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Abstract

Underreporting and undersampling biases in top tail wealth, although widely ac-
knowledged, have not been statistically quantified so far, essentially because they
are not readily observable. Here we exploit the functional form of power law-like
regimes in top tail wealth to derive analytical expressions for these biases, and
employ German microdata from a popular survey and rich list to illustrate that tiny
differences in non-response rates lead to tail wealth estimates that differ by an order
of magnitude, in our case ranging from one to nine trillion euros. Underreporting
seriously compounds the problem, and we find that the estimation of totals in
scale-free systems oftentimes tends to be spurious. Our findings also suggest that
recent debates on the existence of scale- or type-dependence in returns to wealth
are ill-posed because the available data cannot discriminate between scale- or type-
dependence on the one hand, and statistical biases on the other. Yet both economic
theory and mathematical formalism indicate that sampling and reporting biases are
more plausible explanations for the observed data than scale- or type-dependence.
JEL Codes: C46, C81, D31
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estimator, tail index bias.
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1 Introduction

The starting point for this analysis was a conscientious effort to quantify the total wealth of
the richest Germans from survey microdata. This seemingly innocuous exercise pointed us
to a problem which, to the best of our knowledge, has not yet been adequately addressed
in the pertinent literature. The problem arises in the top tail of wealth, generally following
power law-like distributions, where survey data apparently suggest total wealth to be
orders of magnitude smaller than implied by named rankings of the super-rich, often
referred to as rich lists. Extrapolating the power law backward from observed top wealth
levels to some unobserved minimum is asymptotically unbiased. Severe biases can arise,
however, when extrapolating forward from relatively low levels to unreliable or missing
maximum wealth levels (Cristelli et al., 2012). In survey data the latter typically leads to
strongly downward biased estimates of wealth and inequality (Eckerstorfer et al., 2016;
Vermeulen, 2018). Since we cannot quantify this effect without data that go beyond the
available, we propose two limit interpretations to gauge the potential impact of this bias.
In what we term the data first limit, we assume both upper and lower truncated samples
to deliver unbiased estimates. Put differently, we attribute all observed differences between
upper and lower truncated samples to truly existing differences in the data generating
process. In the complementary theory first limit, we assume the data generating process
to be homogeneous across samples on the different scales, attributing the entire observed
difference to statistical bias. We show that tail wealth estimates differ by an order of
magnitude, depending on which of the two pre-analytical visions we employ.

The literature so far has implicitly taken a data first stance on this issue (Eckerstorfer
et al., 2016; Vermeulen, 2016, 2018; Bach et al., 2019). Our primary goal with this paper
is to argue that a theory first perspective is at the very least equally plausible. To show
this we introduce different categories of biases that affect measured inequality, and provide
closed-form expressions that are readily estimated. First, we show that underreporting
incentives by themselves are insufficient to generate biased estimates, as the estimate is
asymptotically unbiased if the entire population unanimously underreports their wealth.
Inequality is underestimated only if underreporting is more pronounced for the richest,
which seems intuitively plausible as the super-rich have mightier means at their disposal to
avoid taxes than the average person or household. Second, we demonstrate that differential
underreporting by the super-rich indeed leads to downward biased estimates of inequality
for the entire population. Finally, and most importantly, the impact of underreporting
rates is highly non-linear. Even if only a fraction of actual wealth is reported, this will
greatly reduce the resulting bias compared to when information on a fraction of the
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super-rich is missing altogether. We call the latter case undersampling, which is typical of
survey data that essentially use equiprobable sampling and therefore do not adequately
capture the richest individuals in power law-like regimes. We also show that logarithmic
sampling would greatly improve the statistical quality of wealth surveys. The named rich
lists, on the other hand, will be subject to reporting biases as they explicitly try to account
for the super-rich but typically suffer from data availability and salience issues, as well as
adverse (tax) reporting incentives. Without additional information, both the estimated
underreporting and undersampling rates remain within plausible bounds, so the polar data
first and theory first perspectives would appear equally plausible at first.

While it is hardly surprising that the two perspectives imply different estimates for
top tail wealth, the difference turns out to be enormous. The lowest estimate arising from
data first is around one trillion euros for Germany’s top tail wealth, while the theory first
estimates reach about nine trillion euros. These vast differences, spanning almost one
order of magnitude in top tail wealth, are caused by tiny non-response rates on the order
of a tenth of a percent. This disconcerting result suggests that aggregate findings within
the data first framework can become heavily distorted by tiny degrees of undersampling.
The severity of the problem extends far beyond the German dataset since our results are
functions of the power law tail of wealth distributions that applies across many countries
and time periods.1 Consequently, estimates of total wealth will crucially depend on the
pre-analytical perspective and should thus be treated with extreme caution. If total wealth
estimates are to be stated, we believe that scientific integrity at least demands to report
the range from the smallest estimates of a data first perspective to the largest estimates of
a theory first perspective, especially if these estimates are intended to inform economic
policy or public debate.

The ubiquity of power laws has led to numerous suggestions for potential generating
mechanisms, reviewed for instance by Gabaix (2009) or Luttmer (2010). In the case of
top tail wealth, any candidate mechanism should be based on a property that is common
across the various time periods, countries, or proxies of wealth. One common property, at

1Table 1 in Online Appendix G summarizes the empirical consensus on this distributional structure
for several countries and time periods. Judging from the evidence collected there, the power law property
of empirical wealth distributions appears to be robust across time, for instance showing up in medieval
Hungary (Hegyi et al., 2007) or ancient Egypt (Abul-Magd, 2002), and for different proxies of wealth.
Power law distributions in tail wealth also appear to be spatially ubiquitous, showing up across the
Western world, for instance in Austria, Canada, Germany, Sweden, the UK and the US (Bach et al.,
2011; Brzezinski, 2014; Castaldi and Milaković, 2007; Coelho et al., 2005; Cowell, 2011; Drăgulescu and
Yakovenko, 2001; Eckerstorfer et al., 2016; Levy, 1998, 2003; Levy and Solomon, 1997), yet also hold for
less developed countries like China, Russia, or India (Brzezinski, 2014; Ning and You-Gui, 2007; Sinha,
2006), again across varying time horizons.
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least across the different varieties of capitalism, concerns the primary types of assets in
super-rich portfolios, namely entrepreneurial stakes, financial assets, and speculative (that
is non-owner occupied) real-estate, which are perpetually reinvested into or reallocated
among these asset classes (Davies and Shorrocks, 2000; Wachter and Yogo, 2010).2 Thus a
random growth model featuring a multiplicative component seems to be the most adequate
candidate for a sensible generating mechanism. The idea to explain the emergence of
power law tails with stochastic multiplicative processes has a long history but has fallen
out of fashion in economics for many decades, essentially for its lack of microfoundations.
Yet random multiplicative growth has recently regained traction within economically
motivated partial and general equilibrium models that endogenously generate power law
tails in wealth from stochastic capital or asset accumulation (Levy, 2003; Levy and Levy,
2003; Nirei and Souma, 2007; Nirei, 2009; Benhabib et al., 2011; Toda, 2014; Piketty and
Zucman, 2015; Hubmer et al., 2016; Aoki and Nirei, 2016; Benhabib and Bisin, 2018).

The literature on random multiplicative growth has typically placed weak restrictions
on the particular form of return distributions governing the stochastic process. One notable
exception, however, is the assumption of an equilibrating tendency for the expected (risk-
adjusted) rate of return or, in more technical terms, of a homogeneous return distribution
across wealth portfolios. This is consistent with the classical notion of competition, the
implications of (semi-strong) informationally efficient capital markets, and the idea that
investors’ superior talent in either fundamental or technical analysis cannot lead to excess
returns over extended periods of time (Fama, 1965, 1970, 1991). Indeed, as Levy (2003)
and Levy and Levy (2003) show both experimentally and via Monte Carlo simulations,
the scope for differential talent is very limited in light of power law distributed top wealth.
If one group of investors were to consistently outperform another group of less talented
investors in terms of their expected returns by only a tiny margin, the functional form
of the emergent stationary distribution would differ significantly from a power law and
exhibit concavity on double-logarithmic scale.3 Hence the defining characteristic of the

2From an accounting standpoint, this perpetual reallocation and investment is closely related to saving
and there is a consensus in the literature that propensities to save are strongly positively correlated
with (lifetime) income or wealth (Dynan et al., 2004; Jappelli and Pistaferri, 2014). This also holds
for entrepeneurial households (Quadrini, 1999). As a major reason for this relationship, Deaton (2003)
identifies credit constraints that are only binding for low wealth households and individuals. Alan et al.
(2015), on the other hand, provide a critical discussion of the identification strategy and find no differential
savings behavior with respect to long-term income. The major limitation of Alan et al. (2015) is the
exclusion of the wealthiest one percent that we are primarily concerned with here.

3They consider two Gaussian return distributions that merely differ in expected value, showing that
already a difference by one percentage point in expected returns leads to a stationary distribution that
significantly differs from the Pareto type.
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theory first perspective is to assume a homogeneous return distribution, thereby implying
equivalent data generating processes across samples.

