e. their naïve expectations are correct.  

Figure 1 provides an example of the best-response dynamics of the classical 

linear duopoly model with naïve expectations. The blue and pink lines mark the 

best-response functions of firms A and B, respectively. Starting in the out-of-

equilibrium point (𝑞𝑞0𝐴𝐴, 𝑞𝑞0𝐵𝐵), the figure illustrates for a few best-response iterations 

how the duopoly market converges towards the Cournot-Nash equilibrium point 

(𝛼𝛼, 𝛼𝛼). Note that the production quantities of both firms display a zigzag path for 

this set of initial conditions until they have reached the equilibrium point (𝛼𝛼, 𝛼𝛼). 

Since firms’ total production is either high or low along the adjustment route, the 

price path reflects a zigzag pattern, too. 

*** Figure 1 about here **** 

There are two main reasons why we use the classical linear duopoly model with 

naïve expectations as a benchmark model. First, its setup is well known, relatively 

simple, and easy to extend. Second, its dynamics is globally stable. Hence, all 
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deviations from its well-known behavior that we observe in the following are due 

to our model extensions, i.e. the firms’ heuristic expectation formation and 

learning behavior, as introduced in the next section. 

 

4 A nonlinear duopoly model 

As in the previous section, we assume that the supply of firms A and B is given 

by (6) and (7), respectively. In this section, however, we modify their expectation 

formation behavior. Moreover, we present our main analytical results and 

simulate the out-of-equilibrium behavior of our nonlinear duopoly model. 
 

4.1 Firm’s expectation formation and learning behavior 

Let us turn to the key part of our nonlinear duopoly model, namely the question 

of how firms predict the behavior of their opponent and how they learn from their 

mistakes. Let us start with firm A. In general, firm A may employ several 

competing forecasting models to predict firm B’s supply decision. Given our 

objective and to simplify matters, it is sufficient for us to consider two different 

forecasting models. In the first step, firm A predicts that firm B will either increase 

or decrease its supply. In the second step, firm A aggregates these predictions 

by assigning weights to them. The weights firm A uses to pool the predictions of 

its two forecasting models evolve over time, subject to an evolutionary 

performance measure based on prediction accuracies. In this sense, firm A 

displays a boundedly rational learning behavior. Firm B’s expectation formation 

and learning behavior evolves along similar lines. 

Let us formalize the firms’ expectation formation and learning behavior. We 

express firm A’s expectation about the supply of firm B as 

𝐸𝐸𝑡𝑡𝐴𝐴[𝑞𝑞𝑡𝑡𝐵𝐵] = 𝑊𝑊𝑡𝑡
𝐴𝐴,𝐺𝐺𝑀𝑀𝑡𝑡

𝐴𝐴,𝐺𝐺 + 𝑊𝑊𝑡𝑡
𝐴𝐴,𝑅𝑅𝑀𝑀𝑡𝑡

𝐴𝐴,𝑅𝑅,                                                                   (12) 

where 𝑀𝑀𝑡𝑡
𝐴𝐴,𝐺𝐺 and 𝑀𝑀𝑡𝑡

𝐴𝐴,𝑅𝑅  are firm A’s predictions using the growth and reduction 

forecasting models, and 𝑊𝑊𝑡𝑡
𝐴𝐴,𝐺𝐺 and 𝑊𝑊𝑡𝑡

𝐴𝐴,𝑅𝑅 = 1 −𝑊𝑊𝑡𝑡
𝐴𝐴,𝐺𝐺 are the weights it assigns to 

these two techniques.  

Firm A’s forecasting models predict that firm B will either increase or decrease its 

supply by a constant factor, represented by expectation parameter 0 < 𝑑𝑑 < 1. 
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Accordingly, firm A’s growth forecasting model is formalized as 

𝑀𝑀𝑡𝑡
𝐴𝐴,𝐺𝐺 = (1 + 𝑑𝑑) 𝑞𝑞𝑡𝑡−1𝐵𝐵 ,                                                                                         (13) 

while its reduction forecasting model is captured by 

𝑀𝑀𝑡𝑡
𝐴𝐴,𝑅𝑅 = (1 − 𝑑𝑑) 𝑞𝑞𝑡𝑡−1𝐵𝐵 .                                                                                         (14) 

Experimental evidence for the growth and reduction forecasting models can be 

found in Assenza et al. (2015). Note that firm A’s final prediction is given by (12). 

In general, there are three different scenarios. For 𝑊𝑊𝑡𝑡
𝐴𝐴,𝐺𝐺 = 𝑊𝑊𝑡𝑡

𝐴𝐴,𝑅𝑅 = 0.5, firm A 

predicts that firm B will not alter its supply decision. As we will see, this holds at 

the unique steady state of our nonlinear duopoly model. Out of equilibrium, we 

have that firm A predicts that firm B will either increase or decrease its supply 

decision. This depends on whether 𝑊𝑊𝑡𝑡
𝐴𝐴,𝐺𝐺 is larger or smaller than 𝑊𝑊𝑡𝑡

𝐴𝐴,𝑅𝑅.4 

The fitness of the two forecasting models depends on current and past squared 

prediction errors. The fitness of firm A’s growth and reduction forecasting models 

is defined as 

𝐹𝐹𝑡𝑡
𝐴𝐴,𝐺𝐺 = 𝑒𝑒𝐹𝐹𝑡𝑡−1

𝐴𝐴,𝐺𝐺 − (1 − 𝑒𝑒)(𝑞𝑞𝑡𝑡−1𝐵𝐵 − 𝑀𝑀𝑡𝑡−1
𝐴𝐴,𝐺𝐺)2                                                                  (15) 

and  

𝐹𝐹𝑡𝑡
𝐴𝐴,𝑅𝑅 = 𝑒𝑒𝐹𝐹𝑡𝑡−1

𝐴𝐴,𝑅𝑅 − (1 − 𝑒𝑒)(𝑞𝑞𝑡𝑡−1𝐵𝐵 − 𝑀𝑀𝑡𝑡−1
𝐴𝐴,𝑅𝑅)2,                                                      (16) 

respectively. Firm A’s memory parameter is restricted to 0 < 𝑒𝑒 < 1.5 

The weight firm A assigns to the growth and reduction forecasting models is due 

to 

𝑊𝑊𝑡𝑡
𝐴𝐴,𝐺𝐺 = exp [𝑓𝑓𝐹𝐹𝑡𝑡

𝐴𝐴,𝐺𝐺]

exp�𝑓𝑓𝐹𝐹𝑡𝑡
𝐴𝐴,𝐺𝐺�+exp [𝑓𝑓𝐹𝐹𝑡𝑡

𝐴𝐴,𝑅𝑅]
                                                                            (17) 

                                                           
4 We do not argue that our setup is superior to setups that rely on more traditional heuristics such 

as extrapolative or regressive rules. We regard our setup as a reasonable alternative setup that 

may improve our understanding of the functioning of duopoly markets. However, we would like to 

point out that (13) and (14) do not rely on knowledge about firm B’s long-run strategy, as would 

be typical for regressive rules. Moreover, (13) and (14) only rest on the previous supply decision 

of firm B. In contrast, extrapolative rules rely at least on the last two supply decisions of firm B, 

which blows up the dimension of the underlying dynamical system. 
5 Evolutionary models that also use squared prediction errors as a fitness indicator include Lines 

and Westerhoff (2010) and Schmitt and Westerhoff (2019). Alternatively, one may use past 

realized profits as a fitness criterion, such as in Brock and Hommes (1997, 1998).  
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and 

