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Abstract 
Based on the seminal asset-pricing model by Brock and Hommes (1998), we analytically 

show that higher wealth taxes increase the risky asset’s fundamental value, enlarge its 

local stability domain, may prevent the birth of nonfundamental steady states and, if they 

exist, reduce the risky asset’s mispricing. We furthermore find that higher wealth taxes 

may hinder the emergence of endogenous asset price oscillations and, if they exist, 

dampen their amplitudes. Since oscillatory price dynamics may be associated with lower 

mispricing than locally stable nonfundamental steady states, policymakers may not 

always want to suppress them by imposing (too low) wealth taxes. Overall, however, our 

study suggests that wealth taxes tend to stabilize the dynamics of financial markets.  
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1 Introduction 

The detailed historical accounts offered by Galbraith (1994), Kindleberger and Aliber 

(2012) and Shiller (2015) reveal that the boom-bust nature of financial markets, mainly 

driven by the trading behavior of heterogeneous and boundedly rational speculators, may 

be quite harmful for the real economy. In the aftermath of financial and economic 

downturns, voices habitually arise requesting the imposition of a tax on speculators’ 

wealth to accommodate for the economic damage caused by speculators’ trading frenzy. 

Occasionally, these requests are associated with the hope that wealth taxes may be used 

to mitigate economic inequality, as outlined by Piketty (2014).1 Unfortunately, the 

relationship between speculative asset price dynamics and wealth taxes has received only 

scant academic attention so far. One important question in this respect is whether 

policymakers may unintentionally render financial markets even more unstable by taxing 

speculators’ wealth. Based on a behavioral asset-pricing model, we find, fortunately, that 

a tax imposed on the wealth of speculators tends to have a stabilizing effect on the 

dynamics of financial markets. In particular, our analysis reveals that wealth taxes 

penalize speculators applying cheap destabilizing technical expectation rules more 

strongly than speculators relying on costly stabilizing fundamental expectation rules, 

thereby prompting a shift towards the use of stabilizing expectation rules. Needless to say, 

policymakers may generate substantial revenues by imposing wealth taxes, though this 

aspect is not at the core of our paper.  

As a workhorse for our study, we use the seminal asset-pricing model by Brock and 

Hommes (1998). A key insight of their paper is that the trading behavior of boundedly 

rational and heterogeneous speculators, switching between a destabilizing technical and 

a stabilizing fundamental expectation rule, subject to their evolutionary fitness, may create 

complex endogenous asset price dynamics. Most notably, Brock and Hommes (1998) 

demonstrate that speculators’ rule selection behavior may create a rational route to 

randomness. Since simple technical expectation rules are cheaper than more 

                                                           
1 Many countries around the world impose some form of wealth tax. See Cowell and van Kerm (2015), 

Vermeulen (2016) and Kuypers et al. (2019) for surveys about wealth inequality, wealth taxation and 

redistribution policies. Bach et al. (2014) explore the use of wealth taxes to bring down public debt. 
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sophisticated fundamental expectation rules, they produce higher steady-state profits. As 

long as speculators react only weakly to the fitness differential of their expectation rules, 

the market impact of the technical expectation rule remains relatively modest, allowing the 

asset price to converge towards its fundamental value. However, if speculators start to 

pay more attention to the expectation rules’ fitness differential, the technical expectation 

rule gains more followers and may cause the birth of locally stable nonfundamental steady 

states. If speculators’ intensity of choice increases even further, the popularity of the 

technical expectation rule continues to grow. Consequently, the nonfundamental steady 

states eventually become unstable and give rise to oscillatory asset price dynamics.   

We extend the model by Brock and Hommes (1998) along two lines. First, we consider 

the eventuality of policymakers imposing a tax on speculators’ wealth. Second, we follow 

Hommes et al. (2005) and Anufriev and Tuinstra (2013) and allow the supply of (outside) 

shares of the risky asset to be positive. Assuming a positive supply of (outside) shares of 

the risky asset implies that the fundamental value of the risky asset entails a risk premium 

(which is, for simplicity, absent in the original model by Brock and Hommes 1998). Since 

the risk premium depends negatively on wealth taxes, higher wealth taxes increase the 

risky asset’s fundamental value. Moreover, the difference in the steady-state fractions of 

the fundamental and technical expectation rule depends positively on wealth taxes and 

negatively on speculators’ intensity of choice and the costs associated with using the 

fundamental expectation rule. As discussed above, an increase in speculators’ intensity 

of choice has the effect that more of them select the destabilizing technical expectation 

rule, rendering the risky asset’s fundamental value unstable and causing the birth of locally 

stable nonfundamental steady states or even the emergence of endogenous oscillatory 

price dynamics. Interestingly, policymakers may reverse this process and re-establish 

market stability by imposing higher wealth taxes. To put it plainly, policymakers may turn 

speculators’ rational route to randomness into a tax route to stability. As a cautionary note, 

however, we must add that oscillatory price dynamics may be associated with lower 

mispricing – defined as the deviation between the price of the risky asset and its 

fundamental value – than locally stable nonfundamental steady states. Hence, 

policymakers may not always want to suppress them by imposing (too low) wealth taxes. 

In recent years, the asset-pricing model by Brock and Hommes (1998) has received great 
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empirical support from scholars such as Boswijk et al. (2007), Anufriev and Hommes 

(2012), Hommes and in’t Veld (2017) and Schmitt (2020). Moreover, Brock et al. (2010), 

Anufriev and Tuinstra (2013), Dercole and Radi (2020) and Schmitt et al. (2020) and 

Schmitt and Westerhoff (2021), amongst others, have successfully used their model to 

address a number of relevant policy questions; see Hommes (2013) and Dieci and He 

(2018) for general surveys.  

Of course, different forms of financial market taxes exist. Westerhoff and Dieci, Mannaro 

et al. (2008) and Jacob Leal and Napoletano (2019) analyze how a small tax on 

speculators’ transactions may affect the stability of financial markets. A major difference 

between transaction taxes and wealth taxes is that transaction taxes aim at penalizing 

aggressively trading speculators, while wealth taxes essentially reduce speculators’ total 

investment funds. From a technical perspective, however, our paper is more related to the 

following papers. In particular, Anufriev et al. (2018) experimentally test the asset-pricing 

model by Brock and Hommes (1998) and report that a reduction in the cost of stabilizing 

expectation rules tends to produce more stable asset price dynamics, lending the main 

channel that drives our analytical insights at least some indirect empirical credit. 

Moreover, Schmitt and Westerhoff (2015) explore how profit taxes may shape the 

dynamics of the cobweb model by Brock and Hommes (1997) in which farmers switch 

between rational and naïve expectation rules, depending on the rules’ past profitability. 

Schmitt et al. (2017) show that profit taxes may also stabilize the dynamics of market entry 

models by reducing profit differentials between competing markets. Finally, Martin et al. 

(2021) explore how policymakers may stabilize the dynamics of housing markets by 

adjusting the tax code. As far as we are aware, however, the relationship between 

speculative asset price dynamics and wealth taxes has not yet been explored in this line 

of research. Given the relevance of this topic, we seek to make some progress in this 

direction.  

We continue as follows. In Section 2, we extend the asset-pricing model by Brock and 

Hommes (1998) as outlined above. In Section 3, we present our main analytical results 

and illustrate them numerically. In Section 4, we discuss a number of more subtle issues 

related to the imposition of wealth taxes. In Section 5, we conclude our paper and point 

out some avenues for future research. Appendices A.1 to A.5 contain our main proofs and 
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a number of additional simulations. 

 

2 The model 

Brock and Hommes (1998) assume that speculators can invest in a safe asset, paying the 

risk-free interest rate 𝑟𝑟, and in a risky asset, paying an uncertain dividend 𝐷𝐷𝑡𝑡. For 

simplicity, they specify the dividend process of the risky asset as  

𝐷𝐷𝑡𝑡 = 𝐷𝐷� + 𝛿𝛿𝑡𝑡,                                                                                                                       (1) 

where 𝛿𝛿𝑡𝑡~𝑁𝑁(0, 𝜎𝜎𝛿𝛿2). While the price of the safe asset is fixed, the price of the risky asset 

changes with respect to speculators’ trading behavior. Let 𝑃𝑃𝑡𝑡 be the price of the risky asset 

(ex-dividend) at time 𝑡𝑡. The end-of-period wealth of speculator 𝑖𝑖 can be expressed as  

𝑊𝑊𝑡𝑡+1
𝑖𝑖 = (1 − 𝜏𝜏)((1 + 𝑟𝑟)𝑊𝑊𝑡𝑡

𝑖𝑖 + 𝑍𝑍𝑡𝑡𝑖𝑖(𝑃𝑃𝑡𝑡+1 + 𝐷𝐷𝑡𝑡+1 − (1 + 𝑟𝑟)𝑃𝑃𝑡𝑡) − 𝐶𝐶),                                                 (2) 

where 𝑍𝑍𝑡𝑡𝑖𝑖 stands for speculator 𝑖𝑖’s demand for the risky asset and 0 ≤ 𝜏𝜏 < 1 denotes the 

tax rate imposed by policymakers on speculators’ wealth. Parameter 𝐶𝐶 ≥ 0 represents 

possible (fixed) trading costs and will be discussed in more detail below.2 Note that we 

regard all variables indexed with 𝑡𝑡 + 1 as random and assume that 𝑊𝑊𝑡𝑡+1
𝑖𝑖 > 0  for all 𝑖𝑖 and 

𝑡𝑡. Since speculators are myopic mean-variance maximizers, speculator 𝑖𝑖’s demand for 

the risky asset follows from  

𝑚𝑚𝑚𝑚𝑚𝑚𝑍𝑍𝑡𝑡𝑖𝑖  �𝐸𝐸𝑡𝑡
𝑖𝑖�𝑊𝑊𝑡𝑡+1

𝑖𝑖 � − 𝜆𝜆
2
𝑉𝑉𝑡𝑡𝑖𝑖�𝑊𝑊𝑡𝑡+1

𝑖𝑖 ��,                                                                                        (3) 

where 𝐸𝐸𝑡𝑡𝑖𝑖�𝑊𝑊𝑡𝑡+1
𝑖𝑖 � and 𝑉𝑉𝑡𝑡𝑖𝑖�𝑊𝑊𝑡𝑡+1

𝑖𝑖 � denote his belief about the conditional expectation and 

conditional variance of his wealth, respectively, and parameter 𝜆𝜆 > 0 stands for his risk 

aversion. Hence, speculator 𝑖𝑖’s first-order condition reads as 

(1 − 𝜏𝜏)(𝐸𝐸𝑡𝑡𝑖𝑖[𝑃𝑃𝑡𝑡+1] + 𝐸𝐸𝑡𝑡𝑖𝑖[𝐷𝐷𝑡𝑡+1] − (1 + 𝑟𝑟)𝑃𝑃𝑡𝑡) − (1 − 𝜏𝜏)2𝑍𝑍𝑡𝑡𝑖𝑖𝜆𝜆𝑉𝑉𝑡𝑡𝑖𝑖[𝑃𝑃𝑡𝑡+1 + 𝐷𝐷𝑡𝑡+1] = 0                          (4) 

and his optimal demand for the risky asset results in 

                                                           
2 Clearly, our modeling of wealth taxes affects speculators’ total wealth, consisting of their investments in 

the safe asset and in the risky asset, where possible trading costs are deductible. Moreover, speculators 

have to pay their wealth taxes at the end of the current period, after the price of the risky asset has been 

determined. Future work may consider that policymakers impose different tax rates on wealth allocated to 

different asset classes or discuss the issue of market interactions, crowding out effects and capital flight 

within an asset-pricing model that contains multiple domestic and foreign asset markets. 



6 
 

𝑍𝑍𝑡𝑡𝑖𝑖 = 𝐸𝐸𝑡𝑡
𝑖𝑖[𝑃𝑃𝑡𝑡+1]+𝐸𝐸𝑡𝑡

𝑖𝑖[𝐷𝐷𝑡𝑡+1]−(1+𝑟𝑟)𝑃𝑃𝑡𝑡
(1−𝜏𝜏)𝜆𝜆𝑉𝑉𝑡𝑡

𝑖𝑖[𝑃𝑃𝑡𝑡+1+𝐷𝐷𝑡𝑡+1] .                                                                                              (5) 

As indicated by (4), wealth taxes affect speculator 𝑖𝑖’s wealth expectations linearly, while 

their effect on his risk perception is quadratic. Consequently, speculator 𝑖𝑖’s demand for 

the risky asset increases in line with the tax rate. 

