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Abstract 
We propose a simple agent-based computational model in which speculators’ trading 

behavior may cause bubbles and crashes, excess volatility, serially uncorrelated returns, 

fat-tailed return distributions and volatility clustering, thereby replicating five important 

stylized facts of stock markets. Since each speculator bets on his own (technical and 

fundamental) trading signals, stock prices are excessively volatile and oscillate erratically 

around their fundamental value. However, speculators’ heterogeneity occasionally 

vanishes, e.g. due to panic-induced herding behavior, yielding extreme returns. Lasting 

regimes with high volatility originate from the fact that speculators extract stronger trading 

signals out of past stock price movements when stock prices fluctuate strongly. 

Simulations furthermore suggest that circuit breakers may be an effective tool to combat 

financial market turbulences.  
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1 Introduction 

We propose a simple agent-based computational model to explain a number of important 

stylized facts of stock markets. In a nutshell, our model and our main results may be 

summarized as follows. We consider a stock market that is populated by a market maker 

and a given number of heterogeneous interacting speculators. The market maker adjusts 

stock prices with respect to the excess demand of speculators who, in turn, determine 

their orders by following their own individual trading signals, derived either from private 

market research or from applying complex (algorithmic) trading systems. Simulations 

reveal that speculators’ trading behavior may generate bubbles and crashes, excess 

volatility, serially uncorrelated (log) stock price changes, fat-tailed return distributions and 

lasting volatility outbursts. Since speculators bet on technical and fundamental trading 

signals, stock prices are excessively volatile and circle in an apparently random fashion 

around their fundamental value. Extreme returns occur in our model due to a sporadic 

loss of heterogeneity. To be precise, there are short-lived periods in which speculators’ 

behavior becomes coordinated, e.g. because they react to the same trading signals, hard-

wired into their trading systems, or because they display panic-induced herding behavior, 

e.g. caused by sharp stock price changes. Lasting periods of high volatility occur when 

speculators persistently receive strong trading signals. Since many speculators infer their 

trading signals out of past stock price movements, the latter occurs in periods 

characterized by significant stock price changes. In such periods, speculators also tend 

to overreact to their own individual trading signals, which keeps volatility high. Our model 

also indicates that circuit breakers may be an effective tool to stabilize the dynamics of 

stock markets. 

Our paper belongs to a well-developed field of literature that seeks to explain the dynamics 

of stock markets by taking an explicit agent-based perspective. Analytically tractable 

small-scale agent-based models, focusing on a few representative speculator types, have 

been proposed, for instance, by Zeeman (1974), Beja and Goldman (1980), Day and 

Huang (1990), Chiarella (1992), de Grauwe et al. (1993), Lux (1995), Farmer and Joshi 

(2002) and Chiarella and Iori (2002). More elaborated and simulation-oriented, large-scale 

agent-based models, studying the interplay between many different and evolving 

speculator types, have been advanced, for instance, by Palmer et al. (1994), Arthur et al. 
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(1997), LeBaron et al. (1999), Chen and Yeh (2001) and Raberto et al. (2001). While it is 

still important to better understand the forces that may create financial market havoc, 

current research increasingly addresses questions that revolve around input validation 

(Anufriev et al. 2016, Fagiolo et al. 2017, Guerini and Moneta 2017), model estimation 

(Lamperti et al. 2018, Platt 2020, Kukacka and Kristoufek 2020), policy applications 

(Stanek and Kukacka 2018, Diem et al. 2020, Schmitt et al. 2020) and prediction (Demirer 

et al. 2019, Zhang et al. 2019, Westphal and Sornette 2020). See Delli Gatti et al. (2018), 

Dieci and He (2018), Iori and Porter (2018) and Lux and Zwinkels (2018) for up-to-date 

surveys.  

Recently, Schmitt and Westerhoff (2017a,b) and Schmitt (2020) started to develop rather 

simple agent-based computational stock market models by assuming that speculators’ 

trading behavior can be represented at least partially by correlated random variables. For 

instance, Schmitt (2020) proposes an agent-based version of the asset-pricing model by 

Brock and Hommes (1998), keeping the correlation between speculators’ random demand 

components constant. Nevertheless, her model produces lasting volatility outbursts when 

the mass of speculators switches towards destabilizing technical trading rules. Schmitt 

and Westerhoff (2017a) put forward an agent-based version of the asset-pricing model by 