𝑊𝑊𝑡𝑡
𝐴𝐴,𝑅𝑅 = exp [𝑓𝑓𝐹𝐹𝑡𝑡

𝐴𝐴,𝑅𝑅]

exp�𝑓𝑓𝐹𝐹𝑡𝑡
𝐴𝐴,𝐺𝐺�+exp [𝑓𝑓𝐹𝐹𝑡𝑡

𝐴𝐴,𝑅𝑅]
,                                                                         (18) 

respectively. The intensity of choice parameter 𝑓𝑓 > 0 indicates how sensitively 

firm A reacts to differences in the fitness of its forecasting models. Two aspects 

of (17) and (18) are relevant to understanding firm A’s learning behavior. First, 

the weight firm A assigns to a forecasting model increases in line with the 

forecasting model’s fitness. Second, the weight firm A assigns to the forecasting 

model that yields the higher fitness increases in line with parameter 𝑓𝑓. In this 

respect, there are two extreme parameter constellations. For 𝑓𝑓 → 0, firm A 

weights both predictions of its forecasting model with 50 percent. For 𝑓𝑓 → ∞, firm 

A only uses the forecasting model with the higher fitness.6 

Symmetrically, we obtain the following set of equations for firm B. We express 

firm B’s expectation about the supply of firm A as 

𝐸𝐸𝑡𝑡𝐵𝐵[𝑞𝑞𝑡𝑡𝐴𝐴] = 𝑊𝑊𝑡𝑡
𝐵𝐵,𝐺𝐺𝑀𝑀𝑡𝑡

𝐵𝐵,𝐺𝐺 + 𝑊𝑊𝑡𝑡
𝐵𝐵,𝑅𝑅𝑀𝑀𝑡𝑡

𝐵𝐵,𝑅𝑅,                                                                  (19) 

firm B’s growth forecasting model as 

𝑀𝑀𝑡𝑡
𝐵𝐵,𝐺𝐺 = (1 + 𝑑𝑑) 𝑞𝑞𝑡𝑡−1𝐴𝐴 ,                                                                                        (20) 

firm B’s reduction forecasting model as 

𝑀𝑀𝑡𝑡
𝐵𝐵,𝑅𝑅 = (1 − 𝑑𝑑) 𝑞𝑞𝑡𝑡−1𝐴𝐴 ,                                                                                       (21) 

the fitness of firm B’s growth forecasting model as 

𝐹𝐹𝑡𝑡
𝐵𝐵,𝐺𝐺 = 𝑒𝑒𝐹𝐹𝑡𝑡−1

𝐵𝐵,𝐺𝐺 − (1 − 𝑒𝑒)(𝑞𝑞𝑡𝑡−1𝐴𝐴 − 𝑀𝑀𝑡𝑡−1
𝐵𝐵,𝐺𝐺)2,                                                             (22) 

the fitness of firm B’s reduction forecasting model as 

𝐹𝐹𝑡𝑡
𝐵𝐵,𝑅𝑅 = 𝑒𝑒𝐹𝐹𝑡𝑡−1

𝐵𝐵,𝑅𝑅 − (1 − 𝑒𝑒)(𝑞𝑞𝑡𝑡−1𝐴𝐴 − 𝑀𝑀𝑡𝑡−1
𝐵𝐵,𝑅𝑅)2,                                                             (23) 

and the weights firm B assigns to its growth and reduction forecasting models as 

𝑊𝑊𝑡𝑡
𝐵𝐵,𝐺𝐺 = exp [𝑓𝑓𝐹𝐹𝑡𝑡

𝐵𝐵,𝐺𝐺]

exp�𝑓𝑓𝐹𝐹𝑡𝑡
𝐵𝐵,𝐺𝐺�+exp [𝑓𝑓𝐹𝐹𝑡𝑡

𝐵𝐵,𝑅𝑅]
,                                                                            (24) 

and  

𝑊𝑊𝑡𝑡
𝐵𝐵,𝑅𝑅 = exp [𝑓𝑓𝐹𝐹𝑡𝑡

𝐵𝐵,𝑅𝑅]

exp�𝑓𝑓𝐹𝐹𝑡𝑡
𝐵𝐵,𝐺𝐺�+exp [𝑓𝑓𝐹𝐹𝑡𝑡

𝐵𝐵,𝑅𝑅]
,                                                                       (25) 

                                                           
6 See Hommes (2013), Franke and Westerhoff (2017) and Hommes (2021) for an in-depth 

discussion of this boundedly rational learning approach. 
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respectively. Since the expectations of firms A and B become naïve when 𝑓𝑓 → 0, 

our nonlinear duopoly model nests the classical linear duopoly model with naïve 

expectations as a special case. The same is true when 𝑑𝑑 → 0.  

We are particularly interested in how the firms’ heuristic expectation formation 

and learning behavior affects the dynamics of our nonlinear duopoly model. The 

classical linear duopoly model with naïve expectations yields a globally stable 

steady state, i.e. permanent duopoly dynamics emerge in this setup only in the 

presence of exogenous shocks. In the following, we demonstrate that our 

nonlinear duopoly model may endogenously produce complex dynamics. 

 

4.2 Analytical results 

The following proposition, proven in Appendix B, summarizes our main analytical 

results. 

Proposition 2: The dynamics of our nonlinear duopoly model is driven by an eight-

dimensional nonlinear map. This map possesses a unique steady state, given by  

𝑆𝑆𝑆𝑆𝑆𝑆 = (𝑞𝑞�𝐴𝐴,𝐹𝐹�𝐴𝐴,𝐺𝐺 ,𝐹𝐹�𝐴𝐴,𝑅𝑅 , �̅�𝑥𝐵𝐵,𝑞𝑞�𝐵𝐵,𝐹𝐹�𝐵𝐵,𝐺𝐺 ,𝐹𝐹�𝐵𝐵,𝑅𝑅 , �̅�𝑥𝐴𝐴) = (𝛼𝛼,−𝑑𝑑2𝛼𝛼2,−𝑑𝑑2𝛼𝛼2,𝛼𝛼,𝛼𝛼, − 𝑑𝑑2𝛼𝛼2,−𝑑𝑑2𝛼𝛼2,𝛼𝛼). 

Steady state 𝑆𝑆𝑆𝑆𝑆𝑆 is locally stable if and only if stability condition 𝑑𝑑 < 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡
𝐹𝐹𝐹𝐹𝑐𝑐𝐹𝐹 =

1
2𝛼𝛼
� (1+𝑒𝑒)

(1−𝑒𝑒)𝑓𝑓
 holds. A violation of this stability condition is associated with the 

emergence of a Flip bifurcation and the birth of a period-two cycle. 