For analytical tractability, Brock and Hommes (1998) introduce the following simplifying 

assumptions. There are 𝑁𝑁 speculators in total, believing that 𝐸𝐸𝑡𝑡𝑖𝑖[𝐷𝐷𝑡𝑡+1] =  𝐷𝐷� and 

𝑉𝑉𝑡𝑡𝑖𝑖[𝑃𝑃𝑡𝑡+1 + 𝐷𝐷𝑡𝑡+1] = 𝜎𝜎2. We can therefore express speculators’ aggregate demand for the 

risky asset as 𝑍𝑍𝑡𝑡 = ∑ 𝑍𝑍𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=1 = 𝑁𝑁

1
𝑁𝑁
∑ 𝐸𝐸𝑡𝑡

𝑖𝑖[𝑃𝑃𝑡𝑡+1]𝑁𝑁
𝑖𝑖=1 +𝐷𝐷�−(1+𝑟𝑟)𝑃𝑃𝑡𝑡

(1−𝜏𝜏)𝜆𝜆𝜎𝜎2
 . Moreover, denoting speculators’ 

average expectation about the risky asset’s next period price by 𝐸𝐸𝑡𝑡[𝑃𝑃𝑡𝑡+1] = 1
𝑁𝑁
∑ 𝐸𝐸𝑡𝑡𝑖𝑖[𝑃𝑃𝑡𝑡+1]𝑁𝑁
𝑖𝑖=1  

yields 

𝑍𝑍𝑡𝑡 = 𝑁𝑁 𝐸𝐸𝑡𝑡[𝑃𝑃𝑡𝑡+1]+𝐷𝐷�−(1+𝑟𝑟)𝑃𝑃𝑡𝑡
(1−𝜏𝜏)𝜆𝜆𝜎𝜎2

.                                                                                                        (6) 

Note that speculators’ demand for the risky asset increases in line with their price and 

dividend expectations and decreases with the risk-free interest rate, the current price of 

the risky asset, their risk aversion and variance beliefs. Moreover, higher wealth taxes 

increase speculators’ demand for the risky asset.  

Market equilibrium requires that the demand for the risky asset equals the total supply of 

the risky asset, that is 

𝑍𝑍𝑡𝑡 = 𝑆𝑆𝑡𝑡.                                                                                                                                 (7) 

The total supply of the risky asset, i.e. the number of (outside) shares issued by firms, is 

constant, given by 

𝑆𝑆𝑡𝑡 = 𝑆̂𝑆 = 𝑁𝑁𝑆𝑆̅,                                                                                                                                (8)  

where 𝑆𝑆̅ represents the (average) number of available (outside) shares of the risky asset 

per speculator.3 Combining (6), (7) and (8) indicates that the price of the risky asset is 

determined by 

                                                           
3 Hommes et al. (2005) and Anufriev and Tuinstra (2013) assume a positive supply of (outside) shares of 

the risky asset, too. We remark that it may be interesting to relax the assumption that 𝑆̂𝑆 is constant, e.g. by 

considering random supply shocks or by allowing firms to buy back shares or to issue new shares.  
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𝑃𝑃𝑡𝑡 = 𝐸𝐸𝑡𝑡[𝑃𝑃𝑡𝑡+1]+𝐷𝐷�−(1−𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆̅𝑆
1+𝑟𝑟

+ 𝜀𝜀𝑡𝑡,                                                                                                                 (9) 

where 𝜀𝜀𝑡𝑡 reflects additional random disturbances with 𝜀𝜀𝑡𝑡~𝑁𝑁(0, 𝜎𝜎𝜀𝜀2). Note that (9) implies 

that 𝑃𝑃𝑡𝑡 increases in line with speculators’ price and dividend expectations and decreases 

with the risk-free interest rate, their risk aversion and variance beliefs. More importantly 

for our purpose, however, (9) reveals that higher wealth taxes decrease the value of risk-

adjusted dividend payments, where the risk-related reduction of dividend payments is 

given by (1 − 𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆𝑆̅. We may grasp the economic intuition behind this result by 

interpreting (9) as a no-arbitrage condition. Since lower risk-adjusted dividend payments 

make the risky asset more attractive, speculators’ demand for the risky asset increases, 

as indicated by (6). A higher demand for the risky asset, in turn, increases the price of the 

risky asset, up to the point where speculators are again indifferent between holding the 

risky asset and the safe asset. Recall that Brock and Hommes (1998) assume that there 

is a zero supply of (outside) shares of the risky asset, i.e. 𝑆𝑆𝑡𝑡 = 0, implying that 𝑃𝑃𝑡𝑡 =
𝐸𝐸𝑡𝑡[𝑃𝑃𝑡𝑡+1]+𝐷𝐷�

1+𝑟𝑟
. Clearly, such a setup does not entail a risk premium. 

In line with empirical and experimental evidence, summarized by Menkhoff and Taylor 

(2007) and Hommes (2011), speculators may use a technical or a fundamental 

expectation rule to forecast the price of the risky asset. The market shares of speculators 

following the technical and fundamental expectation rule are given by 𝑁𝑁𝑡𝑡𝐶𝐶 and 𝑁𝑁𝑡𝑡𝐹𝐹 = 1 −

𝑁𝑁𝑡𝑡𝐶𝐶. Speculators’ average price expectations are defined by  

𝐸𝐸𝑡𝑡[𝑃𝑃𝑡𝑡+1] = 𝑁𝑁𝑡𝑡𝐶𝐶𝐸𝐸𝑡𝑡𝐶𝐶[𝑃𝑃𝑡𝑡+1] + 𝑁𝑁𝑡𝑡𝐹𝐹𝐸𝐸𝑡𝑡𝐹𝐹[𝑃𝑃𝑡𝑡+1].                                                                                 (10) 

Speculators compute the risky asset’s fundamental value 𝐹𝐹 by discounting future risk-

adjusted dividend payments, that is 𝐹𝐹 = 𝐷𝐷�−(1−𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆̅𝑆
𝑟𝑟

= 𝐷𝐷�

𝑟𝑟
− 𝑅𝑅𝑅𝑅, where 𝑅𝑅𝑅𝑅 = (1−𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆̅𝑆

𝑟𝑟
 

denotes the risky asset’s risk premium. Note that this solution can easily be deducted from 

(9), assuming that 𝑃𝑃𝑡𝑡 = 𝐸𝐸𝑡𝑡[𝑃𝑃𝑡𝑡+1] = 𝐹𝐹. Speculators applying the technical expectation rule, 

also called chartists, expect the deviation between the price of the risky asset and its 

fundamental value to increase. Their expectations are formalized by  

𝐸𝐸𝑡𝑡𝐶𝐶[𝑃𝑃𝑡𝑡+1] = 𝑃𝑃𝑡𝑡−1 + 𝜒𝜒(𝑃𝑃𝑡𝑡−1 − 𝐹𝐹),                                                                                       (11) 

where 𝜒𝜒 > 0 denotes the strength of chartists’ extrapolation behavior. Speculators using 

the fundamental expectation rule, also called fundamentalists, believe that the price of the 
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risky asset will approach its fundamental value. As usual, their expectations are written as 

𝐸𝐸𝑡𝑡𝐹𝐹[𝑃𝑃𝑡𝑡+1] = 𝑃𝑃𝑡𝑡−1 + 𝜙𝜙(𝐹𝐹 − 𝑃𝑃𝑡𝑡−1),                                                                                            (12) 

where 0 < 𝜙𝜙 ≤ 1 indicates fundamentalists’ expected mean reversion speed. Note that 

both expectation rules predict the price of the risky asset for period 𝑡𝑡 + 1 at the beginning 

of period 𝑡𝑡, based on information available in period 𝑡𝑡 − 1. Consequently, speculators 

have to predict the price of the risky asset two periods ahead. 

Brock and Hommes (1998) consider speculators switching between the technical and 

fundamental expectation rule with respect to their evolutionary fitness, measured in terms 

of past realized profits, arguing that profits are what speculators care most about.4 Since 

our goal is to explore the effects of wealth taxes, we measure the expectation rules’ 

evolutionary fitness via their effects on speculators’ wealth dynamics. As we will see in 

more detail in the sequel, what really matters to speculators is the difference in the wealth 

dynamics associated with their two expectation rules. Moreover, these rule-dependent 

wealth differences are equal among all speculators, and, for 𝜏𝜏 = 0, equal to the rules’ profit 

differentials, as in Brock and Hommes (1998). In fact, straightforward computations reveal 

that the difference between the fitness of the fundamental and technical expectation rule 

of speculator 𝑖𝑖 boils down to 

𝐴𝐴𝑡𝑡
𝐹𝐹,𝑖𝑖 − 𝐴𝐴𝑡𝑡

𝐶𝐶,𝑖𝑖 = 𝑊𝑊𝑡𝑡−1
𝐹𝐹,𝑖𝑖 −𝑊𝑊𝑡𝑡−1

𝐶𝐶,𝑖𝑖 = (1 − 𝜏𝜏) �(𝑃𝑃𝑡𝑡−1 + 𝐷𝐷𝑡𝑡−1 − (1 + 𝑟𝑟)𝑃𝑃𝑡𝑡−2)(𝑍𝑍𝑡𝑡−2𝐹𝐹 − 𝑍𝑍𝑡𝑡−2𝐶𝐶 ) − 𝐶𝐶� = 𝐴𝐴𝑡𝑡𝐹𝐹 − 𝐴𝐴𝑡𝑡𝐶𝐶,    (13) 

where  

𝑍𝑍𝑡𝑡−2𝐶𝐶 = 𝐸𝐸𝑡𝑡−2
𝐶𝐶 [𝑃𝑃𝑡𝑡−1]+𝐷𝐷�−(1+𝑟𝑟)𝑃𝑃𝑡𝑡−2

(1−𝜏𝜏)𝜆𝜆𝜎𝜎2
,                                                                                           (15) 

and  

𝑍𝑍𝑡𝑡−2𝐹𝐹 = 𝐸𝐸𝑡𝑡−2𝐹𝐹 [𝑃𝑃𝑡𝑡−1]+𝐷𝐷�−(1+𝑟𝑟)𝑃𝑃𝑡𝑡−2
(1−𝜏𝜏)𝜆𝜆𝜎𝜎2

.                                                                                          (16) 

Note that the time structure of the model implies that the last observable fitness differential 

of the two expectation rules depends on speculator 𝑖𝑖’s hypothetically experienced wealth 

differential in period 𝑡𝑡 − 1, had he either used the fundamental or the technical expectation 

rule in period 𝑡𝑡 − 2. With a slight abuse of notation, we assume in the derivation of (13) 

that the cost differential between using the fundamental and technical expectation rule, 

                                                           
4 However, herding behavior may also matter, as discussed in Bischi et al. (2006). For a general survey of 

evolutionary models in economics and finance, see Bischi (2014). 
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introduced in (2) as possible trading costs, is represented by parameter 𝐶𝐶 > 0, a term that 

Brock and Hommes (1998) prominently call (constant per period) information costs.5  

Finally, the market shares of chartists and fundamentalists are modeled using the well-

known discrete choice approach. Let us from now on assume that there is a continuum of 

speculators with mass 𝑁𝑁. We thus obtain for the market shares of chartists and 

fundamentalists 

𝑁𝑁𝑡𝑡𝐶𝐶 = 𝑒𝑒𝑒𝑒𝑒𝑒[𝛽𝛽𝐴𝐴𝑡𝑡
𝐶𝐶]

𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽𝐴𝐴𝑡𝑡
𝐶𝐶�+𝑒𝑒𝑒𝑒𝑒𝑒[𝛽𝛽𝐴𝐴𝑡𝑡𝐹𝐹]

= 1
1+𝑒𝑒𝑒𝑒𝑒𝑒[𝛽𝛽(𝐴𝐴𝑡𝑡𝐹𝐹−𝐴𝐴𝑡𝑡

𝐶𝐶)]
                                                                                          (17) 

and  

𝑁𝑁𝑡𝑡𝐹𝐹 = 𝑒𝑒𝑒𝑒𝑒𝑒[𝛽𝛽𝐴𝐴𝑡𝑡𝐹𝐹]
𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽𝐴𝐴𝑡𝑡

𝐶𝐶�+𝑒𝑒𝑒𝑒𝑒𝑒[𝛽𝛽𝐴𝐴𝑡𝑡𝐹𝐹]
= 1 − 𝑁𝑁𝑡𝑡𝐶𝐶.                                                                                               (18) 

The intensity of choice parameter 𝛽𝛽 > 0 measures how quickly the mass of speculators 

switches to the more successful expectation rule. For 𝛽𝛽 → 0, speculators do not observe 

any fitness differentials between the two expectation rules, implying that 𝑁𝑁𝑡𝑡𝐶𝐶 = 𝑁𝑁𝑡𝑡𝐹𝐹 = 0.5. 