A more recent strand of literature has started to challenge the homogeneity hypothesis
on both theoretical and empirical grounds. Bach et al. (2017) and Fagereng et al. (2020)
find excess risk-adjusted returns for the wealthiest portfolios, the latter even claiming
persistence in abnormal returns, indicating persistent heterogeneity in financial information
and talent if we take the data at face value. From a more theoretical perspective, Luttmer
(2011) and Gabaix et al. (2016) build on the well-known limitation of random growth
models to typically generate very slow transitions. The former puts this in terms of the
stationary distribution of assets, with a half-life of assets that would be way too high
from an empirical point of view, while the latter argue (formally equivalently) that the
rate of convergence to the new stationary distribution after a shock to the variance in
the permanent component of earnings is too slow to account for the observed rapid rise
in top-level income inequality. Gabaix et al. (2016) and Jones and Kim (2018) thus put
forward the hypothesis of heterogeneous returns to explain the observed rise in income and
wealth inequality, whereby excess returns are either correlated with wealth levels (“scale-
dependence”) or result from differential talent (“type-dependence”). In informationally
efficient capital markets, scale-dependence can only occur when the set of investment
opportunities increases in wealth. Hedge funds and some private banks perhaps provide
anecdotal evidence, as hedge funds typically require high minimum investment inlays (King
and Maier, 2010), while some private banks like JP Morgan Chase require their private
clients to hold at least ten million dollars (Glazer, 2016). Concerning type-dependence,
Gabaix et al. (2016) circumvent the formal problem that differential talent is inconsistent
with a Pareto distribution by essentially assuming that “high growth types” only stay in
the high growth regime for a limited amount of time and cannot return there. This idea
not only lacks theoretical appeal, it also introduces another degree of freedom into any
empirical investigation that now has to justify after how many periods of abnormally high
returns one can safely claim type-dependence.

Moreover, given that our data lack information on investors’ sophistication, this notion
of type-dependence is phenomenologically equivalent to scale-dependence since we cannot
control for investors’ ability. Put differently, we cannot distinguish between the hypothesis
that individuals are rich because of their excess returns, and the alternative hypothesis
that they have excess returns because they are rich. We will thus only focus on testing
for scale-dependence. This hypothesis corresponds to the data first interpretation, as
observed differences between high and low scale samples are then assumed to reflect
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true differences in the data generating process, that is to say scale-dependent random
growth. We will argue, however, that the idea of scale-dependent growth is not only
problematic from a formal point of view, but that it also violates economic intuitions like
informational efficiency or the classical concept of competition that predicts a tendency
for the equalization of returns. Theory first leaves these economic intuitions intact by
attributing observed deviations in the data to statistical biases arising from undersampling
and underreporting, and also casts a different light on the apparently reversed risk-return
trade-off that we observe in the data.

The remainder of this paper is organized as follows: section 2 derives the biases
in estimates of the tail exponent that arise from underreporting and undersampling,
respectively. Throughout the paper we have relegated all derivations to the appendix
in order to emphasize important conceptual differences over technical detail. Section 3
introduces the data and discusses our estimation procedure. Our results are presented
in section 4, where we put forward two mutually exclusive yet on their own reasonably
plausible explanations for the observed behavior in the data. Section 5 discusses the
implications of our results for existing work on top tail wealth, and concludes with the
suggestion to improve future surveys through logarithmic sampling.

2 Model

The data first and theory first interpretations are purposefully designed to be antithetical,
although we will show that the formal explication of both interpretations can be reduced
to conceptually closely related mechanisms that affect measured tail inequality at different
stages of empirical estimation. For both interpretations, Zipf’s (1949) law with a tail
exponent of unity is an attractor for a parsimonious stochastic multiplicative process
that does not exhibit scale-dependence in accumulation or reporting. Consequently, an
observed tail exponent that differs from unity implies scale-dependent behavior in both
frameworks. Data first attributes this to scale-dependent stochastic growth at the level
of accumulation, while theory first assumes that it is fully caused by scale-dependent
reporting behavior at the level of measurement. Though the mechanisms are formally
quite similar, the pre-analytical vision obviously differs substantially between narratives.

Within the data first framework, the measured tail inequality is a sufficient statistic
for both the true (snapshot) inequality among the richest and scale-dependence within the
wealth accumulation process over time, because tail inequality is intricately linked to the
nature of the underlying stochastic process of multiplicative growth. In Appendix A, we
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consider a standard drift-diffusion process to show that the tail index of the stationary
power law distribution is uniquely determined by the expected return and variance of the
stochastic growth process. As Gabaix (1999) shows, and we rederive in greater detail in
Appendix A, the stationary distribution of the right tail for this type of general process is
a power law, with tail index α given by

α(w; γ(·), σ(·)) = 1− 2γ(w)− γ̄
σ2(w) + w

σ2(w)
∂σ2(w)
∂w

with w ∈ R+, (1)

where γ̄ is the average wealth growth rate and γ(w) the (normalized) mean growth rate
for a given wealth level w. Expression (1) has intuitive comparative statics with respect to
the degree of scale-dependence in both mean growth rates γ and variance σ2. Whenever
the expected (excess) mean growth rate γ(w)− γ̄ increases in wealth, the tail exponent
decreases and stationary inequality rises. Thus positive scale-dependence in expected
returns increases measured inequality. When variance exhibits positive scale-dependence,
∂σ2(w)/∂w > 0, tail exponents increase and system-wide inequality hence decreases. Zipf’s
law with α = 1 is an interesting limit case for a situation without any scale-dependence
(positive or negative), that is γ(w) = γ̄, ∀w ∈ R+, and ∂σ2(w)/∂w = 0. These two
conditions are typically called Gibrat’s law after the seminal study by Gibrat (1931).
Therefore Gibrat’s law in growth rates is a sufficient condition for Zipf’s law to hold in
wealth levels. Córdoba (2008a,b) proves that it is also a necessary condition. The data first
interpretation takes the Zipf benchmark in the stationary distribution as an indication for
scale-independence, while statistically significant deviations are evidence to the contrary.

The data first approach thus implicitly assumes that the measured tail inequality α̂ is
equivalent to the true stationary α or, at least, that the estimate is not systematically
biased in any direction. The polar theory first interpretation assumes no systematic scale-
dependence of either type, that is α = 1, and attributes significant deviations from this Zipf
benchmark to underreporting and undersampling biases. While the relevance of distorted
or missing observations has already been argued on empirical grounds and in Monte
Carlo simulations (Vermeulen, 2016, 2018), we derive closed-form expressions here that
quantify the resulting bias in the tail exponent when the number of observations, denoted
N , becomes large.4 In addition, we will differentiate between unanimous and differential

4Like the assumption of t→∞ for the drift-diffusion process, the assumption of N →∞ is necessary
to make the problem analytically tractable. Our qualitative results are not materially sensitive to this
assumption, as we verified by Monte Carlo simulations that the bias did not significantly differ from the
large N limit in finite samples.

7



reporting behavior on the one hand, and underreporting versus undersampling on the
other. Since undersampling or underreporting rates are impossible to estimate by the very
nature of the problem, we consider three stylized scenarios that are analytically tractable:
i) unanimous (proportional) underreporting, ii) differential (proportional) underreporting
and iii) undersampling.

First, we consider the case of unanimous underreporting, that is all respondents only
report a fraction ρ of their wealth. Call this fraction the reporting rate. We show in
Appendix B that this leads to an unbiased estimator of the tail index, hence unanimous
underreporting does not pose problems for the estimation of inequality. This holds
symmetrically for unanimous overreporting, ρ > 1, also showing that the estimator is
invariant with respect to inflation. Whenever there are differential reporting rates, however,
the bias is unambiguously positive and thus underestimates inequality. We call this case
differential underreporting. For this, consider the case where the upper q-quantile of the
wealth distribution only reports a fraction ρ of their wealth, from whence we show that
for large N the estimated tail index, now denoted α̂du, will differ from the Zipf benchmark
such that

α̂du(q, ρ) = 1
1 + q ln(ρ) , (2)

with q and ρ ∈ (0, 1), and the additional restriction that ρ > q. The latter restriction
is needed to preserve the minimum of the true power law distribution on which the
maximum likelihood estimator (MLE) is anchored. It is easily verified that α̂du is always
upward biased compared to Zipf’s law for these parameter restrictions, implying that true
inequality is underestimated. The effect of varying the parameters is also quite intuitive:
an increase in q for a given ρ and a decrease in ρ for a given q increases the bias, as in
both cases relatively less wealth is reported for the richest.5 Furthermore α is only unity
when either q = 0 or ρ = 1, so there is no differential behavior to begin with. Thus, when
it comes to underreporting, the differential behavior of the very richest compared to the
relatively less wealthy is necessary to cause upward biases from the theory first perspective.