Proposition 2 deserves a few comments. Firm A’s and B’s steady-state supply, 

given by 𝑞𝑞�𝐴𝐴 = 𝑞𝑞�𝐵𝐵 = 𝛼𝛼 = 𝑎𝑎−𝑐𝑐
3𝑏𝑏

, their steady-state profits, given by 𝜋𝜋�𝐴𝐴 = 𝜋𝜋�𝐵𝐵 = 𝑏𝑏𝛼𝛼2 =

(𝑎𝑎−𝑐𝑐)
9𝑏𝑏

2
, and the steady-state price, given by 𝑃𝑃� = 𝑎𝑎+2𝑐𝑐

3
, only depend on fundamental 

parameters 𝑎𝑎, 𝑏𝑏 and 𝑐𝑐. Moreover, they are equal to those we encountered at the 

Cournot-Nash equilibrium of the classical linear duopoly model with naïve 

expectations. Why is this the case? Note that our nonlinear duopoly model 

ensures that neither firm A nor firm B makes any prediction errors at the steady 

state, i.e. both firms correctly predict the behavior of their opponent when the 
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dynamics is at rest.7 The same is true when firms A and B form naïve 

expectations. At the steady state, naïve expectations entail no prediction errors.  

Solving stability condition 𝑑𝑑 < 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡
𝐹𝐹𝐹𝐹𝑐𝑐𝐹𝐹 = 1

𝛼𝛼
� (1+𝑒𝑒)

(1−𝑒𝑒)𝑓𝑓
 for memory parameter 𝑒𝑒 reveals 

that the local stability of steady state 𝑆𝑆𝑆𝑆𝑆𝑆 necessitates that 𝑒𝑒 > 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡
𝐹𝐹𝐹𝐹𝑐𝑐𝐹𝐹 = 1 −

2
1+4𝛼𝛼2𝑑𝑑2𝑓𝑓

 . With respect to intensity of choice parameter 𝑓𝑓, we obtain the stability 

condition 𝑓𝑓 < 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡
𝐹𝐹𝐹𝐹𝑐𝑐𝐹𝐹 = (1+𝑒𝑒)

4𝛼𝛼2𝑑𝑑2(1−𝑒𝑒). Accordingly, the local stability of steady state 𝑆𝑆𝑆𝑆𝑆𝑆 

depends on all six model parameters. With respect to the fundamental 

parameters, we can conclude that an increase in parameter 𝑎𝑎 is detrimental to 

market stability, while an increase in parameters 𝑏𝑏 and 𝑐𝑐 is beneficial for market 

stability. With respect to the behavioral parameters, we can conclude that an 

increase in expectation parameter 𝑑𝑑 and intensity of choice parameter 𝑓𝑓 may 

compromise market stability, while an increase in memory parameter 𝑒𝑒 fosters 

market stability.8 

 

4.3 Numerical results 

Let us now study the out-of-equilibrium behavior of our nonlinear duopoly model. 

Our simulations rely on the following base parameter setting. For the fundamental 

parameters, capturing key demand and supply characteristics of the duopoly 

market, we assume that 𝑎𝑎 = 25, 𝑏𝑏 = 2 and 𝑐𝑐 = 1, implying that the aggregate 

parameter 𝛼𝛼 is equal to 4. For the behavioral parameters, capturing the firms’ 

expectation formation and learning behavior, we assume that 𝑑𝑑 = 0.02, 𝑒𝑒 = 0.9 

and 𝑓𝑓 = 475. While we keep the fundamental parameters fixed, the behavioral 

                                                           
7 This is an important observation. While the growth and the reduction forecasting models deliver 

incorrect predictions, their pooled predictions are correct at the steady state. Since the firms’ 

expectations should be correct at the steady state, we regard this as a desirable outcome.   
8 Given the dimension of map 𝑆𝑆, it is remarkable that we can precisely clarify the role played by 

each model parameter for the coordinates and local stability properties of steady state 𝑆𝑆𝑆𝑆𝑆𝑆. Such 

clear-cut analytical insights may justify one or the other simplifying assumption we made in setting 

up our nonlinear duopoly model, in particular the symmetric firm specification on which we focus 

mainly. 
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parameters will also serve as bifurcation parameters. Using our analytical 

insights, we can compute that the steady-state supplies of firms A and B amount 

to 𝑞𝑞�𝐴𝐴 = 𝑞𝑞�𝐵𝐵 = 4. Moreover, the firms’ total steady-state supply results in a steady-

state price given by 𝑃𝑃� = 9. The steady-state profits realized by firms A and B are 

equal to 𝜋𝜋�𝐴𝐴 = 𝜋𝜋�𝐵𝐵 = 32. Once again, we remark that neither firm makes any 

prediction errors at the steady state, i.e. they correctly predict their opponent’s 

supply decisions. Furthermore, Proposition 2 reveals that the steady state of our 

nonlinear duopoly model becomes unstable due to a Flip bifurcation when 

behavioral parameters 𝑑𝑑, 𝑒𝑒 and 𝑓𝑓 are about to violate the stability conditions  

𝑑𝑑 < 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡
𝐹𝐹𝐹𝐹𝑐𝑐𝐹𝐹 = 0.025, 𝑒𝑒 > 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡

𝐹𝐹𝐹𝐹𝑐𝑐𝐹𝐹 = 0.848 and 𝑓𝑓 < 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡
𝐹𝐹𝐹𝐹𝑐𝑐𝐹𝐹 = 742.2, respectively. As we 

will see in the sequel, our nonlinear duopoly model then gives rise to a period-

two cycle and, as these behavioral parameters change further, to endogenous 

dynamics that may involve coexisting attractors. In the following, we use 

bifurcation diagrams and time series plots to illustrate the functioning of our 

nonlinear duopoly model. 

Figures 2 to 4 present bifurcation diagrams in which we depict the price, the 

supply of firm A, the supply of firm B and the firms’ total supply versus expectation 

parameter 𝑑𝑑, using different sets of initial conditions. We chose the initial 

conditions with the goal of best visualizing the appearance and disappearance of 

coexisting attractors. Given the dimension of map 𝑆𝑆, this is a nontrivial task. Note 

that all bifurcation diagrams have in common that the dynamics of our nonlinear 

duopoly model converges towards its steady state 𝑆𝑆𝑆𝑆𝑆𝑆 for 𝑑𝑑 < 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡
𝐹𝐹𝐹𝐹𝑐𝑐𝐹𝐹 = 0.025. As 

to be expected, we furthermore observe a Flip bifurcation and the birth of a locally 

stable period-two cycle at 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡
𝐹𝐹𝐹𝐹𝑐𝑐𝐹𝐹 = 0.025. Note that 𝑑𝑑 = 0.025 means that the firms’ 

growth and reduction forecasting models predict that their opponent will increase 

or decrease its supply by 2.5 percent in the next period. Since the firms’ eventual 

predictions are averages of the predictions of their two forecasting models, such 

a value for expectation parameter 𝑑𝑑 seems to us not to be extreme. Figures 2 to 

4 indicate that we may observe coexisting attractors for higher values of 

expectation parameter 𝑑𝑑. Initial conditions then determine the fate of the duopoly 

market. In general, we can also infer from Figures 2 to 4 that an increase in 
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expectation parameter 𝑑𝑑 amplifies the amplitude of the dynamics, even if the 

coexistence of several attractors may create exceptions to this rule.  

