Efficient Incentives with Social Preferences

Thomas Daske and Christoph March

Working Paper No. 180
June 2022

Bamberg Economic Research Group
Bamberg University
Feldkirchenstraße 21
D-96052 Bamberg
Telefax: (0951) 863 5547
Telephone: (0951) 863 2687
felix.stuebben@uni-bamberg.de
http://www.uni-bamberg.de/vwl/forschung/berg/

ISBN 978-3-949224-01-0
Redaktion:
Dr. Felix Stübben*

* felix.stuebben@uni-bamberg.de
This study explores mechanism design with allocation-based social preferences. Agents’ social preferences and private payoffs are all subject to asymmetric information. We assume quasi-linear utility and independent types. We show how the asymmetry of information about agents’ social preferences can be operationalized to satisfy agents’ participation constraints. Our main result is a possibility result for groups of at least three agents: If endowments are sufficiently large, any such group can resolve any given allocation problem with an ex-post budget-balanced mechanism that is Bayesian incentive-compatible, interim individually rational, and ex-post Pareto-efficient.

JEL Classification: C72; C78; D62; D82

Keywords: Mechanism design; social preferences; Bayesian implementation; participation constraints; participation stimulation
1 Introduction

An incentive mechanism should have four properties: Incentive compatibility, ex-post Pareto efficiency, ex-post budget balance, and interim individual rationality.

Bayesian implementation has become an accepted way to achieve the first three properties.1 Often, however, Bayesian mechanisms violate agents’ participation constraints.2

Bayesian mechanisms that reconcile all four properties exist if agents’ private signals are sufficiently correlated: Crémer and McLean (1985, 1988) show that the designer may exploit this correlation to validate the agents’ reports, extract all information rents, and ensure participation en passant.3 Mezzetti (2004) shows that the logic of Crémer and McLean (1985, 1988) can be extended to the case of independent private signals if the designer is permitted to implement a two-stage mechanism: The designer can resolve the allocation problem and ensure participation by sequentially administering a social alternative and transfers.

The present study enriches the set of possibility results. Contrary to Crémer and McLean (1985, 1988) and Mezzetti (2004), we neither assume that private signals are correlated, nor that reporting is sequential. Instead, we consider agents with outcome-based social preferences that are privately known (next to privately known preferences for consumption). That is, agents care about the distributive effects of a mechanism, and their distributive preferences are private information. We show how this kind of information asymmetry can be operationalized to satisfy agents’ participation constraints.

Our main result, Theorem 1, states that any group of at least three agents can resolve any given allocation problem with an ex-post budget-balanced mechanism that is Bayesian incentive-compatible, interim individually rational, and ex-post Pareto-efficient, provided endowments are sufficiently large.

Until recently, the literature on efficient design has either neglected social preferences or assumed them to be common knowledge.4 An exception is Bierbrauer and Netzer (2016), who study mechanism design when agents have intention-based social preferences that are private information. They show that social preferences enhance the opportunities for efficient, individually rational design if and only if none but conditionally pro-social

\begin{itemize}
 \item 1E.g., Arrow (1979), d’Aspremont and Gérard-Varet (1979).
 \item 2For settings with independent private signals see, e.g., Myerson and Satterthwaite (1983), Mailath and Postlewaite (1990), Williams (1999), and Segal and Whinston (2016).
 \item 3Likewise, McAfee and Reny (1992), McLean and Postlewaite (2004), Kosenok and Severinov (2008).
 \item 4E.g., Desiraju and Sappington (2007), Kucuksenel (2012), Tang and Sandholm (2012).
\end{itemize}
types are present. Our result differs in that we consider different kinds of social preferences, allowing for anti-social preferences such as spite, and identify a more subtle rationale for participation, building on information asymmetry rather than convenient social-type combinations.

Our possibility result builds on the following insights: In quasi-linear environments, a mechanism can be designed such that the incentives to reveal payoff types and social types are separated. While the allocation problem can be resolved through payoff-type conditional transfers, agents’ participation can be attracted through budget-balanced transfers that condition on social types; the latter is possible for more than two agents.\(^5\)

The paper proceeds as follows. Section 2 outlines the model framework. Section 3 states and interprets our main result. Section 4 details the proof. Section 5 illustrates the economic intuition behind our participation-stimulating transfers. Section 6 reflects upon the role of social types being private information. Section 7 concludes.

2 The Model

2.1 The Allocation Problem

There is a group \(\mathcal{I} = \{1, \ldots, n\}\) of \(n \geq 2\) agents and there is a finite set \(K\) of social alternatives. From alternative \(k \in K\) and a transfer \(t_i \in \mathbb{R}\), agent \(i\) gains a private payoff \(\Pi_i(k, t_i | \theta_i) = \pi_i(k | \theta_i) + t_i\), with \(\pi_i : K \times \Theta_i \rightarrow \mathbb{R}\). Agent \(i\)'s payoff type \(\theta_i\) belongs to a finite set \(\Theta_i\), with \(|\Theta_i| \geq 2\). The collection of agents’ payoff types is denoted by \(\theta = (\theta_i, \theta_{-i})\), where \(\theta_{-i} = (\theta_j)_{j \neq i}\). Agents exhibit social preferences in the form of altruism or spite:\(^6\) From the allocation of private payoffs, agent \(i\) derives ex-post utility

\[
u_i(k; (t_j)_{j \in \mathcal{I}, \theta_{-i} | \theta_i, \delta_i}) = \sum_{j \in \mathcal{I}} \delta_{ij} \Pi_j(k, t_j | \theta_j),
\]

where the value \(\delta_{ij}\) that \(i\) assigns to \(j\)'s payoff, \(j \neq i\), belongs to a closed (proper) interval \(\Delta_{ij} = [\delta_{ij}^{\text{min}}, \delta_{ij}^{\text{max}}] \subset (\frac{-1}{n-1}, 1)\), while \(\delta_{ii} = 1\) for all \(i\). Notice that \((\frac{-1}{n-1}, 1)\) is the maximum range of altruism, or spite, for which agents care about overall material efficiency while

\(^5\)Participation in our mechanism does not build on manipulating the status quo (via appropriate liability rules as in, e.g., Jehiel and Moldovanu, 2006, and Segal and Whinston, 2016) but is rendered attractive by our mechanism itself.

\(^6\)For evidence on altruism, see Andreoni and Miller (2002), Charness and Rabin (2002), and Bruhin, Fehr, and Schunk (2019). For evidence on spite, see Saijo and Nakamura (1995), Fehr, Hoff, and Kshetramade (2008), and Prediger, Vollan, and Herrmann (2014).
still being selfish to the extent that every one of them prefers a dollar to be her own
rather than having that same dollar distributed among the others.7

We refer to δ_{ij} as i’s degree of altruism towards j, to the collection $\delta_i = (\delta_{ij})_{j \neq i}$ as i’s social type, and to the pair (θ_i, δ_i) as i’s type. The collection of social types is denoted by $\delta = (\delta_i, \delta^{-i})$, with $\delta^{-i} = (\delta_j)_{j \neq i}$, and Cartesian products of type sets by $\Theta = \prod_i \Theta_i$, $\Delta_i = \prod_{j \neq i} \Delta_{ij}$, and $\Delta = \prod_i \Delta_i$.

Our key assumption is that each agent is privately informed about her payoff type and social type. Hence, in any bilateral relationship there remains, to some extent, uncertainty about who (dis-)likes whom how much.8 While each agent i’s payoff type and social type realize independently according to strictly positive densities, the various degrees of altruism determining i’s social type may correlate. At the interpersonal level, agents’ types are independent.