Franke and Westerhoff (2012). Extreme price changes emerge within their model when 

the arrival of exogenous sunspots initiates a spontaneous coordination of speculators’ 

trading behavior. Relatedly, Schmitt and Westerhoff (2017b) assume in their asset-pricing 

model that the correlation between speculators’ trading behavior changes slowly with 

respect to the market’s volatility. If volatility increases, speculators become afraid and 

follow the trading behavior of other speculators more closely. As a result, speculators’ 

excess demand escalates, keeping volatility high. In our paper, we assume that 

endogenous market events may lead to a spontaneous coordination of speculators’ 

trading behavior, and thus to extreme returns, while speculators’ trading intensity depends 

positively on the market’s volatility, an aspect that may produce lasting volatility outbursts.  

Within our model, speculators’ trading behavior contains a strong random component. In 

fact, we capture their trading behavior by a vector of multivariate normally distributed 

random variables to which we impose a certain minimalistic structure. Note that such a 

modeling strategy is quite common in certain areas of research, e.g. in econophysics. For 
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instance, Cont and Bouchaud (2000) assume in their stock market model that the 

decisions of clusters of active speculators whether to buy or sell stocks are random 

variables with equal probabilities. See Stauffer and Penna (1998), Chang and Stauffer 

(1999), Stauffer and Sornette (1999), Stauffer and Jan (2000) and Iori (2002) for extensions 

and generalizations of this framework. Similarly, Gode and Sunder (1993, 1997), Daniels 

et al. (2003), Farmer et al. (2005a, b) and Ladley (2012) study stock market models that 

are driven by zero-intelligence agents who trade randomly, subject only to their budget 

constraints, demonstrating that important properties of stock markets depend less on 

agents’ strategic (rational) behavior, and more on their institutional arrangements. More 

recent contributions in which speculators’ behavior also contains a larger random 

component include, for instance, Ladley et al. (2015), Xing and Ladley (2019) and Ladley 

(2020).   

The remainder of our paper is organized as follows. In Section 2, we present a simple 

agent-based computational model of the stock market. In Section 3, we compare the 

dynamics of our approach with the behavior of actual stock markets. In Section 4, we 

explain the model’s functioning. In Section 5, we discuss possible effects of circuit 

breakers. In Section 6, we conclude our paper. A number of robustness checks are 

presented in Appendix A.  

 
2 A simple agent-based computational stock market model 

In this section, we develop a simple agent-based computational model that aims at 

explaining a number of important stylized facts of stock markets. Let us start with 

previewing the basic setup of our approach. We consider a single stock market that is 

populated by a market maker and a given number of heterogeneous interacting 

speculators. The market maker adjusts the price of the stock with respect to speculators' 

order flow. Each speculator bases her orders on her own individual trading signals, 

derived either from private market research or from applying complex (algorithmic) trading 

systems. For simplicity, we model speculators’ trading signals as multivariate normally 

distributed random variables, imposing the following minimalistic structure. First, the 

means of the random variables reflect speculators’ tendency to extrapolate past stock 

price changes and to bet on mean reversion. Second, the variances of the random 
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variables represent speculators’ trading intensities and increase in line with the stock 

market’s volatility. Clearly, speculators infer stronger trading signals – or react more 

strongly to given trading signals – if the volatility of the stock market is high. The former 

argument is consistent with the observation that speculators derive trading signals out of 

past stock price movements and that the strength of these trading signals naturally grows 

with the stock market’s volatility. The latter argument is in line with the observation that 

speculators tend to overreact to their trading signals in volatile periods, simply because 

they are agitated and thus regard their trading signals as more relevant in such times. 

Third, the correlation between speculators’ trading signals increases if the stock market 

displays significant stock price patterns. This may be because speculators observe the 

behavior of others more strongly during periods of heightened uncertainty or because 

certain price patterns, such as significant reversals of stock price changes, are hard-wired 

into a sufficient number of speculators’ complex (algorithmic) trading systems. 