While we cannot derive analytical expressions for ρ < q in general, this is possible for
the limit case of ρ = 0. In our stylized scenario, this would correspond to a case where the
upper q-quantile is non-respondent and the wealth distribution is therefore q-truncated. In
this case of differential undersampling or non-response, the richest quantile is not included
at all in the sample, corresponding to a reporting rate of zero. This scenario actually

5By the same token, for ρ > 1, an increase in q increases the downward bias of the estimate and thus
overestimates inequality relative to the true (Zipfian) distribution.
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appears to be empirically relevant, and connected to sampling and social desirability
biases (Kennickell and Woodburn, 1999; Eckerstorfer et al., 2016; Vermeulen, 2016, 2018).
As we show in Appendix B, non-response leads asymptotically to a (strong) upward bias
in the MLE of the tail exponent, now denoted by

α̂nr(q) = 1− q
1− q + q · ln (q) , (3)

for large N and q ∈ (0, 1). For this parameter range of q, α̂nr is always upward biased
compared to the Zipf benchmark, and monotonically increasing in the quantile q of non-
respondents. The quantile q of upper non- or underreporting individuals is thus the only
formal difference between the competing narratives of data first and theory first.6 If α̂ 6= 1,
data first implicitly assumes q = 0 and therefore attributes all the observed deviation
from the Zipf benchmark to scale-dependence in either mean or expected returns. In
contrast, theory first takes α̂ 6= 1 to imply q 6= 0 and therefore differential reporting
behavior according to sample inclusion rates and the level of wealth.

3 Data and Estimation

To test the hypothesis of scale-dependence, we examine two samples covering distinct
scales in the upper tail of the German wealth distribution. We need two non-overlapping
samples that both exhibit power law-like top tails, as is often the case for surveys and
rich lists. The German data described below comfortably meet this requirement as the
minimum wealth level in the rich lists is about three times as large as the maximum
wealth level in the surveys. Non-overlapping samples are necessary to isolate potential
scale effects in the accumulation of wealth, and to ensure that we consider two distinct sets
of wealth portfolios. The latter condition minimizes potential Type II error in hypothesis
testing, because failure to reject the null hypothesis of insignificant scale differences could
otherwise arise from the simultaneous presence of identical wealth portfolios, thereby
affecting the estimated parameters in both sample types.

3.1 Data

The Socio-Economic Panel (SOEP), compiled by Deutsches Institut für Wirtschafts-
forschung, is probably the most prominent source for microdata on German households

6We would like to believe that it is not entirely trivial to reduce the impact of the two pre-analytical
visions to a single parameter.
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and individuals. The 2002, 2007 and 2012 waves of the panel include items on personal
wealth that we use in our analysis. Assuming different weighing and imputation techniques
for the market value and disaggregation to individual values, the SOEP sample claims to
be representative of the entire German population, implying that each person or household
in Germany is chosen with equal probability (Frick et al., 2007). With a total population
of 82.5 milllion in Germany and about 25, 000 individuals in the sample, the sampling
ratio thus corresponds to about 0.035 percent (Statistisches Bundesamt, 2017).

While the SOEP sample probably provides a reasonable approximation to the distri-
bution of wealth for the majority of Germans, it is well known that wealth data from
household surveys become increasingly inaccurate for the tails of the distribution (see,
e.g., Davies and Shorrocks, 2000). Casual empiricism indeed suggests that the reported
maximum wealth level in the SOEP of around seventy million euros is far from being
“representative” of the richest Germans, whose fortunes are about three orders of magnitude
larger according to the rich lists compiled by manager magazin. These named lists rank
the five hundred richest Germans according to their net wealth in the years 2010 to 2016.
Since the rich lists are not curated for statistical inference, the data likely suffer from
numerous issues regarding their consistency both in the time-series and cross-sectional
domain. We discuss both datasets and their respective limitations in Online Appendix H.

3.2 Estimation

Our empirical analysis starts with the parameter estimates of the power law distributions
in the upper tail of the SOEP and manager magazin samples. We interpret these as the
stationary distributions resulting from a general random growth process, as described
in Appendix A. The assumption that the empirically observed state coincides with the
stationary state of the distribution for time t → ∞ is frequently challenged though.
Especially Gabaix et al. (2016) and Luttmer (2011, 2018) show that the convergence to a
new stationary distribution from a shock resulting in deviations from the steady-state is
extremely slow. A back-of-the-envelope calculation in Luttmer (2018) suggests that for a
firm size distribution close to Zipf, but with slightly thinner tails, a shock to the aggregate
capital stock would be extremely persistent with a half-life of around seventy years,
implying unrealistically low rates of recovery.7 Given slow convergence, it is questionable
whether the empirical distribution truly reflects the dynamics of an underlying random
growth process or whether it is merely in a transient state to stationarity. On the other

7For a distribution that is exactly Zipf, there would be no recovery at all.
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hand, as Levy and Levy (2003) show, the convergence to the approximate power law is
much faster even though convergence to the asymptotic distribution is indeed very slow for
these types of random growth processes. Levy and Levy (2003) understand approximate
convergence as convergence to a distribution that cannot be statistically distinguished
from the stationary state by means of a Kolmogorov-Smirnov (KS) test. If the parameter
estimates are at least approximating the true stationary state of the random growth
process, the pronounced differences we find between samples will not be mere artefacts
of one distribution being in a transient state but not the other, thus reflecting genuine
differences in reporting, sampling, or the underlying growth process.

Given the diffusion in Appendix A, we reject the null hypothesis of scale-independence
for α̂ significantly different from unity. This procedure is advantageous in the sense that it
relies on observables to test for scale-dependence and thus allows inferences about the (at
least partially) unobservable random growth process. Additionally, we also consider the
distribution of growth rates in wealth to judge whether scale-(in)dependence characterizes
the wealth accumulation process. Notice that the diffusion in Appendix A requires us to
consider scale-dependence in both expected value and risk, which are readily measured by
the MLEs of the location and dispersion parameters of the growth rate distributions.

We estimate the tail exponent of the power law using maximum likelihood.8 For the
estimation of the minimum wealth level wmin in the SOEP sample, we use the standard
suggested by Clauset et al. (2009), yielding ŵmin = 280, 000 euros for the 2002 sample,
ŵmin = 200, 000 euro for the 2007 sample, and ŵmin = 180, 000 euro for the 2012 sample.9

It seems reasonable to assume that a net worth of around 200, 000 euros already gives rise
to primarily multiplicative returns, especially considering that most households hold their
wealth in the form of owner-occupied housing. Since the rich lists should be characterized
by power laws, we do not estimate wmin but rather take it directly from the data, so wmin
simply corresponds to the minimal wealth level in each rich list, ranging from 200 to 250

8Clauset et al. (2009) show that an MLE fit is the least biased method to estimate the tail index (or
characteristic exponent) of a power law, compared to OLS methods or a linear fit on double-logarithmic
scale. See Goldstein et al. (2004) for a more rigorous analysis of different graphical methods and their
respective shortcomings. Even though we estimate from a discrete dataset, we estimate the power law for
its continuous analogue, as the analytical results for different biases in the results section are based on
the continuous version. The continuous MLE is introduced and discussed in Appendix B in more detail.
Our estimates are not materially sensitive to the choice between the discrete and continuous estimator.
Standard errors are determined by exploiting the asymptotic normality of the MLE (De Haan and Resnick,
1997).

9Clauset et al. (2009) show that their method, based on iteratively increasing the reverse order statistic
until a goodness-of-fit test (like the KS test) rejects a power law distribution, outperforms other possible
procedures, such as minimizing the Bayesian information criterion (BIC).
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million euros in the different years.10 The minimum in the rich lists is thus three orders of
magnitude larger than in the surveys.

Finally, we would expect the distribution of wealth growth rates to be Laplacian (or
double-exponential) since we measure wealth growth by the logarithmic difference in
wealth levels, that is ri,t = log(wi,t)− log(wi,t−1) for agent i during the period t to t− 1.
It can be shown that log(w) follows an exponential distribution if w follows a power law,
and that the difference between two exponentially distributed variables is Laplacian (Kotz
et al., 2001). The symmetric Laplace distribution for returns r then has a probability
density function (PDF) that is given by

f(r;m,σ) = 1
2σe

−| r−m
σ
|, (4)

where m ∈ R and σ > 0 are location and dispersion parameters, respectively.11 From a
conventional point of view, m measures the expected return in a set of wealth portfolios,
while σ measures the associated risk in these portfolios.

Our estimation strategy considers the cross-sectional distributions of wealth in both
samples, each interpreted as the outcome of a parsimonious random growth process like the
one described in Appendix A, whose realizations are at least partially unobservable. The
estimated tail index then allows us to infer scale-(in)dependence within this unobservable
process. Moreover, using the Laplace estimates from the actual growth rate distributions,
we can test parametrically for scale-(in)dependence in expected returns or risk, and we
also employ several nonparametric tests.

4 Results

Our parametric estimation strategy is based on the two distributional regularities in
the upper tail of cross-sectional wealth portfolios, namely the power law distribution in
wealth levels and the Laplace distribution of portfolio returns, because the respective
empirical densities are reasonably in line with the theoretically expected functional forms.
The observed complementary cumulative distribution functions (complementary CDFs)

10This procedure is also advantageous in so far as the respective wmin levels ensure that the estimated
power laws always span at least two orders of magnitude, usually considered to be a minimum requirement
for significantly claiming a power law distribution in the first place (Stumpf and Porter, 2012).