We further assume that agents do not have access to an outside source of money, such that transfers must be weakly budget-balanced: $\sum_{i \in I} t_i \leq 0$.

The agents’ problem is to choose a social alternative k and transfers $(t_i)_{i \in I}$ such that the resulting allocation is ex-post Pareto-efficient.9

2.2 Revelation Mechanisms

A direct revelation mechanism involves the agents in a strategic game of incomplete information in which they are asked to report their types truthfully. Types are reported simultaneously. Based on their reports, a social alternative is chosen and transfers are made. As the revelation principle applies to the present setup (Myerson, 1979), there is no loss of generality in considering only direct mechanisms.

Formally, a mechanism is given by a pair $\langle k, T \rangle$ with allocation function $k : \Theta \times \Delta \rightarrow K$ and transfer scheme $T = (t_i)_{i \in I} : \Theta \times \Delta \rightarrow \mathbb{R}^n$. Denote by $U_i(\hat{\theta}_i, \hat{\delta}_i | \theta_i, \delta_i)$ agent i’s interim-expected utility from reporting $(\hat{\theta}_i, \hat{\delta}_i)$ if her true type is (θ_i, δ_i) while all the other agents report their types truthfully: $U_i(\hat{\theta}_i, \hat{\delta}_i | \theta_i, \delta_i) = \sum_{j \in I} \delta_{ij} [\bar{\pi}_{ij}(\hat{\theta}_i, \hat{\delta}_i) + \bar{t}_{ij}(\hat{\theta}_i, \hat{\delta}_i)]$, where

7Contrary to Mezzetti (2004), the (social-preference related) allocational externalities in our model extend to agents’ valuations of (overall) transfers.

8Despite the asymmetry of information, it can still be common knowledge who is ‘friends’ and who is ‘foes.’ For instance, if $\delta_{ik}^{\max}, \delta_{ik}^{\min} > 0 < \delta_{ij}^{\min}, \delta_{ij}^{\max}$, then, in comparison, i and j are friends, whereas k and ℓ are foes. Similarly, it can be common knowledge that i likes j more than k, which is the case if $\delta_{ik}^{\max} < \delta_{ij}^{\min}$. While we assume that the variance of every δ_{ij} is strictly positive, it is also allowed to be arbitrarily small. Reciprocal social preferences can be captured by letting $\Delta_{ij} = \Delta_{ji}$ and $\delta_{ij}^{\min} \approx \delta_{ij}^{\max}$.

9Formally, our model is one of one-dimensional allocative and informational externalities. Jehiel and Moldovanu (2001) prove the generic impossibility of efficient design if externalities are multi-dimensional.
\[\bar{\pi}_{ij}(\theta_i, \delta_i) = \mathbb{E}_{\theta, \delta | \theta_i, \delta_i} [\pi_j(k(\theta, \delta) | \theta_j)] \] and \[\bar{t}_{ij}(\theta_i, \delta_i) = \mathbb{E}_{\theta, \delta | \theta_i, \delta_i} [t_j(\theta, \delta)]. \] For convenience, \[U_i(\theta_i, \delta_i) = U_i(\theta_i, \delta_i | \theta_i, \delta_i). \] The mechanism \(\langle k, T \rangle \) is Bayesian incentive-compatible if, for all \(i \in I \) and all \((\theta_i, \delta_i) \in \Theta_i \times \Delta_i \), we have \[U_i(\theta_i, \delta_i) = \max_{(\hat{\theta}_i, \hat{\delta}_i) \in \Theta_i \times \Delta_i} U_i(\hat{\theta}_i, \hat{\delta}_i | \theta_i, \delta_i). \]

2.3 Efficiency and Participation

The following Lemma links material efficiency (the maximum surplus of private payoffs) to Pareto efficiency. It allows us to focus on allocations that are ex-post materially efficient: \[k^*(\theta) \in \arg \max_{k \in K} \sum_{i \in I} \pi_i(k | \theta_i) \] and transfers \((t_i)_{i \in I} \) are (strictly, or ex-post) budget-balanced, \(\sum_{i \in I} t_i = 0. \)

Lemma 1 An allocation is ex-post Pareto-efficient only if transfers are ex-post budget-balanced. If \(|\delta_{ij}| < \frac{1}{2n-3} \) for all \(i \) and all \(j \neq i \), then an ex-post materially efficient allocation function is also ex-post Pareto-efficient; moreover, no ex-post budget-balanced transfer scheme ex-post Pareto-dominates another.

Proof. See Appendix A. ■

The intuition behind Lemma 1 is the following: If agents switch from a social alternative that is materially efficient to one that is not, or from one budget-balanced transfer scheme to another, then at least one agent must incur a material loss. Consider the agent whose material loss is largest. If this agent \(i \) is sufficiently selfish, \(|\delta_{ij}| < \frac{1}{2n-3} \) for all \(j \neq i \), then she would also incur a loss utility-wise.

Notice that the Pareto frontier can be indefinite for combinations of social types satisfying \(|\delta_{ij}| \geq \frac{1}{2n-3} \), in which case a subgroup of agents might be willing to transfer arbitrary amounts of money to their joint favorite agent.\(^\text{11}\)

Finally, \(\langle k, T \rangle \) is interim individually rational if it gains all agents’ approval at the interim stage (i.e., unanimous approval constitutes a Bayes-Nash equilibrium). Following Segal and Whinston (2016), we represent reservation utilities by the interim-expected utilities that agents’ derive from a Bayesian mechanism \(\langle k^o, T^o \rangle \), with \(k^o : \Theta \times \Delta \to K \) specifying “property rights” and \(T^o = (t^o_i)_{i \in I} : \Theta \times \Delta \to \mathbb{R}^n \) specifying “liability rules.”

\(^{10}\) Bayesian implementation has been criticized for assuming that the distribution of agents’ types is common knowledge. Bergemann and Morris (2005) have proposed ex-post implementation for environments with interdependent utilities, requiring that truthful revelation of types constitutes a Nash equilibrium. Jehiel et al. (2006) show that ex-post implementation is ‘generically’ not feasible in the presence of informational externalities; a finding extended by Zik (2021) to our present context.

\(^{11}\) An example is the group of three agents with \(\delta_{13} = \delta_{23} > 1/3, \delta_{12} = \delta_{21} = -1/3, \) and \(\delta_{31} = \delta_{32} = 0, \) in which agents 1 and 2 are willing to jointly transfer arbitrary individual amounts of \(t > 0 \) to agent 3.
3 A Possibility Result

We establish our main result with the help of two concepts, preference-separating mechanisms and participation-stimulating transfers:

Definition 1 (Preference Separation and Participation Stimulation)
A preference-separating mechanism \(\langle k^*, T^* \rangle \) consists of the ex-post materially efficient allocation function \(k^* : \Theta \to K \), with \(k^*(\theta) \in \arg \max_{k \in K} \sum_{i \in I} \pi_i(k \mid \theta_i) \), and an ex-post budget-balanced transfer scheme \(T^* = (t_i^*)_{i \in I} : \Theta \times \Delta \to \mathbb{R}^n \) defined by

\[
t_i^*(\hat{\theta}, \delta) = \sum_{j \neq i} \left[\mathbb{E}_{\theta_{-i}}[\pi_j(k^*(\hat{\theta}_i, \theta_{-i}) \mid \theta_j)] - \mathbb{E}_{\theta_{-j}}[\pi_i(k^*(\hat{\theta}_j, \theta_{-j}) \mid \theta_i)] \right] + s_i^*(\delta),
\]

where participation-stimulating (PS) transfers \(s^* = (s_i^*)_{i \in I} : \Delta \to \mathbb{R}^n \) are defined by jointly satisfying the following conditions:

(i) \(s^* \) is strategy-proof: For all \(i \in I \), all \(\delta \in \Delta \), and all \(\hat{\delta}_i \in \Delta_i \),

\[
\sum_{j \in I} \delta_{ij} s_j^*(\delta) \geq \sum_{j \in I} \delta_{ij} s_j^*(\hat{\delta}_i, \delta_{-i}).
\]

(ii) \(s^* \) is ex-post budget-balanced: For all \(\delta \in \Delta \),

\[
\sum_{j \in I} s_j^*(\delta) = 0.
\]

(iii) From unanimous participation in \(s^* \), each agent derives strictly positive interim-expected utility: For all \(i \in I \) and all \(\delta_i \in \Delta_i \),

\[
\sum_{j \in I} \delta_{ij} \mathbb{E}_{\delta_{-i}}[s_j^*(\delta)] > 0.
\]

Theorem 1 (Efficient Implementation With At Least Three Agents)
If \(n \geq 3 \) and endowments are sufficiently large, then there exists a preference-separating mechanism \(\langle k^*, T^* \rangle \) that is Bayesian incentive-compatible, interim individually rational, ex-post budget-balanced, and ex-post materially efficient. If \(|\delta_{ij}| < \frac{1}{2n^3} \) for all \(i \) and all \(j \neq i \), then \(\langle k^*, T^* \rangle \) is necessarily ex-post Pareto-efficient.
Before we prove Theorem 1, we shall discuss the inner logic of our mechanism. Notice first that, despite the decoupling of incentives to reveal payoff types and social types, our mechanism asks agents to report these types simultaneously.

Consider the terms of trade. Those operate on agents’ payoff types and, as we will see, are social-preference robust in that they leave agents’ social preferences strategically irrelevant. This is achieved by applying the mutual-concessions principle of the dyadical AGV-mechanism (Arrow, 1979; d’Aspremont and Gérard-Varet, 1979) to each and every single dyad: For materially efficient social alternatives \(k^*(\theta) \), every agent \(i \) pays to every other \(j \) the monetary equivalent of what \(j \) believes to contribute to \(i \)’s material well-being when reporting her payoff type \(\hat{\theta}_j \); that is, \(i \) transfers \(E_{\theta - j} \{ \pi_i(k^*(\hat{\theta}_j, \theta_{-j}) | \theta_i) \} \) to \(j \) and receives \(E_{\theta - i} \{ \pi_j(k^*(\hat{\theta}_i, \theta_{-i}) | \theta_j) \} \) from \(j \).

For two other-regarding agents, Bierbrauer and Netzer (2016) show that the AGV-mechanism is social-preference robust. Agents are incentivized to behave as if they are selfish: If \(-i\) reports her payoff type truthfully, then \(E_{\theta_{-i}} \{ \pi_{-i}(k^*(\hat{\theta}_{-i}, \theta_{-i}) | \theta_{-i}) + t^*_i(\hat{\theta}_i, \theta_{-i}) \} = E_{\theta} \{ \pi_i(k^*(\theta) | \theta_i) \} \); thereby, \(i \)’s degree of altruism is rendered strategically irrelevant.\(^{12}\) We establish social-preference robustness for groups of arbitrary size.

Consequently, the terms of trade preserve agents’ privately known social preferences as a strategic degree of freedom, which is utilized by participation-stimulating transfers. Those are independent of the actual allocation problem and serve the purpose of attracting (or, stimulating) agents’ participation in the terms of trade. While being ex-post budget balanced, PS transfers yield agents an interim-expected Pareto improvement upon the terms of trade, by Definition 1(iii). If this interim-expected Pareto improvement is amplified sufficiently through uniformly scaling up the PS transfers, then agents’ interim-expected utilities from unanimous participation will outweigh their reservation utilities.

Finally, we note that our participation-stimulation approach cannot succeed in dyads:

Proposition 1 Participation-stimulating transfers do not exist if \(n = 2 \).

Proof. Suppose the opposite is true. Then Definition 1(iii) requires that \(0 < E_{\delta_{-i}} \{ s^*_i(\delta) \} + \delta_i E_{\delta_{-i}} \{ s^*_i(\delta) \} \) for both \(i \in \{ 1, 2 \} \) and all \(\delta_i \in (-1, 1) \), while \(s^*_i(\delta) = -s^*_i(\delta) \) due to ex-post budget balance. Hence, \(0 < (1 - \delta_i) E_{\delta_{-i}} \{ s^*_i(\delta) \} \), implying that \(0 < E_{\delta_{-i}} \{ s^*_i(\delta) \} \) for all \(i, \delta_i \). But then, \(0 < E_{\delta} \{ s^*_i(\delta) \} \) for both \(i \), contradicting ex-post budget balance. \(\blacksquare \)

\(^{12}\)Bierbrauer and Netzer (2016) coin this property the ‘insurance property,’ as it insures agents against the other-regarding concerns of one another.
4 Proof of Theorem 1

The proof of Theorem 1 proceeds in a series of Lemmas. Throughout, \(n \geq 3 \).

Lemma 2 Preference-separating mechanisms are Bayesian incentive-compatible and ex-post materially efficient. If \(|\delta_{ij}| < \frac{1}{2n-3} \) for all \(i \) and all \(j \neq i \), they are also ex-post Pareto-efficient.

Proof. Efficiency: Preference-separating mechanisms are ex-post materially efficient by construction; hence, by Lemma 1, they are also ex-post Pareto-efficient if \(|\delta_{ij}| < \frac{1}{2n-3} \) for all \(i \) and all \(j \neq i \).

Incentive compatibility: Suppose the agents other than \(i \) reveal their types truthfully. Then the transfers that \(i \) interim-expects for herself and every other \(j \) are given by:

\[
\bar{t}_{ii}(\hat{\theta}_i, \hat{\delta}_i) = \sum_{j \neq i} \mathbb{E}_{\theta_{-i}} \left[\pi_{t}(k^*(\hat{\theta}_i, \theta_{-i}) \mid \theta_{-i}) \right] - (n - 1) \mathbb{E}_{\theta} \left[\pi_{t}(k^*(\theta) \mid \theta_{-i}) \right] + \mathbb{E}_{\hat{\delta}_{-i}} \left[s^*_i(\hat{\delta}_i, \delta_{-i}) \right],
\]

\[
\bar{t}_{ij}(\hat{\theta}_i, \hat{\delta}_i) = \sum_{j \neq i} \mathbb{E}_{\theta_{-i}, \theta_{-j}} \left[\pi_{t}(k^*(\theta) \mid \theta_{-j}) \right] - \sum_{j \neq i, t} \mathbb{E}_{\theta_{-i}, \theta_{-t}} \left[\pi_{t}(k^*(\theta) \mid \theta_{-t}) \right]
- \mathbb{E}_{\theta_{-i}} \left[\pi_{t}(k^*(\hat{\theta}_i, \theta_{-i}) \mid \theta_{-i}) \right] + \mathbb{E}_{\hat{\delta}_{-i}} \left[s^*_i(\hat{\delta}_i, \delta_{-i}) \right]
= \sum_{t \in T} \mathbb{E}_{\theta} \left[\pi_{t}(k^*(\theta) \mid \theta_{-i}) \right] - (n - 1) \mathbb{E}_{\theta} \left[\pi_{t}(k^*(\theta) \mid \theta_{-j}) \right]
- \mathbb{E}_{\theta_{-i}} \left[\pi_{t}(k^*(\hat{\theta}_i, \theta_{-i}) \mid \theta_{-i}) \right] + \mathbb{E}_{\hat{\delta}_{-i}} \left[s^*_i(\hat{\delta}_i, \delta_{-i}) \right].
\]