*** Figures 2 to 4 about here **** 

Comparing Figures 2 to 4 at around 𝑑𝑑 = 0.04 indicates that a period-two cycle, 

visible in Figure 2, coexists with a cyclical attractor, visible in Figures 3 and 4.9 

Let us explore this scenario in more detail. The panels in Figure 5 report the price, 

the supply of firm A, the supply of firm B and the firms’ total supply in the time 

domain for our base parameter setting, except that 𝑑𝑑 = 0.04. The solid (dashed) 

horizontal lines mark the steady-state (average) values of the quantities depicted. 

Clearly, the left and right panels of Figure 5 only differ with respect to their initial 

conditions. Interestingly, the period-two cycle presented in the left panels of 

Figure 5 goes hand in hand with relatively strong price volatility. The main reason 

for this is that the supplies of firms A and B evolve synchronously, i.e. the supply 

of both firms is either high or low. In contrast, the cyclical dynamics depicted in 

the right panels of Figure 5 is associated with relatively low price volatility. While 

the supplies of firms A and B again display a relatively high amplitude, 

comparable to the one observed for the case of the period-two cycle, their 

supplies behave asynchronously. When the supply of firm A is high (low), the 

supply of firm B is low (high). In fact, the bottom right panel of Figure 5 reveals 

that the firms’ total supply is relatively stable, which explains why price volatility 

is low. A comparison of the solid and dashed lines in Figure 5 reveals that, in the 

case of the period-two cycle, the average price is lower than the steady-state 

price, while it is the other way around for the cyclical attractor. At the cyclical 

                                                           
9 Two technical comments are in order. First, all the cyclical attractors that we discuss in our paper 

were detected numerically, with the exception of the steady state. While it is clear that our 

nonlinear duopoly model may give rise to scenarios with at least four coexisting attractors, we 

cannot rule out the existence of further attractors. Second, it is difficult to judge the true nature of 

some of the cyclical attractors we will encounter in the following. They may stand for high-period 

cycles, quasiperiodic motion or chaotic dynamics. For a single time series, one may seek to 

identify their true nature by estimating the corresponding largest Lyapunov exponent or by 

exploring their attractors in phase space. However, since small changes in parameter 𝑑𝑑 may 

render these results, we abstain from discussing this technical aspect in more detail. 
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attractor, firms’ average profits amount to 32.01, comparable to their steady-state 

profits 𝜋𝜋�𝐴𝐴 = 𝜋𝜋�𝐵𝐵 = 32. At the period-two cycle, however, firms’ average profits 

drop to 31.87. Overall, we have here the first example where our nonlinear 

duopoly model yields distinctively different market outcomes for the same 

parameter setting. 

*** Figures 5 to 7 about here **** 

Continuing by increasing the value of expectation parameter 𝑑𝑑 further, we can 

see from Figure 2 that the period-two cycle undergoes a Neimark-Sacker 

bifurcation at a value of about 𝑑𝑑 ≅ 0.057, creating two closed invariant curves 

around the two points of the cycle, which in turn becomes unstable. As can further 

be observed, the amplitude of these cycles increases in line with parameter 𝑑𝑑. 

Scrutinizing Figures 2 to 4 at 𝑑𝑑 = 0.07 reveals that our nonlinear duopoly model 

now gives rise to three coexisting attractors. We study these scenarios in the time 

domain in Figure 6, generated using our base parameter setting, except that 𝑑𝑑 =

0.07. In the left panels of Figure 6, we see relatively stable price dynamics due to 

asynchronous supply decisions of firms A and B. This scenario corresponds to 

the right-hand scenario depicted in Figure 5. In the middle panels of Figure 6, 

price volatility is much higher. This is a result of the synchronous supply behavior 

of firms A and B. In contrast to the left-hand scenario depicted in Figure 5, 

however, the dynamics is not due to a period-two cycle, but a cyclical attractor, 

located around the two points of the aforementioned period-two cycle. In the right-

hand panels of Figure 6, we observe price dynamics that alternates between calm 

and turbulent periods. Price volatility is high when the firms’ supply decisions 

evolve synchronously and low when they evolve asynchronously. In the latter 

case, the supplies of firms A and B, and consequently their total supply, are 

clearly higher than their steady-state quantities. As a result, prices are then lower 

than their steady-state value. This also holds on average. With respect to the 

firms’ profitability, we can conclude that the dynamics depicted in the left panels 

of Figure 6 yield average profits that, at 32.04, are quite comparable to those they 

achieve at the steady state. However, this does not hold for the dynamics 

depicted in the middle and right panels of Figure 6, which are associated with 

average profits of 31.61 and 31.46, respectively. 
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The bifurcation diagrams reported in Figure 4 further reveal that an additional 

period-two cycle suddenly appears at around 𝑑𝑑 ≅ 0.085, probably via a saddle-

node bifurcation. Since the depicted simulations hold for firm A or firm B, there 

are in fact two new period-two cycles. Figure 7 presents the dynamics of our 

nonlinear duopoly model for our base parameter setting, except that 𝑑𝑑 = 0.12. 

Now we are confronted with four coexisting attractors. The left panels of Figure 7 

show one of the two new-born period-two cycles. Note that the depicted period-

two cycle is associated with relatively high price volatility. The firms’ supplies now 

evolve not only synchronously – we can also observe the supply of one firm 

fluctuating modestly around a high level, while that of the other firm fluctuates 

more strongly around a low level. Total supply fluctuates significantly, as do 

prices. Moreover, the average quantities produced by the firms differ 

considerably from their steady-state values, as can be seen from the solid and 

dashed lines in Figure 7. As a result, the average profits of firm A, at 33.08, are 

considerable higher than the average profits of firm B, namely 29.24 (of course, 

for other initial conditions this may be the other way around).  

The middle and right panels of Figure 7 depict the remaining two attractors. In 

the middle panels of Figure 7, we again see an attractor at which prices are 

relatively stable. We already encountered this attractor in the left panels of Figure 

6 and in the right panels of Figure 5. For this attractor, firms’ average profits, at 

32.13, are slightly higher than their steady-state profits. In the top-right panel of 

Figure 7, we see price dynamics that alternate between calm and turbulent 

periods, as in the top-right panel of Figure 6. In contrast to the previous figures, 

however, the amplitude of the dynamics has increased. Of course, this has an 

impact on the average values of prices and the firms’ total supply, which may 

deviate even more strongly from their steady-state value than before. For 

instance, the average price in the top-middle panel of Figure 7 is equal to 9.07, 

while it equals 8.47 in the top-right panel of Figure 7. The firms’ average profits 

for the dynamics depicted in the right panels of Figure 7 are equal to 30.75. Once 

again, our nonlinear duopoly model may give rise to distinctively different 



17 
 

coexisting attractors.10 

At around 𝑑𝑑 ≅ 0.168, the two period-two cycles, depicted in the left panels of 

Figure 7, suddenly disappear, leaving space only for the two cyclical attractors, 

depicted in the middle and right panels of Figure 7. One final remark is in order. 