11In a strict sense, symmetry of the Laplace distribution is not guaranteed because the parameter
values of the power law tail might be time-varying. The correct distribution would then be an asymmetric
Laplace distribution of wealth returns, yet we find the empirical distributions to have skewness that is not
statistically different from zero, indicating that the symmetric version is empirically useful.
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above the minimum thresholds wmin are approximately linear on a double-logarithmic
scale, indicating power law-like patterns for the richest individuals in both samples (see
Online Appendices I and J). The empirical densities of returns to wealth portfolios are
also reasonably well approximated by the expected Laplace distribution. This is readily
indicated by their (symmetric) tent shape on semi-logarithmic scale that is characteristic
of the Laplace, and shown in Appendix C. Apart from mere visual inspection, the standard
procedure to test for a Laplace distribution is to fit an exponential power (or Subbotin)
distribution to the data (Subbotin, 1923). Since the Subbotin distribution includes the
Laplace as a special case when its shape parameter equals unity, an MLE fit of the
Subbotin parameters provides a convenient test. As we show in Appendix C, a shape
parameter of unity cannot be rejected in any of the considered cases, so our findings should
not be distorted by systematic deviations from the parametric forms we impose for the
estimations.

4.1 Distributional Results

We estimate the parameters for the power law distribution separately for the survey and the
rich list. The tail indices are estimated via maximum likelihood, employing the respective
empirical minima from the rich list, and using the procedure described in Clauset et al.
(2009) to estimate the respective minima ŵmin in the survey. Tables 1 and 2 report tail
index estimates for the survey tails and rich lists, respectively.

SOEP 2002 2007 2012

Tail exponent estimate α̂ 1.3144 1.0978 1.2982
(0.0423) (0.0324) (0.0354)

Minimum wealth level estimate ŵmin 0.28 0.20 0.18
Maximum wealth level wmax 70.55 30.60 16.00
Sample size N 961 1,260 1,332

Table 1. Tail index estimates α̂ for the power law region of the SOEP survey with standard errors in
parentheses. The minimum and maximum wealth levels ŵmin and wmax are stated in millions of euros,
deflated with index year 2010, while N denotes the number of observations in the power law tail.

Two peculiarities stand out. First, normality of standard errors for the tail index
estimates (De Haan and Resnick, 1997) implies that Zipf’s law (with α = 1) can be rejected
with at least 95% confidence in all survey years. Wealth in the survey tails therefore
appears more equally distributed than scale-independent growth would imply. Second,
the wealth maxima in the survey are not even on the same order of magnitude as the
wealth minima reported in the rich lists. These implausibly small maxima indicate severe
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manager magazin 2010 2011 2013 2014 2015 2016

Tail exponent estimate α̂ 0.9983 0.9863 1.0999 0.9874 0.9358 0.7615
(0.0450) (0.0442) (0.0495) (0.0443) (0.0419) (0.0341)

Minimum wealth level estimate ŵmin 200 200 250 250 250 200
Maximum wealth level wmax 17,100 19,000 23,950 31,000 26,500 30,000
Sample size N 499 498 494 497 500 500

Table 2. Tail index estimates α̂ for the manager magazin rich list with standard errors in parentheses.
The minimum and maximum wealth levels wmin and wmax are stated in millions of euros, deflated with
index year 2010, while N denotes the number of observations in the power law tail.

undersampling (or rather the complete absence) of the super-rich in the survey, and are a
major reason for the relatively low degree of measured inequality in the survey tails. Tail
index estimates for the rich list, on the other hand, stand in stark contrast to those for the
survey. As shown in Table 2, we cannot reject Zipf’s law at the usual significance levels
in any of the years other than 2013 and 2016, with Zipf’s law being only barely rejected
in 2013.12 In the language of the stochastic accumulation process, Zipf’s law indicates
scale-independent returns among the super-rich. Yet significant deviations from Zipf’s law
in the survey tails point to scale-dependent wealth returns within the survey populations,
and obviously also to scale-dependent returns between the two sample types.

Hence we consider the distribution of wealth returns in the two sample types, and to
facilitate comparison we construct wealth returns over five year intervals. Several non-
parametric tests reject the null hypothesis of distributional equivalence between the two
sample types in both periods, but fail to reject it within the samples between periods (cf.
Online Appendix K). Apparently the data suggest that wealth dynamics are time-invariant
but scale-dependent between sample types. The parameter estimates for the Laplace
distribution of wealth returns, summarized in Table 3, strengthen the impression from the
non-parametric tests. The estimates for the location parameter m (the “average” return)
and the dispersion σ (the “average” risk) do not vary much within the respective samples,
yet vastly differ between the two sample types. While average returns do not significantly
differ from zero in the survey tails, zero can safely be rejected at the five percent level
in the rich lists, where m is significantly positive, implying that Germany’s super-rich
on average became wealthier during the considered period. Paradoxically, however, σ is
significantly lower in the rich lists than in the survey tails, apparently indicating that

12According to manager magazin staff, 2016 is the only year in which they tried to account for wealth
held in foundations or charitable organizations. Thus the 2016 tail index does not measure the same
concept, which is why we mostly discard 2016 in our analysis.
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super-rich portfolios are less risky than the ones in the survey tails.13 So how can we
interpret these findings?

Laplace parameter estimates m̂ σ̂

manager magazin 2010–15 0.1024 0.1458
(0.0090) (0.0010)

manager magazin 2011–16 0.0824 0.1319
(0.0117) (0.0082)

SOEP 2002–07 0.0280 0.3710
(0.0144) (0.0077)

SOEP 2007–12 0.0215 0.3745
(0.0149) (0.0076)

Table 3. Maximum likelihood parameter estimates for the Laplace distribution of wealth returns, with
standard errors in parentheses. While a location measure or “average” return of zero cannot be rejected
for the survey tails, it is significantly greater than zero in the rich lists. Note that the dispersion of returns,
that is the “average” risk across portfolios, is markedly lower in the rich lists than in the survey tails.

4.2 Data First

Taken at face value our findings indicate that the accumulation process is scale-dependent
in the survey study but scale-independent in the rich list, where we find higher average
returns and lower volatility compared to the survey. From a theoretical point of view this
is puzzling. How plausible is it that the investment strategies of the super-rich converge
to roughly equivalent risk profiles that not only outperform other (still rather) wealthy
individuals, but do so at a lower risk? The conventional rationale for the risk-return
tradeoff, as for instance in the canonical intertemporal capital asset pricing model of
Merton (1973), suggests that the conditional expected excess return should grow linearly
with its conditional variance.14 But both the non-parametric tests as well as the parameter
estimates for the Laplace distribution of wealth returns indicate that the super-rich enjoy
higher expected returns at lower risk. The excess returns of Germany’s super-rich cannot
be explained by a higher risk tolerance, because this should be reflected in a higher
dispersion of returns among the super-rich.

13This interpretation, although entirely conventional, needs to assume ergodicity in returns to wealth,
which is why we use quotation marks for the notions of “average” return or “average” risk.

14There exists an ongoing debate on whether this relationship can be established empirically (French
et al., 1987; Campbell, 1987; Nelson, 1991; Campbell and Hentschel, 1992; Harvey, 2001; Goyal and
Santa-Clara, 2003; Brandt and Kang, 2004; Ghysels et al., 2005; Bali and Peng, 2006; Andersen et al.,
2006; Guo and Whitelaw, 2006; Lundblad, 2007; Bali, 2008; Gonzales et al., 2012). While most of the
studies find at least weak support for the risk-return trade-off for various time frames and markets, the
debate seems to have now shifted to the precise functional form of this relationship - as opposed to the
linear one implied by the CAPM.
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The data first interpretation thus not only suggests scale-dependence, but scale-
dependence that cannot be explained by heterogeneous risk preferences alone. To explain
the estimation results within the framework of random multiplicative growth, we need to
assume that financial markets are not fully competitive in the conventional sense. This
would suggest that investors’ talent or the increased set of possibilities that comes with
being very wealthy enables the richest to persistently beat the market and achieve above
average risk-adjusted returns at a lower risk. Such an interpretation would also be at odds
with empirical findings on risk preferences that observe decreasing risk-aversion in wealth
levels, such that higher net worth correlates positively with a higher dispersion in returns
to wealth (Guiso et al., 1996; King and Leape, 1998; Calvet and Sodini, 2014). The data
first interpretation thus poses a challenge to both, the empirically observed risk profiles,
and the idea that financial markets with rapid feedbacks and a low degree of informational
asymmetries should be close to the benchmark of a fully competitive market.