For 𝛽𝛽 → ∞, speculators observe fitness differentials perfectly and all of them will choose 

the expectation rule that yields the higher fitness. Accordingly, the higher the intensity of 

choice parameter, the more speculators will select the superior expectation rule. In this 

sense, speculators display a boundedly rational learning behavior, an important ingredient 

for behavioral models to combat the lurking wilderness-of-bounded-rationality critique, as 

pointed out by Hommes (2013). 

 

3 Main analytical and numerical results 

In the absence of exogenous shocks, i.e. for 𝜎𝜎𝛿𝛿2 = 0 and 𝜎𝜎𝜀𝜀2 = 0, the dynamics of our 

model is driven by the iteration of a three-dimensional nonlinear deterministic map. In fact, 

introducing the difference in market shares, i.e. 𝑚𝑚𝑡𝑡 = 𝑁𝑁𝑡𝑡𝐹𝐹 − 𝑁𝑁𝑡𝑡𝐶𝐶 = tanh [𝛽𝛽
2

(𝐴𝐴𝑡𝑡𝐹𝐹 − 𝐴𝐴𝑡𝑡𝐶𝐶)], and 

                                                           
5 A surprising property of our model is that the expectation rules’ fitness differential simplifies for 𝐷𝐷𝑡𝑡−1 = 𝐷𝐷� 

to 𝐴𝐴𝑡𝑡𝐹𝐹 − 𝐴𝐴𝑡𝑡𝐶𝐶 = (𝑃𝑃𝑡𝑡−1 + 𝐷𝐷𝑡𝑡−1 − (1 + 𝑟𝑟)𝑃𝑃𝑡𝑡−2) (𝜒𝜒+𝜙𝜙)(𝐹𝐹−𝑃𝑃𝑡𝑡−3)
𝜆𝜆𝜎𝜎2

− (1 − 𝜏𝜏)𝐶𝐶. In the absence of dividend shocks, a 

wealth tax thus affects the expectation rules’ fitness differential only via the information costs parameter 𝐶𝐶. 

In a situation in which the price of the risky asset mirrors its fundamental value, say 𝐹𝐹 = 𝑃𝑃𝑡𝑡−3, we even have 

that 𝐴𝐴𝑡𝑡𝐹𝐹 − 𝐴𝐴𝑡𝑡𝐶𝐶 = −(1 − 𝜏𝜏)𝐶𝐶. This observation will be helpful when we discuss the model’s steady state and 

stability implications.  
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noting that 𝑁𝑁𝑡𝑡𝐶𝐶 = (1 − 𝑚𝑚𝑡𝑡)/2 and 𝑁𝑁𝑡𝑡𝐹𝐹 = (1 + 𝑚𝑚𝑡𝑡)/2, yields the map 

𝑀𝑀 ≔

⎩
⎪
⎨

⎪
⎧𝑃𝑃𝑡𝑡 = 1

1+𝑟𝑟
�1−𝑚𝑚𝑡𝑡−1

2
𝜒𝜒(𝑃𝑃𝑡𝑡−1 − 𝐹𝐹) + 1+𝑚𝑚𝑡𝑡−1

2
𝜙𝜙(𝐹𝐹 − 𝑃𝑃𝑡𝑡−1) + 𝑃𝑃𝑡𝑡−1 + 𝐷𝐷� − (1 − 𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆𝑆̅�
 

𝑦𝑦𝑡𝑡 = 𝑃𝑃𝑡𝑡−1                                                                                                                                   
 

𝑚𝑚𝑡𝑡 = tanh �𝛽𝛽
2
�(𝑃𝑃𝑡𝑡 + 𝐷𝐷� − (1 + 𝑟𝑟)𝑃𝑃𝑡𝑡−1) (𝜒𝜒+𝜙𝜙)(𝐹𝐹−𝑦𝑦𝑡𝑡−1)

𝜆𝜆𝜎𝜎2 − (1 − 𝜏𝜏)𝐶𝐶��                                  

, (19) 

where 𝑦𝑦𝑡𝑡 = 𝑃𝑃𝑡𝑡−1 is an auxiliary variable.  

Propositions 1 and 2, proven in the appendix, summarize our main results for S� = 0 and 

S� > 0, respectively, where an overbar denotes steady-state quantities. We are particularly 

interested in how an increase in parameter 𝛽𝛽 may affect the levels and stability domains 

of the model’s steady state(s) and how that relates to parameter 𝜏𝜏.  

Proposition 1 (S� = 0): Map (19) may possess up to three steady states, a fundamental 

steady state, given by 𝐹𝐹𝐹𝐹𝐹𝐹1 = (𝑃𝑃1� , 𝑦𝑦1���,𝑚𝑚1����) = (𝐷𝐷
�

𝑟𝑟
, 𝑃𝑃1, − tanh[(1−𝜏𝜏)𝛽𝛽𝛽𝛽

2
]), and two 

nonfundamental steady states, given by 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆2,3 = �𝑃𝑃2,3�����, 𝑦𝑦2,3�����,𝑚𝑚2,3������� = (𝑃𝑃1� ±

�𝜆𝜆𝜎𝜎2((1−𝜏𝜏)𝛽𝛽𝐶𝐶−2arctanh[2𝑟𝑟+𝜙𝜙−𝜒𝜒𝜒𝜒+𝜙𝜙 ])

𝑟𝑟𝑟𝑟(𝜒𝜒+𝜙𝜙)
, 𝑃𝑃2,3�����, − 2𝑟𝑟+𝜙𝜙−𝜒𝜒

𝜒𝜒+𝜙𝜙
), with 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆2 ≥ 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆3. 𝐹𝐹𝐹𝐹𝐹𝐹1 always exists. 

Assume that 𝑟𝑟 < 𝜒𝜒 < 2𝑟𝑟 + 𝜙𝜙. For 0 < 𝛽𝛽 < 𝛽𝛽𝑃𝑃: =
2arctanh[2𝑟𝑟+𝜙𝜙−𝜒𝜒𝜒𝜒+𝜙𝜙 ]

(1−𝜏𝜏)𝐶𝐶
, 𝐹𝐹𝐹𝐹𝐹𝐹1 is locally stable. At 

𝛽𝛽 = 𝛽𝛽𝑃𝑃, a pitchfork bifurcation occurs, causing the birth of 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆2,3. For 𝛽𝛽𝑃𝑃 < 𝛽𝛽 < 𝛽𝛽𝑁𝑁, 

𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆2,3 are locally stable, where 𝑃𝑃2,3����� are symetrially located around 𝑃𝑃1� . As parameter 𝛽𝛽 

exceeds 𝛽𝛽𝑁𝑁 =
(𝜙𝜙+𝜒𝜒)((1+2𝑟𝑟)−�1+8𝑟𝑟(1+𝑟𝑟))+4(𝑟𝑟+𝜙𝜙)(𝑟𝑟−𝜒𝜒)arctanh �2𝑟𝑟+𝜙𝜙−𝜒𝜒

𝜙𝜙+𝜒𝜒 �

2(1−𝜏𝜏)𝐶𝐶(𝑟𝑟+𝜙𝜙)(𝑟𝑟−𝜒𝜒)
, 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆2,3 become 

simultaneously unstable due to a Neimark-Sacker bifurcation, giving rise to oscillatory 

dynamics. Higher values of parameter 𝛽𝛽 increase the gaps between 𝑃𝑃1�  and 𝑃𝑃2,3����� and 𝑃𝑃2��� 

and 𝑃𝑃3���. An increase in parameter 𝜏𝜏 causes the opposite and increases the critical 

bifurcation values 𝛽𝛽𝑃𝑃 and 𝛽𝛽𝑁𝑁. 

Figure 1 provides a schematic representation of the levels and stability domains of the 
risky asset’s fundamental and nonfundamental steady-state prices as a function of 
parameter 𝛽𝛽. The left panels depict the main results of Proposition 1; the right panels 
anticipate those of Proposition 2, to be stated in the sequel. Different colors mark the risky 
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asset’s fundamental and nonfundamental steady-state prices. Red (blue) tonalities 
indicate the absence (presence) of wealth taxes. Solid (dotted) lines indicate locally stable 
(unstable) steady states. From the top left panel to the bottom right panel, we assume (i) 
𝜏𝜏 = 0 and 𝑆𝑆̅ = 0, (ii) 𝜏𝜏 > 0 and 𝑆𝑆̅ = 0, superimposed on 𝜏𝜏 = 0 and 𝑆𝑆̅ = 0, (iii) 𝜏𝜏 = 0 and 𝑆𝑆̅ >
0 and (iv) 𝜏𝜏 > 0 and 𝑆𝑆̅ > 0, superimposed on 𝜏𝜏 = 0 and 𝑆𝑆̅ > 0. Note that it may be useful 
to absorb the results of Proposition 2 in connection with Figure 1, although it does not 
capture all possible bifurcation scenarios.  

Proposition 2 (S� > 0): Map (19) may possess up to three steady states, a fundamental 

steady state, given by 𝐹𝐹𝐹𝐹𝐹𝐹1 = (𝑃𝑃1� , 𝑦𝑦1���,𝑚𝑚1����) = (𝐷𝐷
�−(1−𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆̅𝑆

𝑟𝑟
, 𝑃𝑃1, − tanh[(1−𝜏𝜏)𝛽𝛽𝛽𝛽

2
]), and two 

nonfundamental steady states, given by 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆2,3 = �𝑃𝑃2,3�����, 𝑦𝑦2,3�����,𝑚𝑚2,3������� = (𝑃𝑃1� + (1−𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆̅𝑆
2𝑟𝑟

±

��(1−𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆̅𝑆
2𝑟𝑟

�
2

+
𝜆𝜆𝜎𝜎2((1−𝜏𝜏)𝛽𝛽𝐶𝐶−2arctanh[2𝑟𝑟+𝜙𝜙−𝜒𝜒𝜒𝜒+𝜙𝜙 ])

𝑟𝑟𝑟𝑟(𝜒𝜒+𝜙𝜙)
, 𝑃𝑃2,3�����, − 2𝑟𝑟+𝜙𝜙−𝜒𝜒

𝜒𝜒+𝜙𝜙
), with 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆2 ≥ 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆3. 𝐹𝐹𝐹𝐹𝐹𝐹1 

always exists. Assume that 𝑟𝑟 < 𝜒𝜒 < 2𝑟𝑟 + 𝜙𝜙. For 0 < 𝛽𝛽 < 𝛽𝛽𝑆𝑆 ≔
2arctanh[2𝑟𝑟+𝜙𝜙−𝜒𝜒𝜒𝜒+𝜙𝜙 ]

(1−𝜏𝜏)𝐶𝐶+𝑟𝑟(𝜒𝜒+𝜙𝜙)𝜆𝜆𝜎𝜎2�(1−𝜏𝜏)𝑆𝑆�
2𝑟𝑟 �

2, 

𝐹𝐹𝐹𝐹𝐹𝐹1 is locally stable. At 𝛽𝛽 = 𝛽𝛽𝑆𝑆, a saddle-node bifurcation occurs, causing the birth of 

𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆2,3, with 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆2 as the node and 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆3 as the saddle. For 𝛽𝛽𝑆𝑆 < 𝛽𝛽 < 𝛽𝛽𝑇𝑇: =

2arctanh[2𝑟𝑟+𝜙𝜙−𝜒𝜒𝜒𝜒+𝜙𝜙 ]

(1−𝜏𝜏)𝐶𝐶
, 𝐹𝐹𝐹𝐹𝐹𝐹1 remains locally stable, 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆2 is at least initially locally stable and 

𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆3 is unstable, with 𝑃𝑃2��� > 𝑃𝑃3��� > 𝑃𝑃1� . At 𝛽𝛽 = 𝛽𝛽𝑇𝑇, a transcritical bifurcation occurs, implying 

that 𝑃𝑃2��� > 𝑃𝑃1� = 𝑃𝑃3���. As parameter 𝛽𝛽 exceeds 𝛽𝛽𝑇𝑇, 𝐹𝐹𝐹𝐹𝐹𝐹1 becomes unstable, 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2 may still 

be locally stable and 𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹3 is initially locally stable, with 𝑃𝑃2��� > 𝑃𝑃1� > 𝑃𝑃3���. 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆2,3 eventually 

become unstable due to a Neimark-Sacker bifurcation as parameter 𝛽𝛽 crosses 𝛽𝛽𝑁𝑁,𝑈𝑈 and 

𝛽𝛽𝑁𝑁,𝐿𝐿, respectively, giving rise to oscillatory dynamics, with 𝛽𝛽𝑁𝑁,𝑈𝑈 < 𝛽𝛽𝑁𝑁,𝐿𝐿. When S� is 

sufficiently large, we may observe that 𝛽𝛽𝑁𝑁,𝑈𝑈 < 𝛽𝛽𝑇𝑇. Higher values of parameter 𝛽𝛽 increase 

the gaps between 𝑃𝑃1�  and 𝑃𝑃2,3����� and 𝑃𝑃2��� and 𝑃𝑃3���. An increase in parameter 𝜏𝜏 causes the 

opposite and increases the critical bifurcation values 𝛽𝛽𝑆𝑆, 𝛽𝛽𝑇𝑇, 𝛽𝛽𝑁𝑁,𝑈𝑈 and 𝛽𝛽𝑁𝑁,𝐿𝐿. 