The bifurcation diagrams in Figures 2 to 4 highlight how attractors of different 

kinds suddenly appear, coexist for some time, and eventually disappear. In this 

respect, it is important to note that even a small change in expectation parameter 

𝑑𝑑 may have drastic consequences for the dynamics of our nonlinear duopoly 

model. 

For completeness, let us briefly explore how the other two behavioral parameters 

may affect the dynamics of our nonlinear duopoly model. The top two panels of 

Figure 8 present bifurcation diagrams in which the price and the supply of firm A 

is depicted for increasing values of memory parameter 𝑒𝑒. In line with Proposition 

2, we observe a Flip bifurcation at 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡
𝐹𝐹𝐹𝐹𝑐𝑐𝐹𝐹 = 0.848. When memory parameter 𝑒𝑒 is 

larger than 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡
𝐹𝐹𝐹𝐹𝑐𝑐𝐹𝐹 = 0.848, the dynamics converges towards steady state 𝑆𝑆𝑆𝑆𝑆𝑆. 

When memory parameter 𝑒𝑒 is smaller than 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡
𝐹𝐹𝐹𝐹𝑐𝑐𝐹𝐹 = 0.848, our nonlinear duopoly 

model gives rise to a period-two cycle. Since the supply of firms A and B is either 

high or low, the variations in the firms’ total production entail pronounced price 

fluctuations.  
*** Figure 8 about here **** 

The bottom two panels of Figure 8 display bifurcation diagrams depicting the price 

and the supply of firm A for increasing values of intensity of choice parameter 𝑓𝑓. 

As long as 𝑓𝑓 < 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡
𝐹𝐹𝐹𝐹𝑐𝑐𝐹𝐹 = 742.2, the dynamics of our nonlinear duopoly model 

converges to its steady state 𝑆𝑆𝑆𝑆𝑆𝑆. At 𝑓𝑓 = 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡
𝐹𝐹𝐹𝐹𝑐𝑐𝐹𝐹 = 742.2, we observe a Flip 

bifurcation and the birth of a period-two cycle. As the intensity of choice 

parameter 𝑓𝑓 increases further, we observe the onset of cyclical dynamics. In 

                                                           
10 Dieci et al. (2022, 2023) develop behavioral cobweb models in which firms switch between 

different production technologies. In their models, the volatility of the price dynamics increases 

when firms involuntarily coordinate on the same production technology. In our model, the volatility 

of prices increases when firms involuntarily coordinate on the same forecasting model. 
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contrast to the period-two cycle, the supplies of firms A and B now evolve 

asynchronously. When the supply of firm A is high, then the supply of firm B is 

low, and vice versa. Hence, the volatility of the firms’ total production and price is 

rather low. 

As can be seen in the top two panels of Figure 8, a period-two cycle may exist 

for 𝑒𝑒 = 0. Moreover, note that the dimension of the map of our nonlinear duopoly 

model decreases from eight to four for 𝑒𝑒 = 0. While it is still difficult to explain in 

general how our nonlinear duopoly model functions for this parameter 

constellation, we are at least able to understand the emergence of a period-two 

cycle. For instance, the parameter setting 𝑎𝑎 = 25, 𝑏𝑏 = 2, 𝑐𝑐 = 1, 𝑑𝑑 = 0.06, 𝑒𝑒 = 0 

and 𝑓𝑓 = 10 yields a locally stable period-two cycle at which the supplies of firms 

A and B are alternatingly given by (𝑞𝑞1𝐴𝐴 = 3.76, 𝑞𝑞1𝐵𝐵 = 3.76) and (𝑞𝑞2𝐴𝐴 = 4.23, 𝑞𝑞2𝐵𝐵 =

4.23). In Figure 9, we portray the best-response dynamics of our nonlinear 

duopoly model for this cycle. To be precise, the light and dark blue lines mark the 

best-response functions of firm A, while the light and dark pink lines mark the 

same for firm B. Clearly, the different lines represent the best-response behaviors 

of a firm for period 𝑡𝑡 as a function of the supply of its rival in period 𝑡𝑡 − 1, assuming 

that the supply of its rival in period 𝑡𝑡 − 2 is equal to the solution of the period-two 

cycle at that moment. Figure 9 shows that, given (𝑞𝑞1𝐴𝐴,𝑞𝑞1𝐵𝐵), the best-response of 

firms A and B are (𝑞𝑞2𝐴𝐴,𝑞𝑞2𝐵𝐵), and, given (𝑞𝑞2𝐴𝐴,𝑞𝑞2𝐵𝐵), the best-response of firms A and 

B are (𝑞𝑞1𝐴𝐴, 𝑞𝑞1𝐵𝐵). In the presence of higher-order cycles, the behavior of each firm 

is characterized by more than two best-response functions, and a graphical 

representation becomes tedious. Nevertheless, it is easy to imagine that, given 

the past behaviors of firms’ A and B, their actual best-response functions are 

constantly adjusting, giving rise to complex duopoly dynamics, as illustrated 

above.  

*** Figure 9 about here **** 

 
5 Conclusions 

In this paper, we develop a nonlinear duopoly model in which boundedly rational 

firms employ a set of different forecasting models to predict the supply decisions 
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of their opponent. In particular, we focus on a setup in which the firms use a 

growth and a reduction forecasting model. Moreover, we consider that the firms 

display a learning behavior in the sense that they put more weight on a 

forecasting model that yields a higher prediction accuracy. As it turns out, the 

dynamics of our nonlinear duopoly model is due to an eight-dimensional nonlinear 

map. We analytically prove that our nonlinear duopoly model possesses a unique 

steady state. At the steady state, the production quantities of the two firms 

correspond to those that we observe at the Cournot-Nash equilibrium of the 

classical linear duopoly model with naïve expectations. Our analysis further 

reveals that the local stability of the steady state may only be compromised by a 

Flip bifurcation, an outcome that triggers endogenous dynamics in the form of a 

period-two cycle. Such dynamics may, for instance, be set in motion when the 

firms’ forecasting models predict that their opponent will adjust its supply 

sufficiently strongly.  

Out of equilibrium, we observe that the firms’ heuristic expectation formation and 

learning behavior may lead to complex dynamics. Amongst others, our nonlinear 

duopoly model gives rise to coexisting cyclical attractors, which in turn display 

distinctively different price and quantity properties. For instance, we may observe 

rather stable or unstable price and quantity dynamics for the same parameter 

setting. Price and quantity dynamics are more volatile when the supply of both 

firms evolves synchronously and less volatile when the supply of both firms 

evolves asynchronously. In the former case, the firms’ total supply is relatively 

stable, while it is subject to larger fluctuations in the latter case. For an outside 

observer who only observes the price and quantity dynamics of our nonlinear 

duopoly model, the case in which the firms’ supply evolves synchronously may 

appear as an instant of collusive behavior. Such a judgement would be wrong, 

since no collusive behavior is possible in our nonlinear duopoly model. 

Synchronous behavior is an emergent phenomenon in our model that occurs due 

to the firms’ heuristic expectation formation and learning behavior.  

Overall, we are impressed by the large number of distinctively different types of 

dynamic behavior that our nonlinear duopoly model can simultaneously generate. 