Let us now turn to the details of our model. We assume that a market maker adjusts the 

price of the stock with respect to the excess demand originating from the orders of 𝑁𝑁 

heterogeneous interacting speculators. As in Beja and Goldman (1980), Day and Huang 

(1990) and Farmer and Joshi (2002), the market maker's behavior is formalized as 

𝑃𝑃𝑡𝑡+1 = 𝑃𝑃𝑡𝑡 + 𝑎𝑎 ∑ 𝐷𝐷𝑡𝑡,𝑖𝑖
𝑁𝑁
𝑖𝑖=1 ,                                                                                                        (1) 

where 𝑃𝑃𝑡𝑡 is the log price of the stock at time 𝑡𝑡, 𝑎𝑎 is a positive price adjustment parameter, 

reflecting the stock market's liquidity, and ∑ 𝐷𝐷𝑡𝑡,𝑖𝑖
𝑁𝑁
𝑖𝑖=1  is the aggregate excess demand 

resulting from the individual orders 𝐷𝐷𝑡𝑡,𝑖𝑖 of speculators 𝑖𝑖 = 1,2, …𝑁𝑁. Hence, if the sum of 

speculators’ orders is positive (negative), the market maker increases (decreases) the log 

stock price.  

The orders placed by speculator 𝑖𝑖 depend on her own individual trading signals, derived 

either from private market research or by applying complex (algorithmic) trading systems. 

Inspired by the aforementioned line of research initiated by Gode and Sunder (1993) and 

Cont and Bouchaud (2000), we do not aim at formalizing speculators’ trading behavior in 

detail. Instead, we simply represent speculator 𝑖𝑖’s order in period 𝑡𝑡 by  

𝐷𝐷𝑡𝑡,𝑖𝑖 = 𝛿𝛿𝑡𝑡,𝑖𝑖,                                                                                                                         (2) 

where 𝛿𝛿𝑡𝑡 = {𝛿𝛿𝑡𝑡,1, 𝛿𝛿𝑡𝑡,2, … , 𝛿𝛿𝑡𝑡,𝑁𝑁}′ is a vector of multivariate normally distributed random 
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variables, i.e. 𝛿𝛿𝑡𝑡~𝑁𝑁(Μ𝑡𝑡,Σ𝑡𝑡). We assume for the mean vector  

Μ𝑡𝑡 = {𝜇𝜇𝑡𝑡,1, 𝜇𝜇𝑡𝑡,2, … , 𝜇𝜇𝑡𝑡,𝑁𝑁}′                                                                                                          (3) 

and the variance-covariance matrix 

Σ𝑡𝑡 =

⎣
⎢
⎢
⎢
⎡ 𝜎𝜎𝑡𝑡,1

2             𝜎𝜎𝑡𝑡,1𝜎𝜎𝑡𝑡,2𝜌𝜌𝑡𝑡,1,2    
𝜎𝜎𝑡𝑡,2𝜎𝜎𝑡𝑡,1𝜌𝜌𝑡𝑡,2,1         𝜎𝜎𝑡𝑡,2

2                               
⋯              𝜎𝜎𝑡𝑡,1𝜎𝜎𝑡𝑡,𝑁𝑁𝜌𝜌𝑡𝑡,1,𝑁𝑁

 ⋮
⋮  

𝜎𝜎𝑡𝑡,𝑁𝑁𝜎𝜎𝑡𝑡,1𝜌𝜌𝑡𝑡,𝑁𝑁,1                     ⋯  
                               ⋱ 𝜎𝜎𝑡𝑡,𝑁𝑁−1𝜎𝜎𝑡𝑡,𝑁𝑁𝜌𝜌𝑡𝑡,𝑁𝑁−1,𝑁𝑁

                 𝜎𝜎𝑡𝑡,𝑁𝑁𝜎𝜎𝑡𝑡,𝑁𝑁−1𝜌𝜌𝑡𝑡,𝑁𝑁,𝑁𝑁−1       𝜎𝜎𝑡𝑡,𝑁𝑁
2 ⎦

⎥
⎥
⎥
⎤
           (4) 

that 𝜇𝜇𝑡𝑡 = 𝜇𝜇𝑡𝑡,𝑖𝑖, 𝜎𝜎𝑡𝑡2 = 𝜎𝜎𝑡𝑡,𝑖𝑖
2   and 𝜌𝜌𝑡𝑡 = 𝜌𝜌𝑡𝑡,𝑖𝑖,𝑗𝑗 for 𝑖𝑖, 𝑗𝑗 = 1,2, … ,𝑁𝑁 and 𝑖𝑖 ≠ 𝑗𝑗. Despite these 

restrictions, each speculator submits a different order to the market maker, unless, of 

course, 𝜌𝜌𝑡𝑡 = 1. In that case, all speculators submit an identical order to the market maker. 