*** Figure 1 about here *** 

In the following, we discuss the main economic implications of Propositions 1 and 2, 

highlighting, in particular, the role played by parameters 𝜏𝜏, 𝛽𝛽 and 𝑆𝑆̅. 
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a) Level of the fundamental steady state  

(i) If the supply of (outside) shares of the risky asset is zero, i.e. 𝑆𝑆̅ = 0, the risky asset’s 

risk premium vanishes and its fundamental value is given by 𝑃𝑃1� = 𝐹𝐹 = 𝐷𝐷�

𝑟𝑟
. Consequently, 

the risky asset’s fundamental value, corresponding to the discounted value of future 

dividend payments, is independent of wealth taxes and speculators’ intensity of choice.  

(ii) For 𝑆𝑆̅ > 0, the risky asset’s fundamental steady state depends on wealth taxes, 

although not on speculators’ intensity of choice. Note first that a higher supply of (outside) 

shares of the risky asset increases the risky asset’s risk premium, given by 𝑅𝑅𝑅𝑅 = (1−𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆̅𝑆
𝑟𝑟

, 

and, thereby, decreases its fundamental value 𝑃𝑃1� = 𝐹𝐹 = 𝐷𝐷�−(1−𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆̅𝑆
𝑟𝑟

= 𝐷𝐷�

𝑟𝑟
− 𝑅𝑅𝑅𝑅. Since 

wealth taxes (linearly) shrink the risky asset’s risk premium, 𝑃𝑃1�  (linearly) increases in line 

with parameter 𝜏𝜏. The economic rationale behind this is as follows. Higher wealth taxes 

reduce the risk associated with speculators’ wealth, caused by the risky asset’s price and 

dividend fluctuations. Since the risky asset thus appears more attractive to speculators, 

their demand for the risky asset increases, creating, in turn, an increase in the price of the 

risky asset.  

(iii) Note that the model’s fundamental steady state implies that 𝑚𝑚1���� = − tanh �(1−𝜏𝜏)𝛽𝛽𝛽𝛽
2

�, 

𝑁𝑁1𝐶𝐶���� = 1
1+𝑒𝑒𝑒𝑒𝑒𝑒[−(1−𝜏𝜏)𝛽𝛽𝐶𝐶]

 and 𝑁𝑁1𝐹𝐹���� = 1
1+𝑒𝑒𝑒𝑒𝑒𝑒[(1−𝜏𝜏)𝛽𝛽𝐶𝐶]

.  Hence, the expectation rules’ market shares 

at the fundamental steady state depend on the wealth tax, independently of the size of 

the supply of (outside) shares of the risky asset. In particular, the market share of the 

technical (fundamental) expectation rule decreases (increases) in line with the wealth tax. 

The reason for this is as follows. At the fundamental steady state, the expectation rules’ 

fitness differential amounts to 𝐴𝐴1𝐹𝐹���� − 𝐴𝐴1𝐶𝐶���� = −(1 − 𝜏𝜏)𝐶𝐶.6 Hence, higher wealth taxes reduce 

the fitness disadvantage of the fundamental expectation rule, making this rule relatively 

more attractive. For completeness, we remark that each speculator holds 𝑆𝑆̅ shares of the 

                                                           
6 Recall that both expectation rules deliver identical predictions at the fundamental steady state and, 

consequently, recommend holding the same amount of the risky asset. The expectation rules’ fitness 

differential thus depends only on wealth taxes and information costs, as can easily be verified by setting 

𝑍𝑍𝑡𝑡−2𝐹𝐹 = 𝑍𝑍𝑡𝑡−2𝐶𝐶  in (13). 
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risky asset at the fundamental steady state, or, stated more formally, 𝑍𝑍1𝐶𝐶���� = 𝑆𝑆̅ = 𝑆̂𝑆/𝑁𝑁, 𝑍𝑍1𝐹𝐹���� =

𝑆𝑆̅ = 𝑆̂𝑆/𝑁𝑁 and 𝑁𝑁1𝐶𝐶���� 𝑁𝑁 𝑍𝑍1𝐶𝐶���� + 𝑁𝑁1𝐹𝐹���� 𝑁𝑁 𝑍𝑍1𝐹𝐹���� = 𝑆̂𝑆. 

b) Stability domain of the fundamental steady state 

As demonstrated in Appendix A.2, the fundamental steady states’ stability condition, i.e.  

0 < 𝛽𝛽 < 𝛽𝛽𝑃𝑃 = 𝛽𝛽𝑇𝑇 =
2arctanh[2𝑟𝑟+𝜙𝜙−𝜒𝜒𝜒𝜒+𝜙𝜙 ]

(1−𝜏𝜏)𝐶𝐶
, can also be written as 𝑁𝑁1𝐶𝐶����𝜒𝜒 − 𝑁𝑁1𝐹𝐹����𝜙𝜙 < 𝑟𝑟. From the latter 

expression, it follows immediately that the behavior of chartists is destabilizing while that 

of fundamentalists is stabilizing. For 𝛽𝛽 → 0, we obtain 𝑁𝑁1𝐶𝐶���� = 𝑁𝑁1𝐶𝐶���� = 0.5 and thus 𝜒𝜒 < 2𝑟𝑟 +

𝜙𝜙. If this condition is violated, the fundamental steady state is always unstable. For 𝛽𝛽 →

∞, we have 𝑁𝑁1𝐶𝐶���� = 1 and 𝑁𝑁1𝐹𝐹���� = 0, implying that 𝜒𝜒 < 𝑟𝑟. If this condition holds, the 

fundamental steady state is locally stable. In between, i.e. for 𝑟𝑟 < 𝜒𝜒 < 2𝑟𝑟 + 𝜙𝜙, we can 

apply our propositions and conclude that an increase in speculators’ intensity of choice 

may compromise the stability of the fundamental steady state.7 However, it is also clear 

that policymakers can always re-establish the fundamental steady state’s local stability by 

increasing the tax rate on speculators’ wealth. This result holds for 𝑆𝑆̅ = 0 and 𝑆𝑆̅ > 0. 

c) Levels of nonfundamental steady states 

(i) For 𝑆𝑆̅ = 0,  we obtain 𝑃𝑃2,3����� = 𝑃𝑃1� ± �𝜆𝜆𝜎𝜎2((1−𝜏𝜏)𝛽𝛽𝐶𝐶−2arctanh[2𝑟𝑟+𝜙𝜙−𝜒𝜒𝜒𝜒+𝜙𝜙 ])

𝑟𝑟𝑟𝑟(𝜒𝜒+𝜙𝜙)
 or, alternatively, 𝑃𝑃2,3����� =

𝑃𝑃1� ± �𝜆𝜆𝜎𝜎2(𝑁𝑁1
𝐶𝐶����𝜒𝜒−𝑁𝑁1𝐹𝐹

����𝜙𝜙−𝑟𝑟)
𝑟𝑟𝑟𝑟(𝜒𝜒+𝜙𝜙)

. Accordingly, the model’s pitchfork bifurcation gives rise to two 

additional nonfundamental steady states, symmetrically located around 𝑃𝑃1� . Furthermore, 

𝑃𝑃2,3����� indicate that the risky asset’s mispricing increases with speculators’ intensity of 

choice, although policymakers can decrease the gap between 𝑃𝑃2,3����� and 𝑃𝑃1�  as well as the 

gap between 𝑃𝑃2��� and 𝑃𝑃3��� by raising the wealth tax.  

(ii) For 𝑆𝑆̅ > 0, however, the coordinates of 𝑃𝑃2,3����� display a different and, as we believe, 

fascinating behavior. The nonfundamental steady states are born via a saddle-node 

                                                           
7 Empirical work, e.g. by Boswijk et al. (2007), suggests that the relation 𝑟𝑟 < 𝜒𝜒 < 2𝑟𝑟 + 𝜙𝜙 holds in real 

financial markets, which is why it forms the basis of our propositions’ stability results. 
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bifurcation when parameter 𝛽𝛽 passes 𝛽𝛽𝑆𝑆, and we have 𝑃𝑃2��� > 𝑃𝑃3��� > 𝑃𝑃1� . Note that the upper 

(lower) nonfundamental value of the risky asset price increases (decreases) in line with 

parameter 𝛽𝛽. At the transcritical bifurcation, we have (1 − 𝜏𝜏)𝛽𝛽𝐶𝐶 = 2 arctanh[2𝑟𝑟+𝜙𝜙−𝜒𝜒
𝜒𝜒+𝜙𝜙

] and 

the square root’s second term of 𝑃𝑃2,3����� equals zero, resulting in 𝑃𝑃2��� = 𝐷𝐷�/𝑟𝑟 and 𝑃𝑃3��� = 𝑃𝑃1� , i.e. 

the difference between the two nonfundamental steady states is given by the risky asset’s 

risk premium, or, in technical terms, 𝑃𝑃2��� − 𝑃𝑃3��� = (1−𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆̅𝑆
𝑟𝑟

= 𝑅𝑅𝑅𝑅. Hence, for 𝑆𝑆̅ > 0 and 𝛽𝛽 

exceeding 𝛽𝛽𝑇𝑇, we may observe that a loss of the local stability of the model’s fundamental 

steady state triggers a discreet jump from 𝑃𝑃1� = 𝐹𝐹 to 𝑃𝑃2��� = 𝐷𝐷�/𝑟𝑟. While 𝑃𝑃2��� is independent of 

parameters 𝜏𝜏 and 𝑆𝑆̅ at the transcritical bifurcation, 𝑃𝑃1� = 𝑃𝑃3��� increases (decreases) with the 

wealth tax (supply of (outside) shares of the risky asset), thereby decreasing (increasing) 

the size of the jump. In contrast, 𝑃𝑃3��� is not detached from 𝑃𝑃1�  at the transcritical bifurcation. 

Furthermore, the distance between the nonfundamental steady states as well as the 

distance between the nonfundamental steady states and the fundamental steady state 

increases with the supply of (outside) shares of the risky asset and speculators’ intensity 

of choice, while the reverse outcome occurs when policymakers increase the wealth tax.  

(iii) Interestingly, it follows from 𝑚𝑚2,3������ = − 2𝑟𝑟+𝜙𝜙−𝜒𝜒
𝜒𝜒+𝜙𝜙

 that the market shares of the fundamental 

and technical expectation rules, given by 𝑁𝑁2,3
𝐹𝐹����� = 𝜒𝜒−𝑟𝑟

𝜒𝜒+𝜙𝜙
 and 𝑁𝑁2,3

𝐶𝐶����� = 𝜙𝜙+𝑟𝑟
𝜒𝜒+𝜙𝜙

, respectively, are 

independent of parameters 𝑆𝑆̅, 𝛽𝛽 and 𝜏𝜏  and identical at the model’s nonfundamental steady 

states. Since 𝑍𝑍2,3
𝐶𝐶����� = 𝑆̅𝑆(𝜒𝜒+𝑟𝑟)

2𝑟𝑟
± 𝑌𝑌(𝜒𝜒−𝑟𝑟)

(1−𝜏𝜏)𝜆𝜆𝜎𝜎2
 and 𝑍𝑍2,3

𝐹𝐹����� = 𝑆̅𝑆(𝑟𝑟−𝜙𝜙)
2𝑟𝑟

± 𝑌𝑌(−(𝜙𝜙+𝑟𝑟))
(1−𝜏𝜏)𝜆𝜆𝜎𝜎2

 with 𝑌𝑌 ≔

��(1−𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆̅𝑆
2𝑟𝑟

�
2

+
𝜆𝜆𝜎𝜎2((1−𝜏𝜏)𝛽𝛽𝐶𝐶−2arctanh[2𝑟𝑟+𝜙𝜙−𝜒𝜒𝜒𝜒+𝜙𝜙 ])

𝑟𝑟𝑟𝑟(𝜒𝜒+𝜙𝜙)
, we have again that 𝑁𝑁2,3

𝐶𝐶����� 𝑁𝑁 𝑍𝑍2,3
𝐶𝐶����� + 𝑁𝑁2,3

𝐹𝐹����� 𝑁𝑁 𝑍𝑍2,3
𝐹𝐹����� =

𝑆̂𝑆. Note that chartists are too optimistic at the upper nonfundamental steady state and thus 

buy too much of the risky asset. In fact, the yield they obtain from holding the risky asset 

is below the yield they receive from investing in the risk-free asset. By contrast, 

fundamentalists invest less in the risky asset and hold more of the risk-free asset. 