Agent \(i \)'s interim-expected utility from reporting \((\hat{\theta}_i, \hat{\delta}_i) \) thus satisfies

\[
(1) \quad U_i(\hat{\theta}_i, \hat{\delta}_i \mid \theta_{-i}, \delta_{-i}) = \sum_{j \in I} \delta_{ij} \left[\mathbb{E}_{\theta_{-i}} \left[\pi_{t}(k^*(\hat{\theta}_i, \theta_{-i}) \mid \theta_{-i}) \right] + \bar{t}_{ij}(\hat{\theta}_i, \hat{\delta}_i) \right]
= \mathbb{E}_{\theta_{-i}} \left[\sum_{t \in T} \pi_{t}(k^*(\hat{\theta}_i, \theta_{-i}) \mid \theta_{-i}) \right] + \left(\sum_{j \neq i} \delta_{ij} \right) \mathbb{E}_{\theta} \left[\sum_{t \in T} \pi_{t}(k^*(\theta) \mid \theta_{-i}) \right]
- (n - 1) \mathbb{E}_{\theta} \left[\sum_{j \neq i} \delta_{ij} \pi_{t}(k^*(\theta) \mid \theta_{-j}) \right] + \sum_{j \in I} \delta_{ij} \mathbb{E}_{\hat{\delta}_{-i}} \left[s^*_i(\hat{\delta}_i, \delta_{-i}) \right].
\]

By equation (1), the incentives to reveal payoff types and social types are additively separated. As participation-stimulating transfers \(s^* \) are strategy-proof by Definition 1(i), preference-separating mechanisms are (dominant-strategy) incentive-compatible with respect to social types. On the other hand, if truthful revelation of her payoff type \(\theta_i \) was inferior for some agent \(i \), then there would exist \(\hat{\theta}_i \) and \(\theta_{-i} \) such that \(\sum_{t \in T} \pi_{t}(k^*(\hat{\theta}_i, \theta_{-i}) \mid \theta_{-i}) >
\[
\sum_{\ell \in I} \pi_{\ell}(k^*(\theta_\ell, \theta_{-\ell}) | \theta_\ell), \text{ implying that } \sum_{\ell \in I} \pi_{\ell}(k | \theta_\ell) > \sum_{\ell \in I} \pi_{\ell}(k^*(\theta) | \theta_\ell) \text{ for some social alternative } k, \text{ in contradiction to the definition of } k^*. \]

By equation (1), the terms of trade are social-preference robust: Agents’ social preferences are rendered strategically irrelevant when it comes to implementing the materially efficient allocation function \(k^*\). This opens up the possibility to operationalize the asymmetry of information about agents’ social preferences to satisfy their interim participation constraints.

We construct participation-stimulating transfer schemes as follows. Let \(M \in I\) denote one (arbitrarily chosen) agent and define transfers \(s^* = (s^*_i)_{i \in I} : \Delta \to \mathbb{R}^n\) by

\begin{align*}
(2) \quad s^*_M(\delta) &= -\sum_{j \neq M} s^*_j(\delta), \\
(3) \quad s^*_i(\delta) &= -C + g_i(\delta^*_i) - \delta^*_i g'_i(\delta^*_i) + \sum_{I \neq i, M} g'_i(\delta^*_i), \quad \text{for } i \neq M, \\
(4) \quad g_i(\delta^*_i) &= \text{Var}_{\delta_i}[\delta^*_i] + (\delta^*_i - \mathbb{E}_{\delta_i}[\delta^*_i])^2, \\
(5) \quad \delta^*_i &= \frac{\sum_{I \neq i, M} (\delta_{ii} - \delta_{iM})}{\delta_{ii} - \delta_{iM}},
\end{align*}

for some constant \(C > 0\).

In order to establish that this transfer scheme is participation-stimulating, we first consider the functions \((g_i)\):

Lemma 3 Be \(X_i : \Delta_i \to \mathbb{R}\) a continuous non-constant random variable. Then \(\mathbb{E}_{\delta_i}[X_i]\) and \(\text{Var}_{\delta_i}[X_i]\) exist, and \(g_i : \mathbb{R} \to \mathbb{R}\) defined by \(g_i(X_i) = \text{Var}_{\delta_i}[X_i] + (X_i - \mathbb{E}_{\delta_i}[X_i])^2\) satisfies \(g_i(X_i) > 0, g''_i(X_i) > 0, \text{ and } \mathbb{E}_{\delta_i}[g'_i(X_i)] = 0 = \mathbb{E}_{\delta_i}[g_i(X_i) - X_i g'_i(X_i)].\)

Proof. \(\mathbb{E}_{\delta_i}[X_i]\) and \(\text{Var}_{\delta_i}[X_i]\) exist, since \(\Delta_i\) is compact and convex while \(X_i\) and the density of \(\delta_i\) are continuous. Obviously, \(g_i(X_i) > 0, g''_i(X_i) > 0,\) and \(\mathbb{E}_{\delta_i}[g'_i(X_i)] = 2 \mathbb{E}_{\delta_i}[X_i - \mathbb{E}_{\delta_i}[X_i]] = 0.\) On the other hand, as \(\text{Var}_{\delta_i}[X_i] = \mathbb{E}_{\delta_i}[X_i^2] - \mathbb{E}_{\delta_i}[X_i]^2,\) one has \(g_i(X_i) - X_i g'_i(X_i) = \mathbb{E}_{\delta_i}[X_i^2 - \mathbb{E}_{\delta_i}[X_i]^2 + X_i^2 - 2X_i \mathbb{E}_{\delta_i}[X_i] + \mathbb{E}_{\delta_i}[X_i]^2 - 2X_i (X_i - \mathbb{E}_{\delta_i}[X_i]) = \mathbb{E}_{\delta_i}[X_i^2] - X_i^2;\) hence, \(\mathbb{E}_{\delta_i}[g_i(X_i) - X_i g'_i(X_i)] = 0.\)

We obtain that participation-stimulating transfer schemes do exist if \(n \geq 3: \)

Lemma 4 The transfer scheme \(s^*\) defined by (2)–(5) is participation-stimulating in the manner of Definition 1 if \(C > 0\) is chosen sufficiently small.
Several remarks on the PS scheme (2)–(5) are in order. First, strategy proofness is not a prerequisite for preference-separating implementation. Furthermore, each agent is strategically equivalent to reporting some signal \(\hat{\delta}_j \) which is thus a one-dimensional sufficient statistic for the weakly dominant strategy to report her true social type. As agent \(M \) is not involved strategically, she has the weakly dominant strategy to report her true social type \(\delta_M \).