4.3 Theory First

Our central point here is that these “puzzles” can be resolved within the theory first
interpretation once we agree that estimates of the tail exponent in the two samples suffer
from two different sources of bias. Equiprobable sampling in the survey makes it very
unlikely to observe the largest wealth levels that are necessary for reliable estimation of
the tail index, as we quantify in Appendix E. Note that the probability of including the
maximum wealth level for the SOEP sampling ratio under equiprobable sampling is 0.035
percent and thus practically equal to zero. Adding to this problem are concerns of social
desirability biases, particularly the phenomenon that the super-rich tend not to respond to
survey requests. As the probability of non-response is therefore positively correlated with
wealth levels, the survey is subject to differential non-response (Kennickell and Woodburn,
1999; Eckerstorfer et al., 2016; Vermeulen, 2016, 2018). These two considerations lead to
undersampling, that is the largest wealth levels are not included at all in the survey sample.
In contrast, the rich list is a carefully selected sample aimed at covering the super-rich,
and one can therefore expect that undersampling is not an issue. On the other hand,
the manager magazin staff relies on public records for their compilation of the rich list,
likely underestimating the actual wealth levels for Germany’s super-rich due to privacy
considerations and tax avoidance that is particularly pronounced among the wealthiest
(Alstadsæter et al., 2019). Consequently, the manager magazin sample should be subject
to underreporting, not undersampling. In more colloquial terms, the upward bias in the
survey sample arises because the richest are not included at all in the sample, while the
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upward bias in the rich list arises because the richest are not included with the full extent
of their wealth.

To study the relative biases arising from differential undersampling and underreporting,
we plot the upward deviation from the theoretically expected tail exponent of α = 1 for
different reporting rates ρ and undersampling in the (empirically motivated) quantile
q ∈ (0, 0.2). The case ρ = 0 corresponds to undersampling, and is also the only case for
ρ < q that we can examine along the lines elaborated in section 2.
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Figure 1. Illustration of the analytical bias resulting from different combinations of reporting rates ρ
and underreporting fractions q compared to the theoretically expected α of unity for Zipf’s law. The
strength of the bias increases disproportionately with decreasing reporting rates, where ρ = 0 leads to
much more upward biased tail index estimates, even compared to ρ = 0.25.

Figure 1 supports the intuition that the relative bias is decreasing in the reporting
rate ρ, since for smaller ρ a larger fraction of wealth is not reported. When ρ = 1 we
recover the initial distribution from eq. (2), and there is no bias for any q. Compared
to the underreporting bias, the undersampling bias is rather unexpected though. If
merely 25% of wealth were to be reported by the richest q-quantile, this would lead to a
disproportionately smaller bias in the estimator, indicating that tail index estimates from
the rich list are in all likelihood much less (upward) biased than estimates from the survey.
This is reminiscent of the finding by Cristelli et al. (2012) that the maximum in a power
law is most informative. Our result is more general in the sense that even partial inclusion
of these top observations by only a fraction of their true level will greatly reduce the bias in
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measured inequality. Given the limited impact of differential underreporting, we conclude
that the true inequality of the system is substantially closer to the Zipf benchmark than
the survey estimates seem to suggest, as indicated by the less biased estimates for the rich
list.

Furthermore, our closed-form expression (2) that quantifies the impact of underreporting
on the tail exponent also allows us to back out the reporting rates ρ for the rich lists. We
assume that the upper 20% quantile exhibits different reporting behavior, in the sense
that the richest one hundred Germans constitute a rather salient set on the rich list, where
the manager magazin staff focuses their efforts to compile reliable data (Balz et al., 2014),
and thus the effect of tax avoidance should not be compounded by rounding errors or
selection bias for the considered sources.15 So fixing q = 0.2 and further assuming that
Zipf’s law governs the true distribution, we obtain the reporting rates ρ in Table 4.

manager magazin 2010 2011 2013 2014 2015 2016

Implied reporting rate ρ 1.0086 1.0719 0.6350 1.0659 1.4092 4.7878
(0.1959) (0.2095) (0.1517) (0.2083) (0.2884) (1.1743)

Table 4. Implied reporting rates ρ for differential underreporting in the rich lists, with standard errors
in parentheses. For illustrative purposes, we assume that q = 0.2 and that the true distribution follows
Zipf’s law exactly. Except for 2016, the estimates suggest little differential reporting behavior, adding to
the plausibility of the theory first interpretation.

The implied reporting rates appear to be plausible, except for the 2016 estimate that
neatly reflects the qualitative change in the data collection procedure by the manager
magazin staff.16 Note the highly non-linear and perhaps counterintuitive effect of a mere
twenty percent decrease in α̂ between 2015 and 2016 that requires the implied reporting
rate to more than triple, showing that the change of sampling procedures between 2015
and 2016 is a qualitative shift that would easily be missed if we were to exclusively look at
the twenty percent increase in measured inequality. Thus the assumption of Zipf’s and
consequently Gibrat’s law along with scale-independence seem entirely plausible in the
theory first interpretation, especially since we cannot reject Zipf’s law in any of the years
other than 2013 and 2016.

15This is supported by apparent “digit-preferences” or “heaping effects” that we can observe below
rank 100, where the data seem abnormally clustered in increments of fifty million euro (Heitjan and Rubin,
1991; Schneeweiß et al., 2010).

16Reporting rates ρ > 1 could, at least in principle, arise from the salience of the richest quantile
through intensified compilation efforts that lead to a relative overestimation of top wealth. So whenever
ρ > 1, the salience bias would outweigh the tax avoidance and social desirability biases. More importantly,
however, a reporting rate of ρ = 1 can only be safely rejected in 2016, while in 2013 we are just very slightly
above the coventional five percent level. In all other years, we cannot reject ρ = 1 at this significance level.
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Regarding the survey, theory first suggests that the deviation from Zipf’s law in the
SOEP data originates from undersampling (ρ = 0) such that the super-rich are entirely
absent in the sample. Using the closed-form expression (3), we can infer the q-quantiles
of non-respondents from the estimated tail exponents both in the survey tail, denoted
qpl, and also for the survey as a whole, qtot = qpl (npl/ntot), where ntot denotes the size of
the SOEP sample and npl denotes the size of the survey tail (reported in the last row of
Table 1). The results are summarized in Table 5.

SOEP 2002 2007 2012

Implied non-response rate PL tail q̂pl 0.0906 0.02310 0.08538
(0.0135) (0.0094) (0.0114)

Implied non-response rate full sample q̂tot 0.0030 0.0010 0.0039
(0.0005) (0.0004) (0.0005)

Table 5. Implied non-response rates in the survey tail, q̂pl, and in the entire survey, q̂tot, calculated from
eq. (3) under the assumption of Zipf’s law, with standard errors in parentheses. Non-response rates are
tiny and imply that missing merely twenty-five to a hundred of the super-rich in the survey can already
explain the observed deviations from Zipf’s law.

The implied non-response rates relative to the size of the survey sample are remarkably
low. The effects of equiprobable sampling combined with differential non-response quite
plausibly lead to non-reponse rates qtot of 0.1 to 0.4%. Consequently, the survey data are
not inconsistent with the interpretation of scale-independent multiplicative growth and
therefore Zipf’s law in wealth levels. Since the mixture of non-overlapping Zipf samples is
also distributed as a Zipf law, the theory first interpretation supports scale-independence
across the entire tail of the German wealth distribution. After all, our results underline
the importance of maximum wealth levels for the estimation of tail indices because failing
to account for merely 0.1 to 0.4 % of the richest individuals already leads to substantial
biases—and the descriptive statistics for the two samples clearly indicate that the actual
response rate of the super-rich in the survey is zero. As we show in the upcoming subsection,
differences in tail index estimates translate into substantial differences in estimated top tail
wealth, and therefore also lead to enormous differences in measures of wealth inequality.17

4.4 Total Wealth Estimates

How much wealth is concentrated in the power law tail? The most recent literature on this
matter extrapolates the estimates from survey studies to a maximum determined from

17This will of course also be true for measured inequality with respect to the entire population, and
not just within the power law tail that we focus on here.
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rich lists (Vermeulen, 2018; Bach et al., 2019). Even within this established methodology,
three very different kinds of answers emerge depending on the pre-analytical vision one
employs. In line with the literature, we use the continuous analogue of the power law
distribution and integrate to derive a measure for the total power law wealth W . The
minima correspond to the estimates for the survey study, while we take the maxima from
the rich lists. Within the data first interpretation, we need to choose between the estimated
tail exponents from the survey study and the rich list corresponding to the respective
belief that either the inequality within the SOEP or the manager magazin sample is more
representative of the power law tail as a whole. The theory first perspective suggests Zipf’s
law and thus leaves no such degree of freedom. The estimation strategy is elaborated
in more detail in Appendix D, where we also detail how to estimate the population n

inhabiting the power law tail.
In the data first estimations, we essentially extrapolate the power law population

in-sample to the entire German population of N = 82.5 million (Statistisches Bundesamt,
2017). This simple extrapolation is justified since data first assumes no systematic non-
response rates for the richest. The estimates for the population from the survey study reveal
a relatively large power law population with a relatively homogeneous wealth distribution,
while the estimates for the rich list imply a very small population characterized by an
extremely heterogeneous wealth distribution. The theory first perspective implies Zipf’s
law for the entire top tail and attributes observed differences from this benchmark in the
survey to differential non-response. We thus correct our population estimates for the survey
by the estimated non-response rates. Unanimously, we find the largest estimated power law
populations for this theory first perspective (see Appendix D). Both the corrected as well
as the uncorrected estimates for the survey study differ up to one order of magnitude with
respect to the estimates for the rich list. The correction within the theory first approach
has a very limited effect on the estimated total population, resulting from the fact that
the estimated non-response rates are tiny. This leaves us with three estimation strategies,
each with 18 possible combinations of ŵSOEPmin and wmmmax for all sampling years. Table 6
shows how the differences in the estimated power law populations and tail indices translate
into differences in total wealth.