Together, this reduces the fitness disadvantage of the costly fundamental expectation 

rule. In mathematical terms, the expectation rules’ fitness differential is given by 𝐴𝐴2,3
𝐹𝐹����� −
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𝐴𝐴2.3
𝐶𝐶����� = −

2arctanh[2𝑟𝑟+𝜙𝜙−𝜒𝜒𝜒𝜒+𝜙𝜙 ]

𝛽𝛽
, from which it becomes clear why parameters 𝑆𝑆̅, 𝛽𝛽 and 𝜏𝜏  do not 

influence speculators’ choice of expectations rules at the upper nonfundamental steady 

state. Of course, chartists suffer from similar investment mistakes induced by their 

expectation rule at the lower nonfundamental steady state. 

d) Stability domain of nonfundamental steady states and beyond 

For S� = 0, the nonfundamental steady states are locally stable in the range 𝛽𝛽𝑃𝑃 < 𝛽𝛽 < 𝛽𝛽𝑁𝑁 

and subject to a Neimark-Sacker bifurcation as parameter 𝛽𝛽 exceeds 𝛽𝛽𝑁𝑁. For S� > 0, the 

bifurcation structure is more complicated. Interval 𝛽𝛽𝑆𝑆 < 𝛽𝛽 < 𝛽𝛽𝑇𝑇 starts with the occurrence 

of a saddle-node bifurcation and we can thus conclude that the lower nonfundamental 

steady state, being the saddle, is unstable while the upper nonfundamental steady state, 

being the node, is locally stable, at least initially. Between 𝛽𝛽𝑇𝑇 < 𝛽𝛽 < 𝛽𝛽𝑁𝑁,𝐿𝐿, the lower 

nonfundamental steady state is stable as it has exchanged its stability properties with the 

fundamental steady state. We can express the stability domain of the upper 

nonfundamental steady state by 𝛽𝛽𝑆𝑆 < 𝛽𝛽 < 𝛽𝛽𝑁𝑁,𝑈𝑈. Since 𝛽𝛽𝑁𝑁,𝑈𝑈 < 𝛽𝛽𝑁𝑁,𝐿𝐿, the upper 

nonfundamental steady state is subject to a Neimark-Sacker bifurcation for lower values 

of speculators’ intensity of choice than the lower nonfundamental steady state. However, 

𝛽𝛽𝑁𝑁,𝑈𝑈 may be larger or smaller than 𝛽𝛽𝑇𝑇. Importantly, the nonfundamental steady states 

eventually become unstable and give rise to oscillatory dynamics as the term (1 − 𝜏𝜏)𝛽𝛽𝛽𝛽 

increases, independently of whether the supply of (outside) shares of the risky asset is 

zero or positive. Hence, an increase in speculators’ intensity of choice may create 

endogenous asset price dynamics, while an increase in policymakers’ wealth tax may re-

establish market stability.8 We also remark that each of the two nonfundamental steady 

states gives birth to a separate limit cycle when the Neimark-Sacker bifurcation occurs, 

i.e. there are two coexisting attractors, one originating below the fundamental steady state 

and one above it.  

To further illustrate our propositions’ economic implications and to explore the model’s 

                                                           
8 Interestingly, the gap between 𝛽𝛽𝑁𝑁,𝑈𝑈 and 𝛽𝛽𝑁𝑁,𝐿𝐿 increases in line with the supply of (outside) shares of the 

risky asset and decreases with the wealth tax. As a result, we may observe that 𝛽𝛽𝑁𝑁,𝑈𝑈 becomes smaller than 

𝛽𝛽𝑇𝑇 when 𝑆𝑆̅ grows. See Appendix A.5 for more details. 
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out-of-equilibrium behavior, we make use of the following base parameter setting. As in 

Brock and Hommes (1998), we assume that 𝑟𝑟 = 0.1, 𝐷𝐷� = 1, 𝜎𝜎𝛿𝛿2 = 0, 𝜆𝜆 = 1, 𝜎𝜎2 = 1, 𝜎𝜎𝜀𝜀2 =

0, 𝜒𝜒 = 0.2,  𝜙𝜙 = 1 and 𝐶𝐶 = 1.9 Since our main focus rests again on parameters 𝛽𝛽, 𝜏𝜏 and 𝑆𝑆̅, 

we discuss in Figure 2 the effects of rising values of parameter 𝛽𝛽 on the properties of the 

risky asset’s price for different constellations of parameters 𝜏𝜏 and 𝑆𝑆̅. The top left panel of 

Figure 2 shows a bifurcation diagram for parameter 𝛽𝛽, assuming that 𝜏𝜏 = 0 and 𝑆𝑆̅ = 0. 

Different colors mark the dynamics of the risky asset price for two different sets of initial 

conditions, selected slightly above and slightly below the model’s fundamental steady 

state. Obviously, the price of the risky asset converges towards its fundamental value 𝑃𝑃1� =

𝐹𝐹 = 10 as long as the fundamental steady state’s stability condition holds. At the pitchfork 

bifurcation, i.e. at 𝛽𝛽𝜏𝜏=0,𝑆̅𝑆=0
𝑃𝑃 = 2.398, the fundamental steady state becomes unstable and 

two locally stable nonfundamental steady states are born. Depending on the initial 

conditions, the risky asset is then either overvalued or undervalued. Note that the risky 

asset’s mispricing increases in line with speculators’ intensity of choice. A Neimark-Sacker 

bifurcation occurs at 𝛽𝛽𝜏𝜏=0,𝑆̅𝑆=0
𝑁𝑁 = 3.331. The two nonfundamental steady states then 

become unstable and give rise to two coexisting limit cycles, one located above the risky 

asset’s fundamental value and one below it. Note that the limit cycles’ amplitudes increase 

in line with speculators’ intensity of choice. 

The bottom left panel of Figure 2 repeats this experiment for 𝜏𝜏 = 0.08. While such a tax 

rate may be regarded as relatively high, it enables us to better visualize the implications 

of wealth taxes. Of course, similar results can be observed for lower values of parameter 

𝜏𝜏, but they are less pronounced. While the risky asset’s fundamental steady state is still 

given with 𝑃𝑃1� = 𝐹𝐹 = 10, the pitchfork and the Neimark-Sacker bifurcation occur at higher 

values of speculators’ intensity of choice, namely at 𝛽𝛽𝜏𝜏=0.08,𝑆̅𝑆=0
𝑃𝑃 = 2.606 and 𝛽𝛽𝜏𝜏=0.08,𝑆̅𝑆=0

𝑁𝑁 =

3.621. Within this interval, the risky asset’s mispricing is lower than in the absence of 

wealth taxes. The stabilizing effect of wealth taxes also becomes apparent by comparing 

the amplitudes of the risky asset’s oscillatory price behavior. For a given value of 

                                                           
9 Essentially, the parameter setting by Brock and Hommes (1998) reflects a yearly time scale, a reasonable 

choice to model real-world wealth taxation. Since simulated model dynamics only match the behavior of 

actual financial markets in a qualitative sense, future work may try to bring it closer to the data. 
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parameter 𝛽𝛽, the risky asset fluctuates less wildly when policymakers tax speculators’ 

wealth. We can thus conclude that wealth taxes may also stabilize the risky asset market 

when it is out of equilibrium. 

*** Figure 2 about here *** 

The top right panel of Figure 2 shows a bifurcation diagram for parameter 𝛽𝛽, assuming 

that 𝜏𝜏 = 0 and 𝑆𝑆̅ = 0.05. While a positive supply of (outside) shares of the risky asset does 

not affect the local stability domain of the risky asset’s fundamental steady state, i.e. 

𝛽𝛽𝜏𝜏=0,𝑆̅𝑆=0
𝑃𝑃 = 𝛽𝛽𝜏𝜏=0,𝑆̅𝑆=0.05

𝑇𝑇 = 2.398, the risk premium of the risky asset becomes positive, 

resulting in 𝑃𝑃1� = 𝐹𝐹 = 9.5. At the transcritical bifurcation, we furthermore have that 𝑃𝑃2��� = 10 

and 𝑃𝑃3��� = 𝑃𝑃1� = 9.5. Note that the jump from 𝑃𝑃1�  to 𝑃𝑃2��� at the transcritical bifurcation is 

(always) given by the risk premium, that is, in our case, by 𝑅𝑅𝑅𝑅 = 0.5. As parameter 𝛽𝛽 

increases, the distance between 𝑃𝑃1�  and 𝑃𝑃2���, 𝑃𝑃1�  and 𝑃𝑃3��� and, consequently, 𝑃𝑃2��� and 𝑃𝑃3��� 

increases.10 A Neimark-Sacker bifurcation of the upper nonfundamental steady state, 

leading to oscillatory price dynamics above 𝑃𝑃1� = 9.5, occurs at 𝛽𝛽𝜏𝜏=0,𝑆̅𝑆=0.05
𝑁𝑁,𝑈𝑈 = 3.074, while 

the Neimark-Sacker bifurcation of the lower nonfundamental value occurs at 𝛽𝛽𝜏𝜏=0,𝑆̅𝑆=0.05
𝑁𝑁,𝐿𝐿 =

3.598, leading to oscillatory price dynamics below 𝑃𝑃1� = 9.5. Note that the Neimark-Sacker 

bifurcation for 𝜏𝜏 = 0 and 𝑆𝑆̅ = 0 is located between these two values, i.e. 𝛽𝛽𝜏𝜏=0,𝑆̅𝑆=0.05
𝑁𝑁,𝑈𝑈 <

𝛽𝛽𝜏𝜏=0,𝑆̅𝑆=0
𝑁𝑁 < 𝛽𝛽𝜏𝜏=0,𝑆̅𝑆=0.05

𝑁𝑁,𝐿𝐿 . As in the case of 𝑆𝑆̅ = 0, an increase in speculators’ intensity of 

choice amplifies the limit cycles’ amplitudes and thus has to be regarded as destabilizing.  

The bottom right panel of Figure 2 reveals how the picture changes when policymakers 

impose a wealth tax by setting 𝜏𝜏 = 0.08. First, the imposition of a wealth tax increases the 

risky asset’s fundamental value to 𝑃𝑃1� = 𝐹𝐹 = 9.54 and enlarges its local stability domain. 

Indeed, the transcritical bifurcation now occurs at 𝛽𝛽𝜏𝜏=0.08,𝑆̅𝑆=0.05
𝑇𝑇 = 𝛽𝛽𝜏𝜏=0.08,𝑆̅𝑆=0

𝑃𝑃 = 2.606, 

yielding, at that position, 𝑃𝑃2��� = 10 and 𝑃𝑃3��� = 𝑃𝑃1� = 9.54. Between the transcritical and the 

Neimark-Sacker bifurcation, the nonfundamental steady states are closer to the 

                                                           
10 Since the bifurcation diagrams’ initial conditions are located in the neighborhood of the fundamental 

steady state, the model’s saddle-node bifurcation does not materialize in the top right (and bottom right) 

panel of Figure 2. We numerically explore a number of intriguing implications associated with the model’s 

saddle-node bifurcation in Appendix A.   
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fundamental steady state when policymakers tax speculators’ wealth. The Neimark-

Sacker bifurcation occurs either at 𝛽𝛽𝜏𝜏=0.08,𝑆̅𝑆=0.05
𝑁𝑁,𝑈𝑈 = 3.352 (upper branch of the 

nonfundamental steady state) or at 𝛽𝛽𝜏𝜏=0.08,𝑆̅𝑆=0.05
𝑁𝑁,𝐿𝐿 = 3.899 (lower branch of the 

nonfundamental steady state), leading again to oscillatory price dynamics, albeit with 

lower amplitudes than in the absence of wealth taxes. Analog to the case 𝑆𝑆̅ = 0, we have 

that 𝛽𝛽𝜏𝜏=0.08,𝑆̅𝑆=0.05
𝑁𝑁,𝑈𝑈 < 𝛽𝛽𝜏𝜏=0.08,𝑆̅𝑆=0

𝑁𝑁 < 𝛽𝛽𝜏𝜏=0.08,𝑆̅𝑆=0.05
𝑁𝑁,𝐿𝐿 . 