Proof. Strategy proofness: Under \(s^* \), each agent \(j \neq M \) reports a social type \(\hat{\delta}_j \), which is strategically equivalent to reporting some signal \(\hat{\delta}_j^* \in \mathbb{R} \). Her ex-post utility is given by

\[
\sum_{\ell \neq M} (\delta_{j\ell} - \delta_{jM}) s^*_\ell(\hat{\delta}) = (\delta_{jj} - \delta_{jM}) g_j(\hat{\delta}_j^*) + \sum_{\ell \neq j, M} (\delta_{j\ell} - \delta_{jM}) g'_\ell(\hat{\delta}_j^*) + \sum_{\ell \neq j, M} (\delta_{j\ell} - \delta_{jM}) g'_\ell(\hat{\delta}_j^*) + \sum_{\ell \neq j, M} (\delta_{j\ell} - \delta_{jM}) g'_\ell(\hat{\delta}_j^*) + C \sum_{\ell \neq j, M} (\delta_{j\ell} - \delta_{jM}).
\]

Hence, when substituting for \(\delta_j^* = \sum_{\ell \neq j, M} (\delta_{j\ell} - \delta_{jM})/(\delta_{jj} - \delta_{jM}) \), agent \(j \) maximizes \(g_j(\hat{\delta}_j^*) + (\delta_j^* - \delta_j^*) g'_j(\hat{\delta}_j^*) \) over the choice of \(\hat{\delta}_j^* \). As \(g''_j > 0 \), each \(j \neq M \) has the strictly dominant strategy to report \(\hat{\delta}_j^* = \delta_j^* \). As agent \(M \) is not involved strategically, she has the weakly dominant strategy to report her true social type \(\delta_M \).

Ex-post budget balance: Immediate from equation (2).

Interim-expected Pareto improvement: When substituting for \(\delta_j^* \) and \(\mathbb{E}_{\delta_i}[g'_j(\hat{\delta}_j^*)] = 0 = \mathbb{E}_{\delta_i}[g'_j(\hat{\delta}_j^*)] \), due to Lemma 3, then \(j \)'s interim-expected utility from \(s^* \) is

\[
\sum_{\ell \neq M} (\delta_{j\ell} - \delta_{jM}) \mathbb{E}_{\delta_{-j}}[s^*_\ell(\delta)] = (\delta_{jj} - \delta_{jM}) g_j(\hat{\delta}_j^*) - C \sum_{\ell \neq M} (\delta_{j\ell} - \delta_{jM}) = (\delta_{jj} - \delta_{jM}) g_j(\hat{\delta}_j^*) - C(\delta_{jj} - \delta_{jM}) - C \sum_{\ell \neq j, M} (\delta_{j\ell} - \delta_{jM}) = (\delta_{jj} - \delta_{jM}) (g_j(\hat{\delta}_j^*) - C(1 + \delta_j^*)).
\]

Recall that \(\delta_{jj} = 1 > \delta_{jM} \) and \(g_j(\hat{\delta}_j^*) \geq \text{Var}_{\delta_i}[\hat{\delta}_j^*] > 0 \). Notice that \(\delta_j^* < n - 2 \), since \(\delta_{jj} - \delta_{jM} > \delta_{j\ell} - \delta_{jM} \) for all \(\ell \neq j, M \). Hence, each agent \(j \neq M \) derives positive interim-expected utility from unanimous participation if \(C \leq \min_{j \neq M} \text{Var}_{\delta_j}[\hat{\delta}_j^*]/(n - 1) \). Due to Lemma 3 again, also \(M \)'s interim-expected utility is positive if all agents participate:

\[
\sum_{\ell \in \mathcal{I}} \delta_M \mathbb{E}_{\delta_{-M}}[s^*_\ell(\delta)] = \sum_{j \neq M} (\delta_{Mj} - 1) \mathbb{E}_\delta[s^*_j(\delta)] = C \sum_{j \neq M} (1 - \delta_{Mj}) > 0.
\]

Several remarks on the PS scheme (2)–(5) are in order. First, \(s^* \) is independent of agent \(M \)'s social type, \((\delta_{Mj})_{j \neq M} \), such that \(M \) has no strategic role to play under \(s^* \). This feature is not a prerequisite for preference-separating implementation. Furthermore, each agent \(i \neq M \) has the strictly dominant strategy to report \(\hat{\delta}_i^* = \sum_{\ell \neq i, M} (\delta_{i\ell} - \delta_{iM})/(\delta_{i\ell} - \delta_{iM}) \) which is thus a one-dimensional sufficient statistic for \(i \)'s social type. This fact allows for
implementing the PS scheme by having players reveal the necessary information about their social types via the choice of one-dimensional strategic variables, such as efforts.\footnote{We discuss these aspects in a separate paper. For details see the earlier draft of this paper, available under http://hdl.handle.net/10419/222527.}

The PS scheme implicitly assumes that the mean and variance of every δ^*_j are commonly known. This assumption is sufficient but not necessary. As s^* is strategy-proof while the resulting interim-expected Pareto improvement is strict, it suffices that agents (and the designer) have sufficiently good estimates of those means and variances.

With Lemmas 1 to 4 at hand, we can establish Theorem 1:

Proof of Theorem 1. Consider the preference-separating mechanism $\langle k^*, T^* \rangle$ with

\[t^*_i(\hat{\theta}, \hat{\delta}) = \sum_{j \neq i} \left[\mathbb{E}_{\theta_{-i}} \left[\pi_j(k^*(\hat{\theta}_i, \theta_{-i}) \mid \theta_j) \right] - \mathbb{E}_{\theta_{-i}} \left[\pi_i(k^*(\hat{\theta}_j, \theta_{-j}) \mid \theta_i) \right] \right] + \alpha^* \cdot s^*_i(\delta) , \]

where $(s^*_i)_{i \in \mathcal{I}}$ is defined by equations (2) to (5) while $\alpha^* > 0$. Notice that the conditions of Definition 1 are invariant under scaling all the components s^*_i with the same factor.

By Lemmas 2 and 4, this mechanism is Bayesian incentive-compatible. The mechanism is ex-post budget-balanced and ex-post materially efficient by construction. By Lemma 1, it is ex-post Pareto-efficient if $|\delta_{ij}| < \frac{1}{2n-3}$ for all i and all $j \neq i$.

By equation (1), and since $\langle k^*, T^* \rangle$ is Bayesian incentive-compatible, agent i’s interim-expected utility from unanimous participation in $\langle k^*, T^* \rangle$ is given by

\[U_i(\theta_i, \delta_i) = \mathbb{E}_{\theta_{-i}} \left[\sum_{\ell \in \mathcal{I}} \pi_{\ell}(k^*(\theta) \mid \theta_{\ell}) \right] + \mathbb{E}_\theta \left[\sum_{\ell \in \mathcal{I}} \pi_{\ell}(k^*(\theta) \mid \theta_{\ell}) \right] - (n-1) \mathbb{E}_\theta \left[\sum_{j \in \mathcal{I}} \delta_{ij} \pi_j(k^*(\theta) \mid \theta_j) \right] + \alpha^* \cdot \sum_{j \in \mathcal{I}} \delta_{ij} \mathbb{E}_{\delta_{-i}}[s^*_j(\delta)] , \]

where $\sum_{j \in \mathcal{I}} \delta_{ij} \mathbb{E}_{\delta_{-i}}[s^*_j(\delta)] > 0$ due to Lemma 4. Hence, if α^* is chosen sufficiently large, agents’ interim participation constraints are satisfied for any given collection of reservation utilities, specified in Section 2.3.

The assumption of sufficiently large endowments guarantees that agents can afford the respective transfers $(t^*_i(\theta, \delta))_{i \in \mathcal{I}}$ whenever those are negative. \blacksquare
5 The Intuition Behind Participation Stimulation

We wish to outline the construction of and intuition behind the participation-stimulating transfer scheme defined by equations (2)–(5).

We start out by looking at only three agents and dedicate to one of those a strategically inoperative (or, mediating) role. We refer to this agent as \(M \) and to the others as 1 and 2. With all else equal, we assume for the moment that it is common knowledge that \(\delta_{1M} = 0 = \delta_{2M} \), so we can write \(\delta_1 = \delta_{12} \) and \(\delta_2 = \delta_{21} \).