We note first that especially the 2007 estimates for the SOEP are in remarkably close
agreement with the latest estimates in Bach et al. (2019) based on the Household Finance
and Consumption Survey (HFCS), even though our samples differ substantially from
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mm Ŵ
SOEP years / mm years 2010 2011 2013 2014 2015 2016
2002 1,096 1,079 1,819 1,409 1,280 1,171
2007 1,129 1,109 1,910 1,447 1,305 1,177
2012 1,140 1,118 1,939 1,458 1,313 1,179

SOEP Ŵ
SOEP years / mm years 2010 2011 2013 2014 2015 2016
2002 3,114 3,117 3,124 3,131 3,126 3,130
2007 5,420 5,447 5,506 5,571 5,532 5,563
2012 2,884 2,887 2,894 2,900 2,896 2,900

Zipf Ŵ
SOEP years / mm years 2010 2011 2013 2014 2015 2016
2002 8,498 8,579 8,757 8,956 8,835 8,931
2007 8,185 8,261 8,428 8,614 8,500 8,590
2012 7,882 7,955 8,114 8,292 8,184 8,269

Table 6. Estimated wealth in the power law tail for combinations of minima and maxima from the
respective survey and rich list samples in billions of euros (inflation-adjusted with base year 2010). Details
regarding the underlying estimation strategies and parameter constellations are described in Appendix D.
The estimates exhibit tremendous variation, almost spanning one order of magnitude.

theirs.18 This is also the case where the estimation procedure for the total power law
population is closest to theirs. We take this as evidence that our results are not driven by
idiosyncrasies in our data and instead testify to the external validity of our approach.

Second, and more importantly, the results differ enormously between the two pre-
analytical visions. The estimates for the pure Zipf case are higher than the rich list
estimates by at least a factor of six, in some cases even by one order of magnitude. This is
primarily caused by the huge differences in estimated population, with both estimation
strategies appearing to be plausible. Even when populations are not differing too much,
the pre-analytical vision has a large effect on estimated total wealth, as the uncorrected
and corrected estimates for the pure survey and Zipf case show, differing by up to a factor
of three. Hence even state-of-the-art methods for this kind of estimation will likely severely
underestimate the degree of inequality both within the richest group, and also between
the top tail and the rest of the population. A case can be made (more or less convincingly)
for all three estimation strategies, and it seems fair to say that total wealth estimates
are influenced at least as much by pre-analytical belief as they are by the data used for
estimation.

18The main difference is that the estimation by Bach et al. (2019) can exploit survey weights of the
HFCS for oversampling which are not available for the SOEP.

21



5 Discussion

We have shown that the pre-analytical vision decisively informs the research agenda as
well as the conclusions drawn from it. So how wealthy are the rich, and are returns
to wealth scale-dependent for them? As we have argued here, the proposed mutually
contradicting interpretations of data first versus theory first are observationally equivalent
to each other. Data first interprets the observed deviations from Gibrat’s law in wealth
returns, and consequently Zipf’s law in wealth levels, as evidence for scale-dependence.
Theory first, on the other hand, explains these deviations through sampling and reporting
biases that affect the two sample types differently. Ultimately, we cannot discriminate
between the two narratives based on the data alone, and seem to face a classic instance
of the underdetermination of scientific theory by evidence, featuring prominently in the
philosophy of science at least since the turn of the 20th century (Quine, 1975). On the
other hand, dearly held convictions in economic theory, such as the risk-return trade-off,
informationally efficient markets, and the classical notion of competition that requires
an equalization of rates of return, patently suggest that theory first is a more plausible
explanation for the data.

The proposed differential biases cast doubt on the validity of conclusions drawn across
and within sample types, both in the cross-sectional and the time series domain. Valid
inference in the presence of reporting biases requires stability of parameters over time,
otherwise identified trends might become spurious and instead reflect changes in bias. Since
the proposed explanation of biases is behavioral and builds on empirically well-established
phenomena such as salience, differential tax avoidance, or social desirability rather than
being based on sampling method, there is no reason to expect stability. The estimated
parameters within the theory first framework indeed suggest such variable behavioral
responses over time.

Improving data availability and quality, for instance through the use of wealth or
capitalized income tax data, might mitigate the severity of undersampling. Data availability
then depends on the political willingness to impose such taxes in the first place, while
future research will still be confined to the taxed population and a legal definition of
wealth that is generally not catered towards the needs of statistical inference (Galbraith,
2019). Our results thus highlight the need to improve on survey and sampling methods,
not to abandon them altogether. The recently conducted SOEP-P sample, which uses
information on stock holdings to target high net worth individuals, is a first step in this
direction, but still fails to adequately capture the super-rich in the targeted random sample,
and thus fails to include the maximum wealth levels that we show to be crucial for valid
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inference. This is why data from the SOEP-P need to be complemented by the manager
magazin rich lists in the hope of adequately capturing tail wealth. Yet our findings strongly
suggest that the SOEP-P supplement and the resulting composite sample from the rich
lists still must be scrutinized along the lines of the fundamental theory first versus data
first distinction. In the end, our results cast serious doubt on simply pooling data from
different sample types and comparing trends therein, which has been standard practice so
far (see, e.g. Vermeulen, 2018; Bach et al., 2019; Schröder et al., 2020).

While it is not surprising that the two narratives yield different estimates for total
wealth in the top tail, the magnitude of this difference comes probably unexpected for most,
because power laws have the counter-intuitive property that supposedly small variations
in the tail index lead to enormous variations in totals. This property is substantially
compounded by tiny degrees of undersampling, here on the order of a tenth of a percent,
that lead to differences in estimated total wealth by a factor of up to three. Such small
degrees of undersampling are easily explained by equiprobable sampling from a power law,
leading to an inclusion probability of the maximum that is on the order of a hundredth
of a percent in our case, and thus practically equal to zero. Since we have shown how
important the inclusion of an accurately measured maximum is for unbiased tail index
estimation, this is disconcerting.

The enormous differences between total wealth estimates suggest that inferences from
survey studies regarding the cross-sectional distribution of wealth and its time variation tend
to be severely distorted, illustrating that discussions about the notion of “representativeness”
in scale-free systems are not discussions about technical subtleties but disagreements in
substance. In Appendix F, we conduct a simple analytical thought experiment for an
extreme case of unrepresentative oversampling of the rich using logarithmic sampling across
different orders of magnitude in wealth levels. We show that for Zipf’s law, the necessary
sampling ratio to surely include the maximum decays extremely fast by a power function.
If the maximum is indeed as important as our analytical results on the undersampling
bias indicate, even conventional oversampling techniques will be insufficient, and should
instead try to implement logarithmic sampling in order to allow for unbiased estimations.
After all, our results show that accurate representations of total wealth require us to be
highly “unrepresentative” in the sampling of individuals.
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Appendix

A Model

Consider the Markov diffusion with support over the real half-line (0,∞) for the normalized
wealth w of a typical household or individual given by

dwt/wt = µ(w)dt+ σ(w)dWt, (5)

where µ is the mean growth rate of normalized wealth, σ its standard deviation and dWt

are Wiener increments. Denote by f(w, t) the distribution of normalized wealth levels at t,
and by f(w) the stationary density for t→∞. The Fokker-Planck equation is then given
by

∂

∂t
f(w, t) = −∂[µ(w)wf(w, t)]

∂w
+ 1

2
∂2[σ2(w)w2f(w, t)]

∂w2 . (6)

For the stationary state, it has to hold that

0 = −∂[µ(w)wf(w)]
∂w

+ 1
2
∂2[σ2(w)w2f(w)]

∂w2 . (7)

Integration yields

0 = −[µ(w)wf(w)] + 1
2
∂[σ2(w)w2f(w)]

∂w
. (8)
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This allows to solve for f(w) by differentiating the right term and omitting the dependence
on t for the stationary density by

0 = −µ(w) · w · f(w)

+ 1
2

[
∂σ2(w)
∂w

· w2 · f(w) + σ2(w) · 2w · f(w) + σ2(w) · w2 · f ′(w)
]

(9)

and therefore

f(w) = σ2(w) · w2 · f ′(w)
2µ(w)w − (∂σ2(w)/∂w)w2 − 2σ2(w)w. (10)