We conclude our paper by pointing out a number of possible model extensions. 
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First, preliminary investigations reveal that our nonlinear duopoly model may 

produce intriguing dynamics when the firms differ, e.g. with respect to their 

fundamental or behavioral parameters. Studying an asymmetric version of our 

nonlinear cobweb model may be worthwhile. Second, one may regard our 

nonlinear duopoly model as a static, but repeated game. Against this backdrop, 

it may be interesting to assume that firms seek to condition their action on the 

discounted stream of future profits, taking into account their rival’s future 

behavior. Third, we assume that firms maximize their absolute profits and that 

they weight the growth and reduction forecasting models based on absolute 

prediction accuracies. Schaffer (1989) and Vega-Redondo (1997) make a case 

for the use of relative instead of absolute performance indicators. Relatedly, Huck 

et al. (1999) report experimental evidence according to which firms also display 

imitative behavior. Incorporating these ideas may lead to even richer duopoly 

models. Fourth, we opted for a rather simple functional specification of firms’ 

growth and reduction forecasting models – future work may consider alternative 

setups. We hope that our paper stimulates more research in this direction. 

 

Appendix A: Proof of Proposition 1 
In the following, we derive the map that drives the dynamics of the classical linear 

duopoly model with naïve expectations and show that its unique steady state is 

globally stable. From (10) and (11) it immediately follows that the dynamics of this 

model is due to the two-dimensional linear map 

𝑆𝑆 ≔ �
𝑞𝑞𝑡𝑡𝐴𝐴 = 3

2
𝛼𝛼 − 1

2
𝑞𝑞𝑡𝑡−1𝐵𝐵

𝑞𝑞𝑡𝑡𝐵𝐵 = 3
2
𝛼𝛼 − 1

2
𝑞𝑞𝑡𝑡−1𝐴𝐴

.                                                                             (A1) 

Straightforward computations indicate that map 𝑆𝑆 has the unique steady state 

𝑆𝑆𝑆𝑆𝑆𝑆 = (𝑞𝑞�𝐴𝐴,𝑞𝑞�𝐵𝐵) = (𝛼𝛼,𝛼𝛼).                                                                                                  (A2) 

Note that the total steady-state supply of firms A and B implies that the steady-

state price results in 𝑃𝑃� = 𝑎𝑎+2𝑐𝑐
3

. At the steady state, the profits realized by firms A 

and B amount to 𝜋𝜋�𝐴𝐴 = 𝜋𝜋�𝐵𝐵 = 𝑏𝑏𝛼𝛼2. The Jacobian matrix of map 𝑆𝑆 reads as 

𝐽𝐽 = � 0 −0.5
−0.5 0 �,                                                                                                                 (A3) 

giving rise to the characteristic polynomial 
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𝑃𝑃(𝜆𝜆) = 𝜆𝜆2 − 0.25.                                                                                                                 (A4) 

Since both eigenvalues of (A6) are equal to 𝜆𝜆1,2 = ±0.5, we can conclude that the 

steady state 𝑆𝑆𝑆𝑆𝑆𝑆 of map 𝑆𝑆 is globally stable.  

 

Appendix B: Proof of Proposition 2 
In the following, we derive the map that drives the dynamics of our nonlinear 

duopoly model, compute its unique steady state and conduct a local stability 

analysis. Combining (6)-(7) with (12)-(25) enables us to express our nonlinear 

duopoly model in the form of an eight-dimensional nonlinear map, given by  

𝑆𝑆: =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧𝑞𝑞𝑡𝑡𝐴𝐴 = 3

2
𝛼𝛼 − 1

2
� 2𝑑𝑑𝑞𝑞𝑡𝑡−1𝐵𝐵

1+exp�𝑓𝑓�𝑒𝑒�𝐹𝐹𝑡𝑡−1
𝐴𝐴,𝑅𝑅−𝐹𝐹𝑡𝑡−1

𝐴𝐴,𝐺𝐺�−(1−𝑒𝑒)4𝑑𝑑𝑥𝑥𝑡𝑡−1𝐵𝐵 �𝑞𝑞𝑡𝑡−1𝐵𝐵 −𝑥𝑥𝑡𝑡−1𝐵𝐵 ���
+ (1 − 𝑑𝑑)𝑞𝑞𝑡𝑡−1𝐵𝐵 �

𝑥𝑥𝑡𝑡𝐵𝐵 = 𝑞𝑞𝑡𝑡−1𝐵𝐵

𝐹𝐹𝑡𝑡
𝐴𝐴,𝐺𝐺 = 𝑒𝑒𝐹𝐹𝑡𝑡−1

𝐴𝐴,𝐺𝐺 − (1 − 𝑒𝑒)(𝑞𝑞𝑡𝑡−1𝐵𝐵 − (1 + 𝑑𝑑)𝑥𝑥𝑡𝑡−1𝐵𝐵 )2

𝐹𝐹𝑡𝑡
𝐴𝐴,𝑅𝑅 = 𝑒𝑒𝐹𝐹𝑡𝑡−1

𝐴𝐴,𝑅𝑅 − (1 − 𝑒𝑒)(𝑞𝑞𝑡𝑡−1𝐵𝐵 − (1 − 𝑑𝑑)𝑥𝑥𝑡𝑡−1𝐵𝐵 )2

𝑞𝑞𝑡𝑡𝐵𝐵 = 3
2
𝛼𝛼 − 1

2
� 2𝑑𝑑𝑞𝑞𝑡𝑡−1𝐴𝐴

1+exp�𝑓𝑓�𝑒𝑒�𝐹𝐹𝑡𝑡−1
𝐵𝐵,𝑅𝑅−𝐹𝐹𝑡𝑡−1

𝐵𝐵,𝐺𝐺�−(1−𝑒𝑒)4𝑑𝑑𝑥𝑥𝑡𝑡−1𝐴𝐴 �𝑞𝑞𝑡𝑡−1𝐴𝐴 −𝑥𝑥𝑡𝑡−1𝐴𝐴 ���
+ (1 − 𝑑𝑑)𝑞𝑞𝑡𝑡−1𝐴𝐴 �

𝑥𝑥𝑡𝑡𝐴𝐴 = 𝑞𝑞𝑡𝑡−1𝐴𝐴

𝐹𝐹𝑡𝑡
𝐵𝐵,𝐺𝐺 = 𝑒𝑒𝐹𝐹𝑡𝑡−1

𝐵𝐵,𝐺𝐺 − (1 − 𝑒𝑒)(𝑞𝑞𝑡𝑡−1𝐴𝐴 − (1 + 𝑑𝑑)𝑥𝑥𝑡𝑡−1𝐴𝐴 )2

𝐹𝐹𝑡𝑡
𝐵𝐵,𝑅𝑅 = 𝑒𝑒𝐹𝐹𝑡𝑡−1

𝐵𝐵,𝑅𝑅 − (1 − 𝑒𝑒)(𝑞𝑞𝑡𝑡−1𝐴𝐴 − (1 − 𝑑𝑑)𝑥𝑥𝑡𝑡−1𝐴𝐴 )2

, (B1) 

where 𝑥𝑥𝑡𝑡𝐵𝐵 = 𝑞𝑞𝑡𝑡−1𝐵𝐵  and 𝑥𝑥𝑡𝑡𝐴𝐴 = 𝑞𝑞𝑡𝑡−1𝐴𝐴  are auxiliary variables.  