The idea is to begin with a strategy-proof social-type dependent transfer scheme \(s^\star \) that yields 1 and 2 an \textit{ex-ante} transfer of zero while ex-post transfers are paid (received) by \(M \). Then transfers are \textit{ex-post budget-balanced} among \(\{1, 2, M\} \), and \textit{interim}-expected utility to \(M \), who has no strategic role to play, is zero. If \(s^\star \) yields 1 and 2 positive \textit{interim}-expected utility, then \(M \) can be given a (sufficiently small) monetary rent by demanding a uniform participation fee from 1 and 2 while preserving positive \textit{interim}-expected utility for 1 and 2. Thereby, also \(M \) obtains positive \textit{interim}-expected utility.

We thus look for a (smooth) transfer scheme \(s^\star = (s^\star_1, s^\star_2) \) that is strategy-proof,

\[
\frac{\partial s^\star_i(\delta)}{\partial \delta_i} + \delta_i \frac{\partial s^\star_{-i}(\delta)}{\partial \delta_i} = 0,
\]

yields agents 1 and 2 \textit{ex-ante} transfers of zero,

\[
\mathbb{E}_\delta[s^\star_i(\delta)] = 0,
\]

and yields agents 1 and 2 \textit{positive interim-expected utility},

\[
\mathbb{E}_{\delta_{-i}}[s^\star_i(\delta)] + \delta_i \mathbb{E}_{\delta_{-i}}[s^\star_{-i}(\delta)] = g_i(\delta_i)
\]

for some function \(g_i : \Delta_i \to (0, \infty) \) determining \(i \)'s \textit{interim}-expected utility gain.

We can derive \(s^\star \) from \((g_i)_i\) for appropriate functions \((g_i)_i\):\(^\text{14}\)

\(^\text{14}\)The sufficient conditions of Proposition 2 can be obtained as follows: By differentiating (6) with respect to \(\delta_{-i} \) one obtains that \(\partial^2 s^\star_i / \partial \delta_i \partial \delta_{-i} = 0 \), implying that \(s^\star_i \) is additively separable: \(s^\star_i(\delta) = a_i(\delta_i) + b_i(\delta_{-i}) \) for appropriate functions \(a_i : \Delta_i \to \mathbb{R} \) and \(b_i : \Delta_{-i} \to \mathbb{R} \). Hence, by condition (6) again, \(a'_i(\delta_i) + \delta_i b'_{-i}(\delta_i) = 0 \), such that partial integration yields \(a_i(\delta_i) = -\delta_i b_{-i}(\delta_i) + \int_{\delta_{\text{min}}}^{\delta_i} b_{-i}(x)dx + C \), for a constant \(C \). Write \(g_i(\delta_i) = \int_{\delta_{\text{min}}}^{\delta_i} b_{-i}(x)dx + C \). Then, \(a_i(\delta_i) = g_i(\delta_i) - \delta_i g'_i(\delta_i) \) and \(b_i(\delta_{-i}) = g'_{-i}(\delta_{-i}) \), yielding \(s^\star \) of Proposition 2. Condition (9) can now be imposed to satisfy (7) and (8).
Proposition 2
For smooth functions \(g_i : \Delta_i \to (0, \infty) \) satisfying \(g''_i > 0 \) and

\[
(9) \quad \mathbb{E}_{\delta_i} [g'_i(\delta_i)] = 0 = \mathbb{E}_{\delta_i} [g_i(\delta_i) - \delta_i g'_i(\delta_i)]
\]

define the transfer scheme \(s^* = (s^*_1, s^*_2) \) by \(s^*_i(\delta) = g_i(\delta_i) - \delta_i g'_i(\delta_i) - g'_{-i}(\delta_i) \). Then \(s^* \) satisfies conditions (6)–(8). From unanimous participation in \(s^* \), agent \(i \) derives an interim-expected utility gain of \(g_i(\delta_i) > 0 \) while interim-expecting a transfer of \(\mathbb{E}_{\delta_{-i}} [s^*_i(\delta)] = g_i(\delta_i) - \delta_i g'_i(\delta_i) \) to herself and a transfer of \(\mathbb{E}_{\delta_{-i}} [s^*_{-i}(\delta)] = g'_i(\delta_i) \) to agent \(-i\).

Proof. We have \(d[s^*_i(\hat{\delta}_i, \delta_{-i}) + \delta_i s^*_{-i}(\hat{\delta}_i, \delta_{-i})]/d\hat{\delta}_i = (\delta_i - \hat{\delta}_i) g''_i(\hat{\delta}_i) \); hence, \(\hat{\delta}_i = \delta_i \). By (9), \(\mathbb{E}_{\delta} [s^*_i(\delta)] = 0 \). By (9) again, \(\mathbb{E}_{\delta_{-i}} [s^*_i(\delta)] + \delta_i \mathbb{E}_{\delta_{-i}} [s^*_{-i}(\delta)] = [g_i(\delta_i) - \delta_i g'_i(\delta_i)] + \delta_i [g'_i(\delta_i)] = g_i(\delta_i) > 0 \). Hence, \(s^* \) satisfies (6)–(8). All else is obvious. ■

Under \(s^* \) of Proposition 2, the transfer that an agent interim-expects for herself is maximal, and positive, if that agent is a pure-payoff maximizer \((\delta_i = 0) \), as \(d\mathbb{E}_{\delta_{-i}} [s^*_i(\delta)] / d\delta_i = -\delta_i g''_i(\delta_i) \) while \(g''_i > 0 \). Money is thus ex-interim redistributed to those agents who ‘care least’ about others. On the other hand, the transfer that an agent interim-expects for her opponent increases in her own social type, since \(d\mathbb{E}_{\delta_{-i}} [s^*_{-i}(\delta)] / d\delta_i = g''_i(\delta_i) > 0 \), and is zero ex ante, since \(\mathbb{E}_{\delta_i} [g'_i(\delta_i)] = 0 \). Hence, least (most) altruistic types interim-expect to impose a negative (positive) externality on their opponent. This interim-expected externality, weighted with an agent’s social type, overcompensates for interim-expected monetary losses: \(\mathbb{E}_{\delta_{-i}} [s^*_i(\delta)] + \delta_i \mathbb{E}_{\delta_{-i}} [s^*_{-i}(\delta)] = g_i(\delta_i) > 0 \).

The functions \((g_i)_{i=1,2} \) should be chosen such that common-knowledge assumptions about social-type distributions are as weak as possible. In fact, it suffices to assume common knowledge about mean and variance. It is easy to see that the functions

\[
(10) \quad g_i(\delta_i) = \text{Var}_{\delta_i}[\delta_i] + (\delta_i - \mathbb{E}_{\delta_i}[\delta_i])^2
\]

satisfy the conditions of Proposition 2. The corresponding transfer scheme becomes

\[
(11) \quad s^*_i(\delta) = \mathbb{E}_{\delta_i} [\delta_i^2] - \delta_i^2 + 2 (\delta_{-i} - \mathbb{E}_{\delta_{-i}}[\delta_{-i}])
\]

Figure 1 depicts the interim-expected distributive effects of (11): Social types satisfying \(|\delta_i| > \sqrt{\mathbb{E}_{\delta_i} [\delta_i^2]} \) incur interim-expected monetary losses (blue), \(\mathbb{E}_{\delta_{-i}} [s^*_i(\delta)] < 0 \), for which they are overcompensated through sufficiently strong interim-expected exter-
Figure 1: The utility gain $g_i(\delta_i) = \mathbb{E}_{\delta_{-i}}[s^*_i(\delta)] + \delta_i \mathbb{E}_{\delta_{-i}}[s^*_{-i}(\delta)] > 0$ that a social type δ_i interim-expects under the transfer scheme s^* of equation (11), for two different type distributions: $\delta_i \in [\delta_i^{\text{min}}, \delta_i^{\text{max}}] = [-4/5, 4/5]$, $\mathbb{E}_{\delta_i}[\delta_i] = \mp 2/5$, and $\text{Var}_{\delta_i}[\delta_i] = 1/5$, such that $\mathbb{E}_{\delta_{-i}}[s^*_i(\delta)] = 9/25 - \delta_i^2$, $\mathbb{E}_{\delta_{-i}}[s^*_{-i}(\delta)] = 2\delta_i + 4/5$, and $g_i(\delta_i) = (\delta_i \pm 2/5)^2 + 1/5$.