Establishing conditions for stationarity or convergence to a power law distribution is far
from trivial. Informed by his application to city sizes, Gabaix (1999) assumed both a
time-invariant population size N and minimum level wmin, unaware of the result in Blank
and Solomon (2000) that the distribution approaches a degenerate case with α = 0 if
both variables are held constant. To guarantee convergence to a stationary power-law, we
follow Malcai et al. (1999) and Blank and Solomon (2000) and assume a time-invariant
population size N and a time-varying reflecting boundary wmin(t) that depends on the
average wealth w̄(t) by some small constant c ∈ R+. The minimum threshold to “join
the super-rich” should therefore increase over time, at the very least through inflation in
the monetary value of wealth portfolios, so the latter assumption does not appear too
restrictive to be of general interest. Under these assumptions, the tail exponent of the
stationary density α is

α(w, f) = −w · f
′(w)

f(w) − 1. (11)

Substituting equation (10) in (11) yields

α(µ, σ) = 1− 2 µ(w)
σ2(w) + w

σ2(w)
∂σ2(w)
∂w

. (12)

Since we consider normalized wealth levels, µ(w) corresponds to the excess expected
growth rate relative to the average growth rate across all wealth levels γ̄ by γ(w) − γ̄,
implying

α(µ, σ) = 1− 2γ(w)− γ̄
σ2(w) + w

σ2(w)
∂σ2(w)
∂w

.† (13)
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Zipf’s law emerges as a special case of growth rates characterized by Gibrat’s law. This
implies that the partial ∂σ2(w)/∂w is zero, as there is no scale-dependence in the variance.
Also, Gibrat’s law implies that the expected normalized growth rate, that is, the excess
growth rate of wealth levels w in relation to the average growth rate, is independent of
w for any w and thus must be zero, thereby implying the Zipf exponent of α(0, σ) = 1.
To confirm this, consider the general diffusion in equation (5), with µ(w) = µ = 0 and
σ(w) = σ. The general Fokker-Planck equation (6) under these assumptions is

0 = −∂[0 · w · f(w)]
∂w

+ 1
2
∂2[σw2f(w)]

∂w2

= 1
2
∂2[σw2f(w)]

∂w2 . (14)

It is easy to see that a density f(w) solves equation (14), whenever the differentiated term
in (14) is independent of w. This is exactly the case for f(w) = C/w2, that is, Zipf’s law
with a normalizing constant C independent of w.

B Analytical Results for the Estimation of α under
q-Truncation

Zipf’s Law and Hill Estimator. Preliminaries.
Suppose a discrete quantity w is distributed according to Zipf’s law, so its tail index α
equals unity. According to the rank-size formulation, its values are therefore given by

w(s) = wmax
s

, (15)

with s = 1, 2, ..., N as the respective ranks of a given w in descending order, N as the
number of values with N ∈ N+, and wmax as the maximum value of the distribution.
Equivalently, rewriting equation (15) in terms of the minimum value wmin yields

w(s) = wmin ·N
s

, (16)

since for Zipf it holds that wmax = N · wmin. Maximum likelihood estimation (MLE) for
any given (continuous) power law yields the Hill estimator (Clauset et al., 2009), that is

†In Gabaix (1999), there is a minor typographical error on page 757, where the correct expression
for the tail exponent in equation (13) should read γ(S), not ζ(S), like for our analogous expression in
equation (13).
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α̂(wmin;N) = N ·
(

N∑
s=1

ln

(
w(s)
wmin

))−1

(17)

which is by equation (16)

= N ·
(

N∑
s=1

ln

(
N

s

))−1

, (18)

now independent of wmin and converging asymptotically for N →∞ to Zipf’s law, that is
α = 1.

Unanimous Proportional Underreporting. Unbiasedness Result.
Suppose that a discrete quantity is perfectly distributed according to Zipf’s law. All
individuals report only a fraction ρ ∈ (0, 1) of this quantity (the response-rate), which
implies unanimous (proportional) underreporting. The rank-size rule for unanimous
underreporting thus reads

wuu(s) = ρ · wmin ·N
s

, (19)

with s = 1, 2, ..., N as the ranks. Notice that we also require wuumin = ρ · wmin by w(N) =
wmin and wuu(N) = wuumin. The Hill estimator for αuu under unanimous underreporting by
equation (19) thus reads

α̂uu(wuumin;N) = N ·
(

N∑
s=1

ln

(
wuu(s)
wuumin

))−1

(20)

= N ·
(

N∑
s=1

ln

(
ρ · wmin ·N
ρ · wmin · s

))−1

(21)

= N ·
(

N∑
s=1

ln

(
N

s

))−1

(22)

which is the unbiased estimator of equation (17).

Differential Non-Response of the Upper q Quantile. Asymptotic Properties.
Suppose that a discrete quantity w is distributed according to Zipf’s law but q-truncated
during measurement. The q-truncated rank-size rule therefore reads

w(s) = wmin ·N
s

, (23)

A-4



now with s = bq ·Ne+ 1, bq ·Ne+ 2, ...., N as the ranks. For the q-truncated distribution,
the MLE for the tail index under differential non-response, denoted α̂nr, becomes

α̂nr(q;N) = (N − bq ·Ne+ 1) ·
(

N∑
s=bq·Ne+1

ln

(
N

s

))−1

. (24)

Further simplifying equation (24) yields

α̂nr(q;N) = 1 +N −N · q
ln N(N−N·q)·(Nq)!

N !

. (25)

Utilizing Stirling’s approximation, in particular Ramanujan’s version ln n! ≈ n · ln n−
n+ 1

6 ln(n(1 + 4n(1 + 2n))) + 1
2π (Ramanujan, 1988), equation (25) now becomes

α̂nr(q;N) ≈ 1 +N −N · q
u

. (26)

with u = (N − N · q) · ln (N) −
[
N · ln N − N + 1

6 ln(N(1 + 4N(1 + 2N)))
]

+
[
N · q ·

ln (N · q)−N · q + 1
6 ln(N · q(1 + 4(N · q)1 + 2 · (N · q))))

]
.‡ Finally, taking the limit of

expression (26) yields

lim
N→∞

1 +N −N · q
u

= 1− q
1− q + q · ln (q) . (27)

In the limit, the impact of N has completely vanished and the distortion of α is now only
dependent on q. As we easily see, even for large values of N , the estimator is (upward)
biased for any positive q, since for any q > 0, the numerator is larger than the denominator,
so α > 1. The result in equation (27) shows that the upward bias is not merely an artefact
of sample size, but holds true for any sufficiently large N .

Differential Underreporting of the Upper q Quantile. Asymptotic Properties.
Suppose that a quantity w is distributed according to Zipf’s law. Consider the case,
where only the upper q-quantile is proportionally underreporting with rate ρ ∈ (0, 1). The
rank-size rule is now a piecewise function for the upper q-quantile and the remaining 1− q,
yielding

w(s)du = ρ · wmin ·N
s

, (28)

‡In particular, (Ramanujan, 1988) shows that the asymptotic error for the above approximation is
1

1440 N3 , which suffices for the current purpose.
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with s = 1, 2, ..., bq ·Ne as the ranks and

w(s)du = wmin ·N
s

(29)

with s = bq ·Ne+ 1, bq ·Ne+ 2, ...., N as the remaining ranks.

We require that wmin, the minimum of the unchanged initial distribution stays the minimum
for the distribution with differential underreporting to avoid issues with the MLE which is
based on this minimum. For this, the smallest reported value in the underreporting region
has to be greater than wmin, that is,

w(qN)du = ρ · wmin ·N
qN

> wmin

and therefore

ρ

q
>1. (*)

Thus, for the minimum not to be affected, it has to hold by (*) that the reporting rate
exceeds the affected population share of the highest wealth levels. By the linearity of the
sum function and assuming condition (*) to hold, we obtain the Hill estimator for the tail
exponent α̂du under differential (proportional) underreporting as

α̂du(q; ρ,N) = N

(
N∑

s=bq·Ne+1
ln

(
N

s

)−1

+
bq·Ne∑
s=1

ln

(
ρ ·N
s

)−1)
. (30)

Further simplifying yields

α̂du(q; ρ,N) = N

ln
(
N(N−Nq)(Nq)!

(N−Nq)!

)
+ ln

(
(Nρ)Nq
(Nq)!

) . (31)

Utilizing again Stirling’s approximation, we get

α̂du(q; ρ,N) ≈ N

v
, (32)

with v = −1
6 ln

(
8N3 + 4N2 +N + 1

30

)
+N q ln(Nρ)+(N−Nq) ln(N)+N+N(−ln(N))−

ln(π)
2 .
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Taking the limit for N →∞ gives

lim
N→∞

N

v
= 1

1 + q ln(ρ) . (33)

Notice that for q ∈ (0, 1) and ρ ∈ (q, 1), the estimator is therefore always upward biased
compared to the Zipf benchmark of α = 1. Condition (*) precludes the possibility of a
negative induced bias which would result from q ln(ρ) < −1 and would be uninterpretable.
For this, note that condition (*) implies ln(ρ) > ln(q), since ln(·) is monotonically increasing
in its argument. It is thus sufficient to show that q ln(q) > −1. Rearranging yields

ln(q) + 1
q
> 0. (34)

Define f(q) = ln(q) + 1
q
. By

f(1) = 1 (35)

and df

dq
= 1
q
− 1
q2 < 0 ,∀q ∈ (0, 1), (36)

we know that the function is monotonically decreasing for the whole considered interval
and positive at the upper interval boundary. From (35) and (36), we can therefore conclude
that f(q) > 0 for all q ∈ (0, 1). This is exactly the non-negativity constraint in (34) and
thus the desired result that condition (*) implies strictly non-negative induced biases in
approximation (33).
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C Empirical Densities of Returns to Wealth Portfo-
lios
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Figure 2. Empirical densities for the distribution of returns to wealth portfolios across different sample
types and time periods, with maximum likelihood fits of the Laplace distribution indicated by solid lines.