Setting 𝑞𝑞�𝐴𝐴 = 𝑞𝑞𝑡𝑡𝐴𝐴 = 𝑞𝑞𝑡𝑡−1𝐴𝐴 = �̅�𝑥𝐴𝐴 = 𝑥𝑥𝑡𝑡𝐴𝐴 = 𝑥𝑥𝑡𝑡−1𝐴𝐴 , 𝑞𝑞�𝐵𝐵 = 𝑞𝑞𝑡𝑡𝐵𝐵 = 𝑞𝑞𝑡𝑡−1𝐵𝐵 = �̅�𝑥𝐵𝐵 = 𝑥𝑥𝑡𝑡𝐵𝐵 = 𝑥𝑥𝑡𝑡−1𝐵𝐵 , 

𝐹𝐹�𝐴𝐴,𝐺𝐺 = 𝐹𝐹𝑡𝑡
𝐴𝐴,𝐺𝐺 = 𝐹𝐹𝑡𝑡−1

𝐴𝐴,𝐺𝐺, 𝐹𝐹�𝐴𝐴,𝑅𝑅 = 𝐹𝐹𝑡𝑡
𝐴𝐴,𝑅𝑅 = 𝐹𝐹𝑡𝑡−1

𝐴𝐴,𝑅𝑅, 𝐹𝐹�𝐵𝐵,𝐺𝐺 = 𝐹𝐹𝑡𝑡
𝐵𝐵,𝐺𝐺 = 𝐹𝐹𝑡𝑡−1

𝐵𝐵,𝐺𝐺 and 𝐹𝐹�𝐵𝐵,𝑅𝑅 = 𝐹𝐹𝑡𝑡
𝐵𝐵,𝑅𝑅 =

𝐹𝐹𝑡𝑡−1
𝐵𝐵,𝑅𝑅, we find that map 𝑆𝑆 possesses the unique steady state  

𝑆𝑆𝑆𝑆𝑆𝑆 = (𝑞𝑞�𝐴𝐴,𝐹𝐹�𝐴𝐴,𝐺𝐺 ,𝐹𝐹�𝐴𝐴,𝑅𝑅, �̅�𝑥𝐵𝐵 , 𝑞𝑞�𝐵𝐵,𝐹𝐹�𝐵𝐵,𝐺𝐺 ,𝐹𝐹�𝐵𝐵,𝑅𝑅, �̅�𝑥𝐴𝐴) = (𝛼𝛼,−𝑑𝑑2𝛼𝛼2,−𝑑𝑑2𝛼𝛼2,𝛼𝛼,𝛼𝛼,−𝑑𝑑2𝛼𝛼2,−𝑑𝑑2𝛼𝛼2,𝛼𝛼).       (B2) 

At the steady state, we furthermore have that 𝑃𝑃� = 𝑎𝑎+2𝑐𝑐
3

 and 𝜋𝜋�𝐴𝐴 = 𝜋𝜋�𝐵𝐵 = 𝑏𝑏𝛼𝛼2. 

Let us next study the local stability properties of steady state 𝑆𝑆𝑆𝑆𝑆𝑆. The Jacobian 

matrix of map 𝑆𝑆, evaluated at the steady state 𝑆𝑆𝑆𝑆𝑆𝑆, reads as 

𝐽𝐽(𝑆𝑆𝑆𝑆𝑆𝑆) = �Φ Ψ
Ψ Φ�,                                                                                            (B3) 

where  

Φ =

⎝

⎜
⎛

0 𝛼𝛼2𝑑𝑑2(1 − 𝑒𝑒)𝑓𝑓 − 𝛼𝛼𝑑𝑑𝑒𝑒𝑓𝑓
4

𝛼𝛼𝑑𝑑𝑒𝑒𝑓𝑓
4

0 0 0 0
0 −2𝛼𝛼𝑑𝑑(1 + 𝑑𝑑)(1 − 𝑒𝑒) 𝑒𝑒 0
0 2𝛼𝛼𝑑𝑑(1 − 𝑑𝑑)(1 − 𝑒𝑒) 0 𝑒𝑒 ⎠

⎟
⎞

                                                (B4) 
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and 

Ψ =

⎝

⎜
⎛
−1

2
− 𝛼𝛼2𝑑𝑑2(1 − 𝑒𝑒)𝑓𝑓 0 0 0

1 0 0 0
2𝛼𝛼𝑑𝑑(1 − 𝑒𝑒) 0 0 0
−2𝛼𝛼𝑑𝑑(1 − 𝑒𝑒) 0 0 0⎠

⎟
⎞

,                                                       (B5) 

respectively. Using the Laplacian expansion on the (𝐽𝐽 − 𝜆𝜆𝜆𝜆) matrix, we may 

express the characteristic polynomial of 𝐽𝐽(𝑆𝑆𝑆𝑆𝑆𝑆) as 

𝑃𝑃(𝜆𝜆) = 𝜆𝜆2(𝑒𝑒 − 𝜆𝜆)2(𝜆𝜆2 + 𝜉𝜉1𝜆𝜆 + 𝜉𝜉2)(𝜆𝜆2 + 𝜂𝜂1𝜆𝜆 + 𝜂𝜂2),                                              (B6) 

where 𝜉𝜉1 = −�1
2

+ 𝑒𝑒 + 𝛼𝛼2𝑑𝑑2(1 − 𝑒𝑒)𝑓𝑓�, 𝜉𝜉2 = 𝑒𝑒
2

+ 𝛼𝛼2𝑑𝑑2(1 − 𝑒𝑒)𝑓𝑓, 𝜂𝜂1 = �1
2
− 𝑒𝑒 +

𝛼𝛼2𝑑𝑑2(1 − 𝑒𝑒)𝑓𝑓� and 𝜂𝜂2 = −�𝑒𝑒
2

+ 𝛼𝛼2𝑑𝑑2(1 − 𝑒𝑒)𝑓𝑓�.11 Now, steady state 𝑆𝑆𝑆𝑆𝑆𝑆 is locally 

stable when all eight eigenvalues of Jacobian matrix 𝐽𝐽(𝑆𝑆𝑆𝑆𝑆𝑆) are inside the unit 

circle.12 In our local stability analysis, we are confronted with a situation in which 

two eigenvalues are equal to zero, i.e. 𝜆𝜆1 = 𝜆𝜆2 = 0. Moreover, two eigenvalues 

are equal to 𝑒𝑒, i.e. 𝜆𝜆3 = 𝜆𝜆4 = 𝑒𝑒. Since 0 < 𝑒𝑒 < 1, these two eigenvalues do not 

harm the local stability of the steady state. Put differently, the local stability of 

steady state 𝑆𝑆𝑆𝑆𝑆𝑆 hinges on the remaining four eigenvalues, determined by two 

separate quadratic polynomials, namely �𝜆𝜆5,6
2 + 𝜉𝜉1𝜆𝜆5,6 + 𝜉𝜉2� and �𝜆𝜆7,8

2 + 𝜂𝜂1𝜆𝜆7,8 +

𝜂𝜂2�. Let us first determine the necessary and sufficient conditions assuring that 