 
4 Discussion 

Once again, we remark that policymakers may – e.g. for redistributive purposes – 

generate substantial revenues by taxing speculators’ wealth. However, policymakers 

need to understand how wealth taxes may affect the dynamics of financial markets. Our 

analytical and numerical results presented in the previous section highlight the stabilizing 

potential of wealth taxes. In this section, we discuss a number of more subtle issues 

associated with wealth taxes, occurring near the model’s bifurcations. 

a) Qualitative versus quantitative effects 

Qualitatively, our results suggest that wealth taxes have a stabilizing effect on the 

dynamics of speculative asset prices. Quantitatively, however, the stabilizing effect of 

wealth taxes may be regarded as weak. In the top right panel of Figure 2, for instance, we 

observe for 𝜏𝜏 = 0 and 𝑆𝑆̅ = 0.05 that the upper nonfundamental steady state becomes 

unstable at 𝛽𝛽𝜏𝜏=0,𝑆̅𝑆=0.05
𝑁𝑁,𝑈𝑈 = 3.074. To drive the risky asset’s behavior from a position slightly 

right of the Neimark-Sacker bifurcation, say 𝛽𝛽 = 3.1, to a position slightly left of the 

transcritical bifurcation, policymakers need to impose a wealth tax of about 23 percent 

(since (1 − 𝜏𝜏)𝛽𝛽𝛽𝛽 = (1 − 0.23) ∗ 3.1 ∗ 1 = 2.387 < 2 arctanh �2𝑟𝑟+𝜙𝜙−𝜒𝜒
𝜒𝜒+𝜙𝜙

� = 2.3979, the 

model’s fundamental steady state would then be locally stable). While the imposition of a 

23 percent wealth tax seems to be unrealistic, note that lower wealth taxes contribute to 

a reduction of the risky asset’s mispricing, too.  

However, there are market conditions where the imposition of a tiny wealth tax may have 

pronounced effects on the behavior of the risky asset. For instance, the upper 

nonfundamental steady state of the risky asset price may already imply substantial 
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mispricing when it is born. Policymakers may suppress this mispricing by imposing a 

rather small wealth tax. In the top line of panels in Figure 3, we illustrate this phenomenon 

in the presence of different noise levels. The magenta line depicts the evolution of the 

price of the risky asset in the time domain for our base parameter setting, except that 𝛽𝛽 =

2.45, 𝑆𝑆̅ = 0.05, 𝜎𝜎𝜀𝜀 = 0.01 and 𝜏𝜏 = 0. In the absence of wealth taxes, the price of the risky 

asset fluctuates – after a transient period and initial conditions selected slightly above the 

unstable fundamental steady state 𝑃𝑃1� = 9.5 – around its locally stable upper 

nonfundamental steady state 𝑃𝑃2��� = 10.24. Clearly, the upper (locally stable) 

nonfundamental steady state starts to exist as parameter 𝛽𝛽 crosses 𝛽𝛽𝜏𝜏=0,𝑆̅𝑆=0.05
𝑆𝑆 = 2.246, 

while the fundamental steady state becomes unstable as parameter 𝛽𝛽 crosses 

𝛽𝛽𝜏𝜏=0,𝑆̅𝑆=0.05
𝑇𝑇 = 2.398.  The cyan line shows the dynamics of the risky asset price for 𝜏𝜏 = 0.08 

(to be able to visualize our results, we adhere to our choice of 𝜏𝜏 = 0.08, although smaller 

wealth taxes may produce similar effects). In the presence of wealth taxes, the price of 

the risky asset fluctuates around its new and slightly elevated locally stable fundamental 

steady state 𝑃𝑃1� = 9.54. In fact, we now have that 𝛽𝛽 = 2.45 < 𝛽𝛽𝜏𝜏=0.08,𝑆̅𝑆=0.05
𝑆𝑆 = 2.454 <

𝛽𝛽𝜏𝜏=0.08,𝑆̅𝑆=0.05
𝑇𝑇 = 2.606, i.e. the imposition of wealth taxes has not only stabilized the 

fundamental steady state, but also suppressed the saddle-node bifurcation’s emergence. 

The top right panel of Figure 3, based on 𝜎𝜎𝜀𝜀 = 0.04, suggests that this observation is 

robust with respect to higher noise levels. Without question, the imposition of small wealth 

taxes may significantly reduce the risky asset’s mispricing if they prevent the emergence 

of a saddle-node bifurcation.   

*** Figure 3 about here *** 

b) Volatility versus mispricing  

The left panels of Figure 2 indicate that, when the imposition of wealth taxes reverses the 

Neimark-Sacker bifurcation, oscillatory price dynamics die out and the price of the risky 

asset converges towards one of the two nonfundamental steady states. While the volatility 

of the risky asset is zero at the nonfundamental steady states, it may display marked 

mispricing. Unfortunately, this constant mispricing may be larger than the average 

mispricing implied by the risky asset’s oscillatory price dynamics, although the latter 

clearly involves excess volatility. In the bottom line of panels in Figure 3, we explore this 
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issue in more detail. The magenta line in the bottom left panel of Figure 3 shows how the 

price of the risky asset develops for our base parameter setting, except that 𝛽𝛽 = 3.6, 𝑆𝑆̅ =

0, 𝜎𝜎𝜀𝜀 = 0.01 and 𝜏𝜏 = 0. Due to exogenous noise, the dynamics of the risky asset price is 

characterized by alternating bull and bear market regimes. While the volatility of the risky 

asset appears to be quite high, the price of the risky asset fluctuates, on average, around 

its fundamental value. The cyan line shows the dynamics of the risky asset price for 𝜏𝜏 =

0.08. While the volatility of the risky asset appears to be much lower, the price of the risky 

asset fluctuates, on average, above its fundamental value. This may not be in the interest 

of policymakers. The bottom right panel of Figure 3, based on 𝜎𝜎𝜀𝜀 = 0.04, suggests that 

this effect may diminish for higher noise levels. Due to the quadrupling of the exogenous 

noise, the price of the risky asset fluctuates alternately around its upper and lower 

nonfundamental steady state, a fact that brings its average price much closer towards its 

fundamental value.   

 
5 Conclusions 

As reported by Galbraith (1994), Kindleberger and Aliber (2012) and Shiller (2015), 

financial markets regularly display severe bubbles and crashes, frequently associated with 

harmful consequences for the real economy. In the aftermath of financial and economic 

meltdowns, various voices from the general public regularly call for the imposition of a tax 

on speculators’ wealth to accommodate for the economic damage caused by speculators’ 

trading frenzy. The issue of economic inequality and wealth redistribution has become a 

heatedly discussed topic, especially since the publication of Piketty (2014). While it is 

obvious that policymakers may raise a substantial amount of revenue by taxing 

speculators’ wealth, it seems to us that the relationship between speculative asset price 

dynamics and wealth taxes deserves deeper academic scrutiny. In particular, 

policymakers need to know whether the imposition of such a tax may further endanger 

the stability of financial markets. If that were the case, taxing speculators’ wealth might 

not be a good idea. 

To address this question, we extend the seminal asset-pricing model by Brock and 

Hommes (1998) in two directions. First, we allow policymakers to tax speculators’ wealth. 

Second, we consider that the supply of (outside) shares of the risky asset is positive. 
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Overall, we find that higher wealth taxes increase the risky asset’s fundamental value by 

reducing its risk premium and, fortunately, tend to foster its stability. The latter result is 

due to the fact that wealth taxes reduce the fitness disadvantage of costly stabilizing 

fundamental expectation rules relative to cheap, destabilizing expectation rules, thereby 

promoting the use of stabilizing expectation rules. While the stabilizing effect of wealth 

taxes may be weak in general, the imposition of a small wealth tax may have a strong 

positive effect if it can prevent the emergence of a saddle-node bifurcation. If one of the 

risky asset’s nonfundamental steady states has just undergone a Neimark-Sacker 

bifurcation, however, wealth taxes may reduce the risky asset’s volatility at the expense 

of its mispricing. In such an environment, policymakers may not want to impose wealth 

taxes. To sum up, our analysis suggests that the imposition of a tax on speculators’ wealth 

is unlikely to pose a threat to the stability of financial markets – on the contrary, it seems 

that we could expect a (weak) stabilizing effect from such a policy. 

We conclude our paper by pointing out a number of avenues for future research. As in 

Brock and Hommes (1998), we assume that speculators’ variance beliefs are constant. 

Since wealth taxes alter the risky asset’s dynamics, it would seem worthwhile to 

endogenize this model component. Gaunersdorfer (2000) and Chiarella et al. (2007) 

provide useful starting points for such an endeavor. Relatedly, Brock and Hommes (1998) 

focus on the case in which chartists believe in the persistence of bull and bear markets. 

Alternatively, one could consider, for instance, chartists using an expectation rule that 

extrapolates past price changes. Hommes (2011) provides an inspiring overview of 

relevant expectation rules. Furthermore, one could take into account utility functions that 

condition speculators’ demand for (or market impact on) the risky asset on their wealth 

levels, as elaborated in Chiarella et al. (2006, 2009). Taking our paper literally, we study 

the effects of a global wealth tax. Against this backdrop, it seems worthwhile to consider 

an asset-pricing model that contains a domestic and a foreign financial market to be able 

to study the issue of wealth-induced market interactions, crowding out effects and capital 

flight. Relatedly, one could explore how wealth taxes affect the dynamics of financial 

markets when speculators are subject to herding behavior and how this would spill over 

to the real economy. See Chiarella et al. (2005) and Cavalli et al. (2017, 2018) for starting 

points. Finally, one could study agent-based versions of our model, e.g. by following 
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Schmitt’s (2020) agent-based adaptation of Brock and Hommes’ (1998) asset-pricing 

model, and keep track of speculators’ individual wealth levels, thereby being able to relax 

the assumption that their wealth is always positive or that the tax rate on speculators’ 

wealth tax is constant. Hopefully, our paper will stimulate more work in this direction and 

provide help to policymakers. 

 
 

Appendix 

In this appendix, we compute the model’s fundamental and nonfundamental steady 

states, study their local stability domains and present a number of additional simulations. 

Note that we follow a similar line of reasoning as Brock and Hommes (1998), Hommes et 

al. (2005) and Anufriev and Tuinstra (2013), although we extend their analysis by 

considering wealth taxes. 

 
A1: The model’s fundamental and nonfundamental steady states 

In order to find the model’s fundamental steady state, we set 𝑃𝑃1� = 𝐹𝐹 = 𝑃𝑃𝑡𝑡 = 𝑃𝑃𝑡𝑡−1 = 𝑦𝑦𝑡𝑡−1 

and 𝑚𝑚1���� = 𝑚𝑚𝑡𝑡 = 𝑚𝑚𝑡𝑡−1. Map (19) then immediately reveals that the model’s fundamental 

steady state is given by 

𝐹𝐹𝐹𝐹𝐹𝐹1 = (𝑃𝑃1� , 𝑦𝑦1���,𝑚𝑚1����) = (𝐷𝐷
�−(1−𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆̅𝑆

𝑟𝑟
, 𝐷𝐷
�−(1−𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆̅𝑆

𝑟𝑟
, tanh[− (1−𝜏𝜏)𝛽𝛽𝛽𝛽

2
]).                                           (A1) 

Since 𝐴𝐴1𝐹𝐹���� − 𝐴𝐴1𝐶𝐶���� = −(1 − 𝜏𝜏)𝐶𝐶, we can directly conclude from (17) and (18) that 𝑁𝑁1𝐶𝐶���� =
1

1+𝑒𝑒𝑒𝑒𝑒𝑒[−(1−𝜏𝜏)𝛽𝛽𝐶𝐶]
 and 𝑁𝑁1𝐹𝐹���� = 1

1+𝑒𝑒𝑒𝑒𝑒𝑒[(1−𝜏𝜏)𝛽𝛽𝐶𝐶]
. Straightforward computations furthermore reveal 

that 𝑍𝑍1𝐶𝐶���� = 𝑆𝑆̅ = 𝑆̂𝑆/𝑁𝑁, 𝑍𝑍1𝐹𝐹���� = 𝑆𝑆̅ = 𝑆̂𝑆/𝑁𝑁 and 𝑁𝑁1𝐶𝐶���� 𝑁𝑁 𝑍𝑍1𝐶𝐶���� + 𝑁𝑁1𝐹𝐹���� 𝑁𝑁 𝑍𝑍1𝐹𝐹���� = 𝑆̂𝑆. 

To derive the model’s nonfundamental steady states 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆2,3 = (𝑃𝑃2,3�����, 𝑦𝑦2,3�����,𝑚𝑚2,3������), we solve 

the first equation of map (19) for 𝑚𝑚2,3������ = 𝑚𝑚𝑡𝑡 and obtain 

 𝑚𝑚2,3������ = − 2𝑟𝑟+𝜙𝜙−𝜒𝜒
𝜒𝜒+𝜙𝜙

.                                                                                                             (A2) 

Substituting (A2) into the third equation of map (19), and solving for 𝑃𝑃2,3����� = 𝑃𝑃𝑡𝑡 = 𝑃𝑃𝑡𝑡−1 =

𝑦𝑦𝑡𝑡−1 yields  

𝑃𝑃2,3����� = 𝑃𝑃1� + (1−𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆̅𝑆
2𝑟𝑟

± ��(1−𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆̅𝑆
2𝑟𝑟

�
2

+
𝜆𝜆𝜎𝜎2((1−𝜏𝜏)𝛽𝛽𝐶𝐶−2arctanh[2𝑟𝑟+𝜙𝜙−𝜒𝜒𝜒𝜒+𝜙𝜙 ])

𝑟𝑟𝑟𝑟(𝜒𝜒+𝜙𝜙)
.                              (A3) 
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Of course, 𝑦𝑦2,3����� = 𝑃𝑃2,3�����. From (A2), we can also conclude that  𝑁𝑁2,3
𝐶𝐶����� = 𝜙𝜙+𝑟𝑟

𝜒𝜒+𝜙𝜙
 and 𝑁𝑁2,3

𝐹𝐹����� = 𝜒𝜒−𝑟𝑟
𝜒𝜒+𝜙𝜙

. 