The empirical and laboratory evidence reviewed by Menkhoff and Taylor (2007) and 

Hommes (2011) highlights the fact that speculators rely on technical and fundamental 

analysis to determine their orders. The key idea behind technical analysis (Lo et al. 2000) 

is that stock prices move in trends. Fundamental analysis (Graham and Dodd 1951), in 

contrast, postulates that stock prices display a tendency to return to their fundamental 

values. Let 𝐹𝐹 denote the constant log fundamental value of the stock market. We thus 

assume that  

𝜇𝜇𝑡𝑡 = 𝑏𝑏(𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡−1) + 𝑐𝑐(𝐹𝐹 − 𝑃𝑃𝑡𝑡).                                                                                        (5) 

Note that 𝜇𝜇𝑡𝑡 captures the core principles of technical and fundamental analysis. The first 

component of (5) suggests that speculators should place a buy (sell) order if the stock 

market goes up (down), while the second component of (4) recommends that they sell 

(buy) overvalued (undervalued) stocks. The reaction parameters 𝑏𝑏, 𝑐𝑐 > 0 determine the 

strength of these trading signals. 

Moreover, we assume that speculators’ trading intensity increases with the stock market’s 

volatility. This assumption is supported by two arguments. First, speculators make their 

beliefs about future stock prices (and hence their demand) dependent on past stock price 

movements. If there is considerable stock price variability, then their trading signals will 

grow correspondingly (Murphy 1999). Second, speculators overreact to their trading 

signals in periods of high volatility (Manzan and Westerhoff 2005). Let us capture the stock 

market’s volatility by 

𝑉𝑉𝑡𝑡 = 𝑑𝑑𝑉𝑉𝑡𝑡−1 + (1 − 𝑑𝑑)(𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡−1)2,                                                                                       (6) 
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where 0 < 𝑑𝑑 < 1 is a memory parameter. Moreover, let 𝑉𝑉� > 0 be a reference value for the 

stock market’s volatility. We model the intensity of speculators’ trading behavior by 

specifying 𝜎𝜎𝑡𝑡2 as 

𝜎𝜎𝑡𝑡2 = 𝑒𝑒𝑙𝑙 + 𝑒𝑒ℎ−𝑒𝑒𝑙𝑙

1+exp [𝑒𝑒𝑠𝑠(𝑉𝑉𝑡𝑡−𝑉𝑉�)]
.                                                                                                (7) 

Note that (7) represents a logistic function that is bounded between  0 < 𝑒𝑒𝑙𝑙 < 𝑒𝑒ℎ. For 𝑉𝑉𝑡𝑡 =

𝑉𝑉� , speculators’ trading intensity is equal to the midpoint of (7), i.e. 𝜎𝜎𝑡𝑡2 = (𝑒𝑒𝑙𝑙 + 𝑒𝑒ℎ)/2. The 

slope parameter 𝑒𝑒𝑠𝑠 > 0 of (7) determines how sensitively 𝜎𝜎𝑡𝑡2 reacts to a change in 𝑉𝑉𝑡𝑡. 

Economically, the S-shaped function (7) implies that speculators’ trading intensity 

increases in line with the stock market’s volatility.1 

However, speculators are not isolated in their decision-making. As already observed by 

Keynes (1936), speculators tend to herd together in periods of heightened uncertainty. 

Moreover, it seems that certain price patterns are hard-wired into speculators’ complex 

(algorithmic) trading systems. If such a price pattern emerges, speculators’ trading 

systems generate correlated trading signals.2 In reality, there may be many price/return 

patterns that initiate correlated actions among market participants. To keep things as 

simple as possible, however, we assume that the correlation of speculators’ trading 

behavior depends on the strength of a single condition, given by  

𝐶𝐶𝑡𝑡 = ((𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡−1) − (𝑃𝑃𝑡𝑡−1 − 𝑃𝑃𝑡𝑡−2))2.                                                                              (8) 

According to (8), 𝐶𝐶𝑡𝑡 may take a particularly large value when a significant reversal of stock 

price changes occurs; say when a four percent price drop is followed by a three percent 

price increase. Clearly, a more developed version of our model may incorporate more 