𝜆𝜆5 and 𝜆𝜆6 are less than one in modulus, for which we have to check whether the 

stability conditions (i) 1 + 𝜉𝜉1 + 𝜉𝜉2 > 0, (ii) 1 − 𝜉𝜉1 + 𝜉𝜉2 > 0 and (iii) 1 − 𝜉𝜉2 > 0 jointly 

hold. We find that stability conditions (i) and (ii) are always satisfied. In contrast, 

stability condition (iii) necessitates that 
4−2𝑒𝑒
4

− 𝛼𝛼2𝑑𝑑2(1 − 𝑒𝑒)𝑓𝑓 > 0.                                                                                    (B7) 

Let us next determine the necessary and sufficient conditions assuring that 𝜆𝜆7 

and 𝜆𝜆8 are less than one in modulus. From the stability conditions (i) 1 + 𝜂𝜂1 +

𝜂𝜂2 > 0, (ii) 1 − 𝜂𝜂1 + 𝜂𝜂2 > 0 and (iii) 1 − 𝜂𝜂2 > 0 we find that stability conditions (i) 

and (iii) are always satisfied, while stability condition (ii) requires that 

                                                           
11 Instead of using this tedious procedure, it may be more comfortable to compute the 

characteristic polynomial using modern software tools such as Mathematica.  
12 Puu (1997), Medio and Lines (2001) and Gandolfo (2009) review standard tools to study the 

behavior of nonlinear dynamical systems. 
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1+𝑒𝑒
4
− 𝛼𝛼2𝑑𝑑2(1 − 𝑒𝑒)𝑓𝑓 > 0.                                                                                 (B8) 

Since 4 − 2𝑒𝑒 > 1 + 𝑒𝑒, stability condition (B8) is more binding than stability 

condition (B7). Solving stability condition (B8) for parameter 𝑑𝑑, we arrive at  

𝑑𝑑 < 1
𝛼𝛼
� (1+𝑒𝑒)

(1−𝑒𝑒)𝑓𝑓
.                                                                                                (B9) 

As long as stability condition (B9) holds, steady state 𝑆𝑆𝑆𝑆𝑆𝑆 is locally stable. If 

stability condition (B9) is violated, a Flip bifurcation renders steady state 𝑆𝑆𝑆𝑆𝑆𝑆 

unstable and a period-two cycle emerges. Finally, solving (B9) for parameters 𝑒𝑒 

and 𝑓𝑓 reveals that 

𝑒𝑒 > 1 − 2
1+4𝛼𝛼2𝑑𝑑2𝑓𝑓

                                                                                                        (B10) 

and 

𝑓𝑓 < (1+𝑒𝑒)
4𝛼𝛼2𝑑𝑑2(1−𝑒𝑒),                                                                                                                     (B11)  

respectively. 
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Figure 1: Best-response dynamics within the classical linear duopoly model with naïve 

expectations. The blue and pink lines mark the best-response functions of firms A and B, 

respectively. Starting in the out-of-equilibrium point (𝑞𝑞0𝐴𝐴, 𝑞𝑞0𝐵𝐵), the figure illustrates for a few time 

steps how the duopoly market converges towards the Cournot-Nash equilibrium point (𝛼𝛼,𝛼𝛼).   
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Figure 2: First set of bifurcation diagrams for parameter 𝑑𝑑. The panels show the price, the supply 

of firm A, the supply of firm B and the firms’ total supply for increasing values of parameter 𝑑𝑑. The 

other parameters correspond to our base parameter setting. Figures 2 to 4 only differ with respect 

to their initial conditions.   
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Figure 3: Second set of bifurcation diagrams for parameter 𝑑𝑑. The panels show the price, the 

supply of firm A, the supply of firm B and the firms’ total supply for increasing values of parameter 

𝑑𝑑. The other parameters correspond to our base parameter setting. Figures 2 to 4 only differ with 

respect to their initial conditions.  
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Figure 4: Third set of bifurcation diagrams for parameter 𝑑𝑑. The panels show the price, the supply 

of firm A or firm B, the supply of firm B or firm A and the firms’ total supply for increasing values 

of parameter 𝑑𝑑. The other parameters correspond to our base parameter setting. Figures 2 to 4 

only differ with respect to their initial conditions. 
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Figure 5: First set of time series diagrams for parameter 𝑑𝑑. The panels show the price, the supply 

of firm A, the supply of firm B and the firms’ total supply in the time domain. The simulations are 

based on our base parameter setting, except that 𝑑𝑑 = 0.04. The left and right panels only differ 

with respect to their initial conditions. The solid (dashed) horizontal lines mark the steady-state 

(average) values of the quantities depicted. 
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Figure 6: Second set of time series diagrams for parameter 𝑑𝑑. The panels show the price, the 

supply of firm A, the supply of firm B and the firms’ total supply in the time domain. The simulations 

are based on our base parameter setting, except that 𝑑𝑑 = 0.07. The left, middle and right panels 

only differ with respect to their initial conditions. The solid (dashed) horizontal lines mark the 

steady-state (average) values of the quantities depicted. 
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Figure 7: Third set of time series diagrams for parameter 𝑑𝑑. The panels show the price, the supply 

of firm A, the supply of firm B and the firms’ total supply in the time domain. The simulations are 

based on our base parameter setting, except that 𝑑𝑑 = 0.12. The left, middle and right panels only 

differ with respect to their initial conditions. Since the period-two cycle depicted in the left panels 

exists for firm A and for firm B, there are four coexisting attractors in total. The solid (dashed) 

horizontal lines mark the steady-state (average) values of the quantities depicted.  
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Figure 8: Bifurcation diagrams for parameters 𝑒𝑒 and 𝑓𝑓. The top two panels show the price and the 

supply of firm A for increasing values of parameter 𝑒𝑒. The bottom two panels show the price and 

the supply of firm A for increasing values of parameter 𝑓𝑓. The other parameters correspond to our 

base parameter setting.  
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Figure 9: Best-response dynamics within our nonlinear duopoly model for a period-two cycle. 

Parameter setting 𝑎𝑎 = 25, 𝑏𝑏 = 2 and 𝑐𝑐 = 1, 𝑑𝑑 = 0.06, 𝑒𝑒 = 0 and 𝑓𝑓 = 10 yields the period-two cycle 

(𝑞𝑞1𝐴𝐴 = 3.76, 𝑞𝑞1𝐵𝐵 = 3.76) and (𝑞𝑞2𝐴𝐴 = 4.23, 𝑞𝑞2𝐵𝐵 = 4.23). The light and dark blue lines mark the best-

response functions of firm A for this period-two cycle; the light and dark pink lines mark the same 

for firm B. The figure shows that, given (𝑞𝑞1𝐴𝐴, 𝑞𝑞1𝐵𝐵), the best-response of firms A and B are (𝑞𝑞2𝐴𝐴, 𝑞𝑞2𝐵𝐵), 

and, given (𝑞𝑞2𝐴𝐴, 𝑞𝑞2𝐵𝐵), the best-response of firms A and B are (𝑞𝑞1𝐴𝐴, 𝑞𝑞1𝐵𝐵).   
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