Furthermore, we have that 𝐴𝐴2,3
𝐹𝐹����� − 𝐴𝐴2.3

𝐶𝐶����� = −
2arctanh[2𝑟𝑟+𝜙𝜙−𝜒𝜒𝜒𝜒+𝜙𝜙 ]

𝛽𝛽
. Since 𝑍𝑍2,3

𝐶𝐶����� = 𝑆̅𝑆(𝜒𝜒+𝑟𝑟)
2𝑟𝑟

± 𝑌𝑌(𝜒𝜒−𝑟𝑟)
(1−𝜏𝜏)𝜆𝜆𝜎𝜎2

 and 

𝑍𝑍2,3
𝐹𝐹����� = 𝑆̅𝑆(𝑟𝑟−𝜙𝜙)

2𝑟𝑟
± 𝑌𝑌(−(𝜙𝜙+𝑟𝑟))

(1−𝜏𝜏)𝜆𝜆𝜎𝜎2
 with 𝑌𝑌 ≔ ��(1−𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆̅𝑆

2𝑟𝑟
�
2

+
𝜆𝜆𝜎𝜎2((1−𝜏𝜏)𝛽𝛽𝐶𝐶−2arctanh[2𝑟𝑟+𝜙𝜙−𝜒𝜒𝜒𝜒+𝜙𝜙 ])

𝑟𝑟𝑟𝑟(𝜒𝜒+𝜙𝜙)
, we can 

conclude that 𝑁𝑁2,3
𝐶𝐶����� 𝑁𝑁 𝑍𝑍2,3

𝐶𝐶����� + 𝑁𝑁2,3
𝐹𝐹����� 𝑁𝑁 𝑍𝑍2,3

𝐹𝐹����� = 𝑆̂𝑆 is satisfied. 

For 𝑆𝑆̅ = 0, the nonfundamental steady states start to exist when parameter 𝛽𝛽 passes 𝛽𝛽𝑃𝑃 ≔

2arctanh[2𝑟𝑟+𝜙𝜙−𝜒𝜒𝜒𝜒+𝜙𝜙 ]

(1−𝜏𝜏)𝐶𝐶
 and 𝑃𝑃2,3����� are then symmetrically located around 𝑃𝑃1� . For 𝑆𝑆̅ > 0, the 

nonfundamental steady states already start to exist when parameter 𝛽𝛽 crosses 𝛽𝛽𝑆𝑆 ≔

2arctanh�2𝑟𝑟+𝜙𝜙−𝜒𝜒𝜒𝜒+𝜙𝜙 �

(1−𝜏𝜏)𝐶𝐶+𝑟𝑟(𝜒𝜒+𝜙𝜙)𝜆𝜆𝜎𝜎2�(1−𝜏𝜏)𝑆𝑆�
2𝑟𝑟 �

2 < 𝛽𝛽𝑇𝑇 = 𝛽𝛽𝑃𝑃. Between 𝛽𝛽𝑆𝑆 < 𝛽𝛽 < 𝛽𝛽𝑇𝑇, we have the ordering 𝑃𝑃2��� > 𝑃𝑃3��� >

𝑃𝑃1� , while for 𝛽𝛽 > 𝛽𝛽𝑇𝑇, we can conclude that 𝑃𝑃2��� > 𝑃𝑃1� > 𝑃𝑃3���. At 𝛽𝛽 = 𝛽𝛽𝑆𝑆, it holds that 𝑃𝑃2��� = 𝑃𝑃3��� =

𝑃𝑃1� + 0.5𝑅𝑅𝑅𝑅. At 𝛽𝛽 = 𝛽𝛽𝑇𝑇, we have that 𝑃𝑃2��� = 𝑃𝑃1� + 𝑅𝑅𝑅𝑅 and 𝑃𝑃1� = 𝑃𝑃3���.  

 
A2: The fundamental steady state’s local stability domain 

To study the local stability properties of the model’s fundamental steady state, we have to 

evaluate the Jacobian matrix of (19) at 𝐹𝐹𝐹𝐹𝐹𝐹1, yielding  

𝐽𝐽(𝐹𝐹𝑆𝑆𝑆𝑆1) = �
2+𝜒𝜒−𝜙𝜙+(𝜒𝜒+𝜙𝜙)tanh [(1−𝜏𝜏)𝛽𝛽𝛽𝛽

2 ]

2(1+𝑟𝑟)
0 0

1 0 0
0 0 0

�,                                                                   (A4) 

from which we get the characteristic polynomial 

Ρ(𝜆𝜆) = 𝜆𝜆2(𝜆𝜆 − 𝐴𝐴) = 0.                                                                                                 (A5) 

Since two eigenvalues of (A5) are always equal to zero, i.e. 𝜆𝜆1 = 0 and 𝜆𝜆2 = 0, the stability 

of the model’s fundamental steady state hinges on the remaining (positive) eigenvalue 

𝜆𝜆3 = 𝐴𝐴 =
2+𝜒𝜒−𝜙𝜙+(𝜒𝜒+𝜙𝜙)tanh [(1−𝜏𝜏)𝛽𝛽𝛽𝛽

2 ]

2(1+𝑟𝑟)
. Hence, the model’s fundamental steady state is locally 

stable if the third eigenvalue is smaller than one, resulting in 

𝛽𝛽 <
2arctanh[2𝑟𝑟+𝜙𝜙−𝜒𝜒𝜒𝜒+𝜙𝜙 ]

(1−𝜏𝜏)𝐶𝐶
.                                                                                                     (A6) 
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Note that the left-hand side of (A6) indicates for 𝑆𝑆̅ = 0 the position of the pitchfork 

bifurcation, while for 𝑆𝑆̅ > 0 it indicates the position of the transcritical bifurcation, as 

anticipated by the expressions 𝛽𝛽𝑃𝑃and 𝛽𝛽𝑇𝑇 in Appendix A.2.  

Recall furthermore that 𝑚𝑚1���� = 𝑁𝑁1𝐹𝐹���� − 𝑁𝑁1𝐶𝐶���� = −tanh [(1−𝜏𝜏)𝛽𝛽𝛽𝛽
2

] and 𝑁𝑁1𝐹𝐹���� + 𝑁𝑁1𝐶𝐶���� = 1 so that 2𝑁𝑁1𝐹𝐹���� =

1 + 𝑚𝑚1���� = 1 − tanh [(1−𝜏𝜏)𝛽𝛽𝛽𝛽
2

] and 2𝑁𝑁1𝐶𝐶���� = 1 −𝑚𝑚1���� = 1 + tanh [(1−𝜏𝜏)𝛽𝛽𝛽𝛽
2

]. Since eigenvalue 𝜆𝜆3 

can thus be expressed as 𝜆𝜆3 =
2+𝜒𝜒(1+tanh�(1−𝜏𝜏)𝛽𝛽𝛽𝛽

2 �)−𝜙𝜙(1−tanh�(1−𝜏𝜏)𝛽𝛽𝛽𝛽
2 �)

2(1+𝑟𝑟)
= 1+𝑁𝑁1

𝐶𝐶����𝜒𝜒−𝑁𝑁1𝐹𝐹
����𝜙𝜙

1+𝑟𝑟
, we can 

also check the fundamental steady state’s stability domain by studying 𝑁𝑁1𝐶𝐶����𝜒𝜒 − 𝑁𝑁1𝐹𝐹����𝜙𝜙 < 𝑟𝑟.  

 
A3: The nonfundamental steady state’s local stability domain for 𝑺𝑺� = 𝟎𝟎 

Tedious computations reveal that the characteristic polynomial of the Jacobian matrix of 

map (19) computed for 𝑆𝑆̅ = 0 at the nonfundamental steady states 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2,3 is given by 

Ρ(𝜆𝜆) = 𝜆𝜆3 − 𝜆𝜆2(1 + 𝑋𝑋) + 𝜆𝜆�𝑋𝑋(1 + 𝑟𝑟)� + 𝑟𝑟𝑟𝑟 = 0,                                                       (A7) 

where 𝑋𝑋 = −
(𝑟𝑟+𝜙𝜙)(𝑟𝑟−𝜒𝜒)((1−𝜏𝜏)𝛽𝛽𝐶𝐶−2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ�2𝑟𝑟+𝜙𝜙−𝜒𝜒𝜒𝜒+𝜙𝜙 �)

𝑟𝑟(1+𝑟𝑟)(𝜒𝜒+𝜙𝜙)
. At the pitchfork bifurcation, we have 

(1 − 𝜏𝜏)𝛽𝛽𝐶𝐶 = 2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ �2𝑟𝑟+𝜙𝜙−𝜒𝜒
𝜒𝜒+𝜙𝜙

�. Accordingly, 𝑋𝑋 = 0 and (A7) yields the three eigenvalues 

𝜆𝜆1 = 0, 𝜆𝜆2 = 0 and 𝜆𝜆3 = 1. If parameter 𝛽𝛽 is increased slightly, then 𝑋𝑋 becomes slightly 

positive and (A7) yields three eigenvalues inside the unit circle, i.e. the nonfundamental 

steady states 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆2,3 are initially stable. For 𝛽𝛽 → ∞, however, we observe that 𝑋𝑋 → ∞, 

implying that at least one of the eigenvalues must cross the unit circle at some critical 

value for 𝛽𝛽. Let us denote this value by 𝛽𝛽𝑁𝑁. As we have Ρ(1) = 2𝑋𝑋𝑋𝑋 > 0 and Ρ(−1) = −2 −

2𝑋𝑋 < 0, we can conclude that two eigenvalues must be complex, the basis for a Neimark-

Sacker bifurcation that gives rise to cyclical dynamics.11 Importantly, 𝑋𝑋 depends on the 

term (1 − 𝜏𝜏)𝛽𝛽𝛽𝛽. Therefore, policymakers may reverse the Neimark-Sacker bifurcation by 

increasing parameter 𝜏𝜏.  

                                                           
11 Applying the set of stability and bifurcation conditions derived by Lines et al. (2020) and Gardini et al. 

(2020), we can conclude from the characteristic polynomial (A7) that a Neimark-Sacker bifurcation occurs 

when the inequality 1 − 𝑋𝑋(1 + 𝑟𝑟) − (1 + 𝑋𝑋)𝑟𝑟𝑟𝑟 − (𝑟𝑟𝑟𝑟)2 > 0 becomes violated, revealing that 𝛽𝛽𝑁𝑁 =

(𝜙𝜙+𝜒𝜒)((1+2𝑟𝑟)−�1+8𝑟𝑟(1+𝑟𝑟))+4(𝑟𝑟+𝜙𝜙)(𝑟𝑟−𝜒𝜒)arctanh �2𝑟𝑟+𝜙𝜙−𝜒𝜒𝜙𝜙+𝜒𝜒 �

2(1−𝜏𝜏)𝐶𝐶(𝑟𝑟+𝜙𝜙)(𝑟𝑟−𝜒𝜒)
. 
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A4: The nonfundamental steady state’s local stability domain for 𝑺𝑺� > 𝟎𝟎 

Even more tedious computations reveal that the characteristic polynomial of the Jacobian 

matrix of map (19) computed for 𝑆𝑆̅ > 0 at the nonfundamental steady states 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2,3 may 

be expressed by 

Ρ(𝜆𝜆) = 𝜆𝜆3 − 𝜆𝜆2 �1 + 𝐺𝐺𝐷𝐷2,3�����2� + 𝜆𝜆 �𝐺𝐺𝐷𝐷2,3�����2� (1 + 𝑟𝑟) − �𝐺𝐺𝐷𝐷2,3������((1 − 𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆𝑆̅ − 𝑟𝑟𝐷𝐷2,3�����) = 0, (A8) 

where 𝐷𝐷2,3����� = 𝑃𝑃2,3����� − 𝑃𝑃1� = (1−𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆̅𝑆
2𝑟𝑟

± ��(1−𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆̅𝑆
2𝑟𝑟

�
2

+
𝜆𝜆𝜎𝜎2((1−𝜏𝜏)𝛽𝛽𝐶𝐶−2arctanh[2𝑟𝑟+𝜙𝜙−𝜒𝜒𝜒𝜒+𝜙𝜙 ])

𝑟𝑟𝑟𝑟(𝜒𝜒+𝜙𝜙)
 and 𝐺𝐺 =

−𝛽𝛽(𝑟𝑟+𝜙𝜙)(𝑟𝑟−𝜒𝜒)
(1+𝑟𝑟)𝜆𝜆𝜎𝜎2

. At the saddle-node bifurcation, we have 𝑃𝑃2��� = 𝑃𝑃3���. Accordingly, 𝐷𝐷2,3����� = 𝑃𝑃2,3����� −

𝑃𝑃1� = (1−𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆̅𝑆
2𝑟𝑟

 and (A8) yields the three eigenvalues 𝜆𝜆1 = 1 and 𝜆𝜆2,3 = 𝐺𝐺
�(1−𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆̅𝑆�

2

8𝑟𝑟2
±

� 𝐺𝐺2

4
� (1−𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆̅𝑆

2𝑟𝑟
�
4
− 𝐺𝐺 �(1−𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆̅𝑆�

2
 

4𝑟𝑟
. If parameter 𝛽𝛽 is increased slightly, one of the 

nonfundamental steady states should become unstable (the saddle), while the other one 

should become stable (the node). In fact, it seems that between 𝛽𝛽𝑆𝑆 and 𝛽𝛽𝑇𝑇 the eigenvalue 

𝜆𝜆1 is at least initially real and smaller than one for 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆2 and real and larger than one for 

𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆3. 