From here, we obtain our participation-stimulating transfers (2)–(5) as follows: The interim-expected distributive effects of $s^*_i(\delta) = g_i(\delta_i) = \delta_i g'_i(\delta_i) + g'_{-i}(\delta_{-i})$, discussed above, suggest that participation stimulation is driven by the externality that i imposes on $-i$ through the term $g'_{-i}(\delta_{-i})$. Hence, for the n-agents case, we let $s^*_i(\delta) = -C + g_i(\delta_i^*) - \delta_i g'_{i}(\delta_i^*) + \sum_{i \neq i, M} g_i(\delta_i^*)$ for each $i \neq M$, with C the uniform fee given to M.

Under this scheme, now re-accounting for the privately known social preferences toward M, agent i has the dominant strategy to report $\hat{\delta}_i^* = \delta_i^*$ of equation (5).\footnote{The term $\delta_i^* = \sum_{i \neq i, M} (\delta_i - \delta_i M) / (\delta_i - \delta_i M)$ gives i’s relative marginal utility from a redistribution of M’s money either to the others, who obtain equal shares, or to i herself. It can be referred to as i’s relative spite towards M, since δ_i^* decreases in $\delta_i M$ and increases in i’s prosociality toward the others, given by $\sum_{i \neq i, M} \delta_i$.}

Finally, the functions g_i of (10) must now be chosen with respect to the random variables δ_i^*. We thus obtain equation (4).
6 What If Social Types Are Common Knowledge?

We shall reflect upon the economic meaning and technical relevance of our central assumption — that agents’ social preferences are subject to asymmetric information.

Most of all, it is just consequent to assume that next to agents’ preferences for consumption, their social preferences are private information, too: On the one hand, it is fair to say that the latter are even harder to observe. On the other hand, by principle, we should conform to Wilson’s (1987) call for avoiding unrealistic common-knowledge assumptions.

Still, let us discuss here what is feasible if social types are really common knowledge.16

We can easily rule out that participation stimulation in the manner of Definition 1 would work for commonly known social types. This is immediate from Lemma 1, which states that no ex-post budget-balanced transfer scheme Pareto-dominates another if social types are moderate: Under common knowledge, Definition 1(iii) becomes $\sum_{j \in \mathcal{I}} \delta_{ij} s_j^s(\delta) > 0$ for all δ, implying that participation-stimulating transfers Pareto-dominate a status quo of (budget-balanced) zero-transfers ($s_i = 0 \forall i \in \mathcal{I}$); a contradiction.

Switching instruments, agents’ commonly known social preferences might be exploited not to pull but push agents into participation. Consider the following example that we owe to an Anonymous Referee:

\textbf{Example.} Suppose there are three agents and it is commonly known that $\delta_{12} = \delta_{23} = \delta_{31} = \frac{1}{10} < \delta_{13} = \delta_{21} = \delta_{32} = \frac{1}{5}$. Now consider the following liability rule: If agent 1 refuses to participate while the other agents agree, then agent 3 must pay $x > 0$ to agent 2; if 2 refuses while the others agree, then 1 must pay x to 3; and if 3 refuses while the others agree, then 2 must pay x to 1. Under this liability rule, assuming the respective other agents participate, an agent who refuses incurs a utility loss of $\frac{1}{10}x$. Letting x sufficiently large, every mechanism becomes individually rational in Bayes-Nash equilibrium. \hfill \blacksquare

This example exploits our broad conception of a status-quo, which left the domain of liability rules unrestricted: An agent who refuses to participate is (emotionally) penalized by forcing the agent she likes more to subsidize the agent she likes less.17

16We focus on solutions that work for \textit{arbitrary} social-type combinations. Plausibly, individual rationality is satisfied for efficient mechanisms if it is commonly known that agents are sufficiently altruistic (while liability rules satisfy weak budget balance); see, e.g., Kucuksenel (2012).

17Obviously, this strategy works for every group in which each agent i strictly prefers some agent j_i over some other agent ℓ_i.\hfill 15
There are caveats to such participation-enforcement strategies, which are just as relevant for the more realistic scenario of privately known social types.

Principally, participation enforcement in this manner means to worsen the status quo (by manipulating the liability rules appropriately) — instead of enhancing the mechanism dedicated to resolving the agents’ allocation problem. While respecting budget balance for liability rules, participation enforcement presumes tremendous bargaining power for the designer, who must be able to manipulate the status quo in the first place.18

Although this approach has gained growing attention in the literature (e.g., Jehiel and Moldovanu, 2006; Segal and Whinston, 2016), we believe it tends to undermine the meaning of participation constraints, which is to respect and account for agents’ free will.

We see the advantage of our participation-stimulation approach in that it works for \textit{any} status quo. It thereby accounts for both the designer’s limited bargaining power and agents’ free will. Notice that participation stimulation is ‘forward-looking’ in that giving the designer the power to enforce the ex-post transfers s^* is effectively part of the agents’ choice to participate voluntarily.

\section{Concluding Remarks}

An important question regarding possibility results concerns their practical relevance; whether they show how efficient design is attainable in practice or whether they serve to point out practical difficulties in the manner of a “reductio ad absurdum critique.”19

Our preferred interpretation is the former, as we believe that Theorem 1 captures, in an abstract way, solutions to allocation problems that can be seen in practice. Observe that our participation-stimulating transfers only require agents to report a one-dimensional sufficient statistic for their social type. Thus, reporting social types translates into agents selecting one-dimensional strategies in a strategic game. This strategic game, unrelated to the actual allocation problem, renders participation attractive. A case in point is fundraisers, which are often complemented with unrelated auctions, raffles, or contests (such as awarding the best-dressed guest).20

18This ability is as unlikely for sellers, employers, and auctioneers as it is unlikely for lawmakers. The concept also has a flavor of redundancy: Would manipulating the status quo not require agents to agree to that in advance, potentially ruling out participation in the overall mechanism by backward induction?

19We are grateful to an Anonymous Referee for pointing this out.

20We show in a separate paper how participation can be attracted via various game forms, involving relative- or team-performance incentives and even team contests.
From the other angle, though, we must scrutinize the assumptions that render participation stimulation possible: As is standard in mechanism-design theory, we assume that agents are equipped to pay any ex-post transfer the mechanism prescribes. Endowment constraints limit the scope of participation stimulation.

More importantly, our assumption that private payoffs are quasi-linear while utility is linear in private payoffs is crucial for both preference separation and participation stimulation. While this is evident for preference separation, we shall briefly comment on the role of risk neutrality vis-à-vis participation stimulation.

That utility is linear in the vector of individual transfers implies that agents are risk-neutral with respect to transfers. We know from Section 6 that participation stimulation, with its interim-expected Pareto improvements through social-type dependent budget-balanced transfers, relies on agents accepting a gamble over the composition of social types at play. Plausibly, then, risk-averse agents are less susceptible to participation stimulation.