Note that returns for the rich list samples exhibit a positive median, while the median
for the survey samples is indistinguishable from zero at the usual significance levels. The
reason we consider the median (instead of, say, the expectation or mode) is that the
median corresponds to the maximum likelihood estimate of the location parameter for
the Laplace distribution (4). By the same token, the MLE of the dispersion parameter
in (4) is the mean absolute deviation, not the variance. Overall, visual inspection already
confirms the Laplacian nature of wealth returns, since the empirical densities exhibit a
linear tent shape on semi-logarithmic scale that is characteristic of the Laplace distribution.
To test parametrically for the hypothesis of a Laplace distribution in wealth returns, we
follow standard procedure and consider the exponential power (or Subbotin) distribution,
because the Laplace is a special case of the Subbotin when the shape parameter κ equals
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unity. This is readily verified from the Subbotin density given by

f(r, κ, σ,m) = 1
2σκ1/κΓ(1 + 1/κ)exp

(
−1
κ

∣∣∣∣r −mσ
∣∣∣∣κ) , (37)

where κ, σ ∈ R+,m ∈ R, and Γ(·) denotes the Gamma function. MLEs of the shape
parameter are reported in the table below, showing that we cannot reject the Laplace
hypothesis in our data.

Subbotin shape parameter κ̂ Standard error
SOEP
2002–07 1.18 0.1766
2007–12 0.8463 0.1178

manager magazin
2010–15 0.8523 0.08587
2011–16 0.9509 0.09798

Table 7. Maximum likelihood estimates of the Subbotin shape parameter, denoted κ̂, for the distribution
of wealth returns cannot reject the Laplace hypothesis at the usual significance levels. We employed
Subbotools 1.3.0 for estimation as it delivers the most accurate and efficient estimates in simulation runs
(Bottazzi, 2004).

D Total Wealth Estimates

We estimate the total wealth levels Ŵ by numerical integration according to

Ŵi = n̂i ·
∫ wmmmax

ŵSOEPmin

f̂i(w) · w dw, (38)

where f̂i(w) denotes the estimated PDF of the power law given by

f̂i(w) = α̂i · ŵSOEPmin · w−(α̂i+1), (39)

where ŵSOEPmin is the estimated minimum from the SOEP sample and wmmmax is the maximum
from the rich list, and are common across approaches, while the estimated population n̂i,
and the estimated tail index α̂i are chosen dependent on the pre-analytical vision. There
are three possible α̂i ∈ {α̂SOEP ; α̂mm; α̂Zipf = 1}, corresponding to the estimates from
the survey study, the rich lists and for Zipf’s law, respectively. The same holds for the
estimated population.
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The population estimates based on the SOEP extrapolate the in-sample ratio of
the power law population to the whole German population. In particular, let ω be the
ratio of the estimated power law population relative to the whole sample size. For the
uncorrected estimates, we set the sample size to 0.035% of 82, 500, 000 which equals 28, 875,
where 0.035% is the approximate sample ratio in the SOEP surveys. The power law
population in Germany is then calculated as ω ·N for the uncorrected case n̂SOEP , with
N = 82, 500, 000 (Statistisches Bundesamt, 2017). For the Zipf case, we correct ω by the
estimated non-response rates in Table 5 and calculate n̂Zipf = N (ω + qtot). Given the
relatively low estimates of qtot, the estimated population levels do not differ too much from
the uncorrected estimates. The results are reported in Table 8.

Population from SOEP
Uncorrected Corrected

Population estimate n̂ (2002) 2,745,714 2,753,993
Population estimate n̂ (2007) 3,600,000 3,603,629
Population estimate n̂ (2012) 3,805,714 3,820,703

Table 8. The estimates assume a total population N = 82, 500, 000 and are calculated from the in-sample
power law population fractions ω, and the estimated non-response rates qpl for the corrected case.

We estimate the different population levels for the manager magazin by taking the
CDF P (w;wmin, α) of a continuous power law with parameters ŵSOEPmin from the SOEP
samples and the tail indices α̂mm, the in-sample power law populations Nmm and the
minima wmmmin from the manager magazin samples. For a specific parameter combination,
n̂mm is then calculated as n̂mm = 1/(1− P (wmmmin; ŵSOEPmin , α̂mm) ·Nmm). The intuition is
that n̂mm corresponds to the power law population when the power law in the manager
magazin sample is extended to the minima determined from the SOEP surveys. The
results are reported in Table 9 below.

Population from mm
2010 2011 2013 2014 2015 2016

Population estimate n̂ (wmin = 280,000) 352,534 324,983 869,368 407,397 288,683 88,307
Population estimate n̂ (wmin = 200,000) 493,270 452,876 1,258,710 567,946 395,524 114,097
Population estimate n̂ (wmin = 180,000) 547,981 502,467 1,413,360 630,216 436,510 123,628

Table 9. The estimates are calculated from the parameter combinations of the various estimated minima
ŵSOEP

min in the SOEP samples, and the tail indices α̂mm, the in-sample power law populations Nmm, and
the minima wmm

min of the manager magazin samples for each of the respective years given in the Table.
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E Equiprobable Sampling From a Power Law

Simple Random Sampling without Replacement. Equiprobable Selection of Ele-
ments.
Let N denote the total population with size N ∈ N+ and S a sample out of N with size
S ∈ N+ and S 6 N . The sampling procedure selects each element of the set N with equal
probability and without replacement. If the maximum value of N , denoted by wmax, is
unique, the probability of wmax to be included in the sample S, that is, p(wmax ∈ S), is
equivalent to the probability of any unique element to be chosen under these conditions.
The inclusion probability of wmax in the chosen set S is therefore given by

p(wmax ∈ S) =

(
N−1
S−1

)
(
N
S

) (40)

=

(N − 1)!
(S − 1)! · (N − S)!

N !
S! · (N − S)!

(41)

= S! · (N − 1)!
N ! · (S − 1)! (42)

= S · (S − 1)! · (N − 1)!
N · (S − 1)! · (N − 1)! (43)

= S

N
. (44)

The inclusion probability under simple random sampling without replacement for wmax
therefore corresponds to the sampling ratio S/N and is equal to unity only if S = N .

F Logarithmic Sampling From a Power Law

Logarithmic Random Sampling without Replacement. Assumption of Zipf’s Law.
Let again N with size N ∈ N+ denote the total population and S the sample out of N with
size S ∈ N+ and S 6 N . Furthermore, assume that the total population is now divided into
v different intervals or “slices”, where the length of each slice corresponds to one order of
magnitude of the relevant quantity w, so the intervals are scaled logarithmically. Now the
same procedure as above is applied to each logarithmic slice, that is every element in each
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slice is selected with equal probability and without replacement. It has to hold that v ∈ N+.

For every slice, S/v elements are included in the sample of size S, where S obviously
needs to be an integer multiple of v, since (S/v) ∈ N+. The slice covering the highest
order of magnitude for w also has to include wmax as the maximum value. If one assumes
Zipf’s law to hold, this range of w includes a proportion 10−v+1 of the total population
with size N . Under Zipf’s law this procedure chooses S/v elements out of a set of size
N/10v−1. The probability to include wmax in the chosen set S is therefore

p(wmax ∈ S) =

(
(N/10v−1)−1

(S/v)−1

)
(
N/10v−1

S/v

) (45)

=

((N/10v−1)− 1)!
((S/v)− 1)! · ((N/10v−1)− (S/v))!

N/10v−1!
(S/v)! · ((N/10v−1)− (S/v))!

(46)

= (S/v)! · ((N/10v−1)− 1)!
(N/10v−1)! · ((S/v)− 1)! (47)

= (S/v) · ((S/v)− 1)! · ((N/10v−1)− 1)!
(N/10v−1) · ((N/10v−1)− 1)! · ((S/v)− 1)! (48)

= 10v−1

v
· S
N
, with S

N
> 10v

v
.

Therefore, the inclusion probability p(wmax ∈ S) under logarithmic sampling converges
10v−1/v times faster to unity compared to simple random sampling. The sampling ratio
S/N has to equal merely v/10v−1 for p(wmax ∈ S) = 1. For v = 2, it has to equal 0.2, for
v = 3, it has to equal 0.03, and so on. Of course, this is the case because every element in
the interval covering the highest order of magnitude for w has to be included in the sample.
For v = 1, this procedure obviously corresponds to the case of pure equiprobable sampling,
where the inclusion probability is equal to the sampling ratio S/N , as (10v−1/v) = 1 for
v = 1.
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