At the transcritical bifurcation, we have 𝑃𝑃1� = 𝑃𝑃3���. Hence, 𝐷𝐷2,3����� = 0 and (A8) yields the three 

eigenvalues 𝜆𝜆1 = 1 and 𝜆𝜆2,3 = 0. As shown in Appednix A.2, the fundamental steady state 

becomes unstable for 𝛽𝛽 > 𝛽𝛽𝑇𝑇 and 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆3 should therefore be stable for 𝛽𝛽𝑇𝑇 < 𝛽𝛽 < 𝛽𝛽𝑁𝑁,𝑈𝑈. 

For 𝛽𝛽 → ∞, 𝐷𝐷2,3����� converge to (1−𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆̅𝑆
2𝑟𝑟

± ��(1−𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆̅𝑆
2𝑟𝑟

�
2

+ (1−𝜏𝜏)𝐶𝐶𝐶𝐶𝜎𝜎2

𝑟𝑟(𝜒𝜒+𝜙𝜙)
, while 𝐺𝐺 converges to plus 

infinity, implying that at least one of the eigenvalues must cross the unit circle at some 

critical value for 𝛽𝛽. Moreover, this critical value for 𝛽𝛽 must be smaller for 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆2 than for 

𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆3. Denoting these values by 𝛽𝛽𝑁𝑁,𝑈𝑈and 𝛽𝛽𝑁𝑁,𝐿𝐿, we have 𝛽𝛽𝑁𝑁,𝑈𝑈 <  𝛽𝛽𝑁𝑁,𝐿𝐿. Furthermore, note 

that an increase in parameter 𝑆𝑆̅ extends the distance between 𝛽𝛽𝑁𝑁,𝑈𝑈 and 𝛽𝛽𝑁𝑁,𝐿𝐿, while an 

increase in parameter 𝜏𝜏 causes the opposite. As we have Ρ(1) = 𝐺𝐺𝐷𝐷2,3�����(2𝑟𝑟𝐷𝐷2,3����� −

(1 − 𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆𝑆̅) > 0 and Ρ(−1) = −2 − 2(𝐺𝐺𝐷𝐷2,3����� − 𝐺𝐺𝐷𝐷2,3�����(1 − 𝜏𝜏)𝜆𝜆𝜎𝜎2𝑆𝑆̅) < 0, we can conclude 

that two eigenvalues must be complex, giving rise to a Neimark-Sacker bifurcation and 

oscillatory dynamics. Importantly, policymakers may reverse the Neimark-Sacker 

bifurcation by increasing parameter 𝜏𝜏.  
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A5: Coexisting attractors involving the fundamental steady state 

One intriguing feature of our model’s bifurcation structure is the possibility that the risky 

asset possesses a locally stable fundamental steady state, which coexists with a locally 

stable upper nonfundamental steady state, an outcome that may occur when speculators’ 

intensity of choice ranges between 𝛽𝛽𝑆𝑆 < 𝛽𝛽 < 𝛽𝛽𝑇𝑇, as discussed in Appendix A.4. Note that 

such a coexistence of attractors may give rise to intriguing hysteresis effects. In particular, 

a tiny change in a model parameter may have a drastic (jump) effect on the levels of the 

model’s steady states that cannot easily be reversed by a tiny correction of the same 

model parameter.12 However, Appendix A.4 also reveals that the critical Neimark-Sacker 

bifurcation value 𝛽𝛽𝑁𝑁,𝑈𝑈 shrinks with the supply of (outside) shares of the risky asset. As a 

result, we may even observe that 𝛽𝛽𝑁𝑁,𝑈𝑈 falls short of 𝛽𝛽𝑇𝑇 when 𝑆𝑆̅ becomes sufficiently large.  

The top left panel of Figure 4 shows bifurcation diagrams for parameter 𝛽𝛽, generated with 

our base parameter setting, except that 𝑆𝑆̅ = 0.15. Red (blue) tonalities indicate that the 

wealth tax is equal to 𝜏𝜏 = 0 (𝜏𝜏 = 0.08). Recall from Section 3 that 𝛽𝛽𝑇𝑇 and 𝛽𝛽𝑁𝑁,𝑈𝑈 are given 

for 𝑆𝑆̅ = 0.05 by 2.398 and 3.074 when 𝜏𝜏 = 0 and by 2.606 and 3.352 when 𝜏𝜏 = 0.08. For 

𝑆𝑆̅ = 0.15, however, these values are given by 2.398 and 2.594 for 𝜏𝜏 = 0 and by 2.606 and 

2.850 for 𝜏𝜏 = 0.08, indicating a leftward movement of 𝛽𝛽𝑁𝑁,𝑈𝑈 in the bifurcation diagrams. The 

top left panel of Figure 4 repeats this exercise for 𝑆𝑆̅ = 0.21. We now face a situation in 

which 𝛽𝛽𝑁𝑁,𝑈𝑈, with 2.333, is smaller than 𝛽𝛽𝑇𝑇, with 2.398. The same is true for 𝜏𝜏 = 0.08. For 

convenience, we report in Table 1 all critical bifurcation values discussed in connection 

with Figures 2 and 4. Once again, the stabilizing effect of wealth taxes is clearly visible. 

*** Table 1 about here *** 

Note that the bifurcation diagrams depicted in the top right panel of Figure 4 indicate that 

the fundamental steady state coexists with a limit cycle when speculators’ intensity of 

choice is somewhat lower than 𝛽𝛽𝑇𝑇 (the aforementioned hysteresis effects may thus also 

involve an abrupt jump to a limit cycle). The bottom right panel of Figure 4 confirms this 

                                                           
12 Hysteresis effects in economic models are also studied by Agliari et al. (2005, 2006, 2016). Furthermore, 

Agliari et al. (2016) show that coexisting attractors may lead to path-dependent dynamic regimes, i.e. initial 

conditions may decide whether the dynamics of financial markets settles on a calm or turbulent attractor. 

See Schmitt et al. (2017) for a deeper discussion of the economic consequences of hysteresis effects.  
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finding by plotting the evolution of the risky asset’s price in the time domain for two 

different sets of initial conditions, using our base parameter setting, except that 𝛽𝛽 = 2.35, 

𝜏𝜏 = 0 and 𝑆𝑆̅ = 0.21. The bottom left panel of Figure 4 visualizes the corresponding basins 

of attraction of the risky asset’s fundamental steady state and its limit cycle. Further 

simulation reveals that the basin of attraction of the limit cycle first shrinks and finally 

vanishes as policymakers increase the wealth tax. If the tax rate is set sufficiently high, 

the fundamental steady state even becomes the model’s unique steady state. 
*** Figure 4 about here *** 
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Figure 1: Schematic representation of the levels and stability domains of the risky asset’s 

fundamental and nonfundamental steady state prices as a function of parameter 𝛽𝛽. Top 

left: 𝜏𝜏 = 0 and 𝑆𝑆̅ = 0. Bottom left: 𝜏𝜏 > 0 and 𝑆𝑆̅ = 0, superimposed on 𝜏𝜏 = 0 and 𝑆𝑆̅ = 0. Top 

right: 𝜏𝜏 = 0 and 𝑆𝑆̅ > 0. Bottom right: 𝜏𝜏 > 0 and 𝑆𝑆̅ > 0, superimposed on 𝜏𝜏 = 0 and 𝑆𝑆̅ > 0. 

Different colors mark the risky asset’s fundamental and nonfundamental steady state 

prices, where solid (dotted) lines indicate locally stable (unstable) steady states. 
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Figure 2: Bifurcation diagrams for parameter 𝛽𝛽 and different constellations of parameters 

𝜏𝜏 and 𝑆𝑆̅. Base parameter setting, except that 𝜏𝜏 = 0 and 𝑆𝑆̅ = 0 (top left), 𝜏𝜏 = 0.08 and 𝑆𝑆̅ = 0 

(bottom left), 𝜏𝜏 = 0 and 𝑆𝑆̅ = 0.05 (top right) and 𝜏𝜏 = 0.08 and 𝑆𝑆̅ = 0.05 (bottom right). 

Different colors mark the dynamics of the risky asset price for two different sets of initial 

conditions, selected slightly above and slightly below the model’s fundamental steady 

state. 
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Figure 3: Asset price dynamics for different constellations of parameters 𝛽𝛽, 𝜏𝜏, 𝑆𝑆̅ and 𝜎𝜎𝜀𝜀. 

Base parameter setting, except that 𝛽𝛽 = 2.45, 𝑆𝑆̅ = 0.05 and 𝜎𝜎𝜀𝜀 = 0.01 (top left), 𝛽𝛽 = 2.45, 

𝑆𝑆̅ = 0.05 and 𝜎𝜎𝜀𝜀 = 0.04 (top right), 𝛽𝛽 = 3.6, 𝑆𝑆̅ = 0 and 𝜎𝜎𝜀𝜀 = 0.01 (bottom left) and 𝛽𝛽 = 3.6, 

𝑆𝑆̅ = 0 and 𝜎𝜎𝜀𝜀 = 0.04 (bottom right). Different colors mark the dynamics of the risky asset 

price for different tax rates (magenta: 𝜏𝜏 = 0, cyan: 𝜏𝜏 = 0.08). 
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Figure 4: Coexisting attractors. The top line of panels shows bifurcation diagrams for 

parameter 𝛽𝛽, generated with our base parameter setting, except that 𝑆𝑆̅ = 0.15 (top left) 

and 𝑆𝑆̅ = 0.21 (top right). Red (blue) tonalities indicate that 𝜏𝜏 = 0 (𝜏𝜏 = 0.08). The bottom 

right panel depicts simulations of the risky asset price for our base parameter setting, 

except that 𝛽𝛽 = 2.35, 𝜏𝜏 = 0 and 𝑆𝑆̅ = 0.21, using different initial conditions. The bottom left 

panel visualizes the corresponding basins of attraction of the risky asset’s fundamental 

steady state and its limit cycle. 
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 𝛽𝛽𝑆𝑆 𝛽𝛽𝑃𝑃 𝛽𝛽𝑇𝑇 𝛽𝛽𝑁𝑁 𝛽𝛽𝑁𝑁,𝑈𝑈 𝛽𝛽𝑁𝑁,𝐿𝐿 

𝑆𝑆̅ = 0, 𝜏𝜏 = 0 - 2.398 - 3.331 - - 

𝑆𝑆̅ = 0, 𝜏𝜏 = 0.08 - 2.606 - 3.621 - - 

𝑆𝑆̅ = 0.05, 𝜏𝜏 = 0 2.380 - 2.398 - 3.074 3.598 

𝑆𝑆̅ = 0.05, 𝜏𝜏 = 0.08 2.589 - 2.606 - 3.352 3.899 

𝑆𝑆̅ = 0.15, 𝜏𝜏 = 0 2.246 - 2.398 - 2.594 4.148 

𝑆𝑆̅ = 0.15, 𝜏𝜏 = 0.08 2.454 - 2.606 - 2.850 4.472 

𝑆𝑆̅ = 0.21, 𝜏𝜏 = 0 2.118 - 2.398 - 2.333 4.482 

𝑆𝑆̅ = 0.21, 𝜏𝜏 = 0.08 2.324 - 2.606 - 2.575 4.820 

Table 1: Critical bifurcation values for parameter 𝛽𝛽. Base parameter setting, except that 

parameters 𝑆𝑆̅ and 𝜏𝜏 are specified as above. 
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