We contend that, when relaxing these assumptions, participation stimulation (now generally understood as complementing a mechanism with an unrelated strategic game) may still prove helpful in attaining individually rational second-best implementation. We leave this for future work.

A Appendix

Proof of Lemma 1

Having required weak budget balance, Pareto efficiency implies strict budget balance: Suppose \(\sum_{i \in I} t_i = -\epsilon \) for some \(\epsilon > 0 \). Then a Pareto improvement can be achieved through transfers \((t_i + \epsilon/n)_{i \in I} \), since \(\sum_{j \in I} \delta_{ij} > 0 \) by assumption.

In the following, let \(|\delta_{ij}| < \frac{1}{2n-3} \) for all \(i \) and all \(j \neq i \). Suppose that, for any fixed transfers \((t_i)_{i \in I} \), there exists a social alternative \(k^\circ(\theta) \) that Pareto-dominates the alternative \(k^\star(\theta) \in \arg \max_{k \in K} \sum_{i \in I} \pi_i(k \mid \theta_i) \) while \(\sum_{i \in I} \pi_i(k^\circ \mid \theta_i) < \sum_{i \in I} \pi_i(k^\star \mid \theta_i) \).

Then there must exist agents \(i \) who make strict material losses when switching from \(k^\star \) to \(k^\circ \); that is, \(\pi_i(k^\circ \mid \theta_i) - \pi_i(k^\star \mid \theta_i) = -\epsilon_i < 0 \). Be \(i^* \) one of the agents for whom this material loss is largest. Agent \(i^* \) is not worse off utility-wise under \(k^\circ \) than under \(k^\star \).
if and only if she is ‘emotionally’ compensated through the distributive effects on the others: \(\sum_{j \neq i} \delta_{ij} \left[\pi_j(k^o \mid \theta_j) - \pi_j(k^* \mid \theta_j) \right] \geq \epsilon_i \). We show that this is impossible.

First suppose \(\delta_{ij} \leq 0 \) for all \(j \neq i^* \). Then \(i^* \) obtains the maximum ‘emotional’ compensation feasible if also each \(j \neq i^* \) realizes the maximum material loss of \(-\epsilon_i \), when switching from \(k^* \) to \(k^o \); that is, if \(\pi_j(k^o \mid \theta_j) - \pi_j(k^* \mid \theta_j) = -\epsilon_i < 0 \). But even then, \(\sum_{j \neq i^*} \delta_{ij} \left[\pi_j(k^o \mid \theta_j) - \pi_j(k^* \mid \theta_j) \right] = \sum_{j \neq i^*} \delta_{ij}(-\epsilon_i) < \epsilon_i \), since \(0 \geq \delta_{ij} > \frac{1}{2n-3} \geq \frac{1}{n} \).

Now suppose \(\max_{j \neq i^*} \delta_{ij} > 0 \), and let \(j^* \in \arg \max_{j \neq i^*} \delta_{ij} \) be the favorite agent of \(i^* \). Then \(i^* \) obtains the maximum ‘emotional’ compensation feasible if \(j^* \) realizes a maximum material gain when switching from \(k^* \) to \(k^o \), under the constraint that \(\sum_{j \in I} \pi_j(k^o \mid \theta_j) < \sum_{j \in I} \pi_j(k^* \mid \theta_j) \). This is the case if each \(j \neq i^* \), \(j^* \) also realizes the maximum material loss of \(-\epsilon_i \) while aggregate losses, amounting to \((n-1)\epsilon_i \), serve as a subsidy to agent \(j^* \); that is, if \(\pi_j(k^o \mid \theta_j) - \pi_j(k^* \mid \theta_j) = -\epsilon_i < 0 \) for all \(j \neq i^* \), \(j^* \) while \(\pi_j^*(k^o \mid \theta_j) - \pi_j^*(k^* \mid \theta_j) = (n-1)\epsilon_i \). But even then, \(\sum_{j \neq i^*} \delta_{ij} \left[\pi_j(k^o \mid \theta_j) - \pi_j(k^* \mid \theta_j) \right] = \sum_{j \neq i^*} \delta_{ij}(-\epsilon_i) + \delta_{ij^*}(-1) \epsilon_i < \frac{n-2}{2n-3} \epsilon_i + \frac{n-1}{2n-3} \epsilon_i = \epsilon_i \), since \(\delta_{ij^*} < \frac{1}{2n-3} \) for all \(j \neq i^* \).

Hence, agent \(i^* \) is worse off under \(k^o \) than under \(k^* \), implying \(k^* \) is Pareto-efficient.

It remains to show that, for any fixed social alternative \(k \), no ex-post budget-balanced transfer scheme ex-post Pareto-dominates another if \(|\delta_{ij}| < \frac{1}{2n-3} \) for all \(i \) and all \(j \neq i \): Suppose the opposite is true, and transfers \((t^*_i)_{i \in I} \) ex-post Pareto-dominate transfers \((t^*_i)_{i \in I} \), while both are ex-post budget-balanced. Then there is an agent \(i^* \) who suffers the maximum monetary loss when switching from \((t^*_i)_{i \in I} \) to \((t^*_i)_{i \in I} \). From here, the proof proceeds exactly as above. ■

References

BERG Working Paper Series (most recent publications)

165 María Daniela Araujo P., Guido Heineck and Yyannú Cruz-Aguayo, Does Test-Based Teacher Recruitment Work in the Developing World? Experimental Evidence from Ecuador, November 2020

166 Jan Schulz and Mishael Milaković, How Wealthy Are the Rich?, December 2020

167 Nadja Bömmel and Guido Heineck, Revisiting the Causal Effect of Education on Political Participation and Interest, December 2020

168 Joep Lustenhouwer, Tomasz Makarewicz, Juan Carlos Peña and Christian R. Proaño, Are Some People More Equal than Others? Experimental Evidence on Group Identity and Income Inequality, February 2021

169 Sarah Mignot, Fabio Tramontana and Frank Westerhoff, Speculative asset price dynamics and wealth taxes, April 2021

170 Philipp Mundt, Uwe Cantner, Hiroyasu Inoue, Ivan Savin and Simone Vannuccini, Market Selection in Global Value Chains, April 2021

171 Zahra Kamal, Gender Separation and Academic Achievement in Higher Education; Evidence from a Natural Experiment in Iran, June 2021

172 María Daniela Araujo P. and Johanna Sophie Quis, Parents Can Tell! Evidence on Classroom Quality Differences in German Primary Schools, August 2021

173 Jan Schulz and Daniel M. Mayerhoffer, A Network Approach to Consumption, August 2021

174 Roberto Dieci, Sarah Mignot and Frank Westerhoff, Production delays, technology choice and cyclical cobweb dynamics, November 2021

175 Marco Sahm, Optimal Accuracy of Unbiased Tullock Contests with Two Heterogeneous Players, February 2022

176 Arne Lauber, Christoph March and Marco Sahm, Optimal and Fair Prizing in Sequential Round-Robin Tournaments: Experimental Evidence

177 Roberto Dieci, Noemi Schmitt and Frank Westerhoff, Boom-bust cycles and asset market participation waves: momentum, value, risk and herding

178 Stefanie Y. Schmitt and Dominik Bruckner, Unaware consumers and disclosure of deficiencies

179 Philipp Mundt and Ivan Savin, Drivers of productivity change in global value chains: reallocation vs. innovation

180 Thomas Daske and Christoph March, Efficient Incentives with Social Preferences