                                                           
1 According to Murphy (1999), the reliability of technical trading signals increases with the trading volume 
of a stock market, i.e. a high trading volume indicates that the current trading signal is strong whereas a low 
trading volume indicates that the current trading signal is weak. Since simulations reveal that our model 
produces a high contemporaneous correlation between trading volume and volatility, an interesting model 
extension could be to condition speculators’ trading intensity on the trading volume of the stock market. See 
Westerhoff (2006) for an example in that direction. 
2 A well-known example in this respect concerns the stock market crash of October 1987, which, according 
to Greenwald and Stein (1991), Harris (1998) and Shiller (2015), was at least partially triggered by computer 
(program) trading, and could have been stopped by circuit breakers. More recent examples include the 
occurrence of so-called flash crashes, amplified by high-frequency traders who follow computerized trading 
systems. See Jacob Leal et al. (2016) and Jacob Leal and Napoletano (2019) for empirical evidence and 
interesting modeling approaches. Gomber and Zimmermann (2018) and Vassiloadis and Dounias (2018) 
provide insightful overviews of complex (algorithmic) trading systems. 
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than one condition. Moreover, these conditions may then evolve over time and/or contain 

probabilistic components.3 The correlation between speculators’ trading behavior is 

formalized as 

𝜌𝜌𝑡𝑡 = 𝑓𝑓𝑙𝑙 + 𝑓𝑓ℎ−𝑓𝑓𝑙𝑙

1+exp [𝑓𝑓𝑠𝑠(𝐶𝐶𝑡𝑡−𝐶𝐶̅)]
,                                                                                                (9) 

where 𝑓𝑓𝑙𝑙 and 𝑓𝑓ℎ determine the lower and upper boundary of 𝜌𝜌𝑡𝑡, with 0 ≤ 𝑓𝑓𝑙𝑙 < 𝑓𝑓ℎ ≤ 1, 

𝑓𝑓𝑠𝑠 > 0 describes the slope of (9), and 𝐶𝐶̅ > 0 marks the position of its midpoint. The greater 

the value of condition (8), the stronger the correlation of speculators’ trading behavior. If 

𝜌𝜌𝑡𝑡 approaches 1, speculators’ trading signals become fully correlated and, consequently, 

they submit identical orders. If 𝜌𝜌𝑡𝑡 approaches 0, speculators’ trading behavior becomes 

uncorrelated, implying that a substantial part of their orders cancel each other out.  

In principle, we can simulate the dynamics of our simple agent-based computational stock 

market model by using (1) to (9). For a larger number of speculators, however, simulations 

soon become rather time-consuming. Fortunately, our assumptions about speculators’ 

trading behavior conveniently enable us to summarize their excess demand by  

∑ 𝐷𝐷𝑡𝑡,𝑖𝑖
𝑁𝑁
𝑖𝑖=1 = 𝑁𝑁�𝑏𝑏(𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡−1) + 𝑐𝑐(𝐹𝐹 − 𝑃𝑃𝑡𝑡)� + 𝜎𝜎𝑡𝑡�𝑁𝑁 + 𝑁𝑁(𝑁𝑁 − 1)𝜌𝜌𝑡𝑡 𝜀𝜀𝑡𝑡,                                (10) 

where 𝜀𝜀𝑡𝑡~𝑁𝑁(0,1). As a result, we can therefore also simulate the model’s dynamics by 

iterating the following stochastic nonlinear dynamical system:  

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝑃𝑃𝑡𝑡+1 = 𝑃𝑃𝑡𝑡 + 𝑎𝑎�𝑁𝑁�𝑏𝑏(𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡−1) + 𝑐𝑐(𝐹𝐹 − 𝑃𝑃𝑡𝑡)� + 𝜎𝜎𝑡𝑡�𝑁𝑁 + 𝑁𝑁(𝑁𝑁 − 1)𝜌𝜌𝑡𝑡 𝜀𝜀𝑡𝑡�    

𝜎𝜎𝑡𝑡2 = 𝑒𝑒𝑙𝑙 + 𝑒𝑒ℎ−𝑒𝑒𝑙𝑙

1+exp [𝑒𝑒𝑠𝑠(𝑉𝑉𝑡𝑡−𝑉𝑉�)]
                                                                                            

  
𝑉𝑉𝑡𝑡 = 𝑑𝑑𝑉𝑉𝑡𝑡−1 + (1 − 𝑑𝑑)(𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡−1)2                                                                           

𝜌𝜌𝑡𝑡 = 𝑓𝑓𝑙𝑙 + 𝑓𝑓ℎ−𝑓𝑓𝑙𝑙

1+exp [𝑓𝑓𝑠𝑠(𝐶𝐶𝑡𝑡−𝐶𝐶̅)]
                                                                                            

𝐶𝐶𝑡𝑡 = ((𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡−1) − (𝑃𝑃𝑡𝑡−1 − 𝑃𝑃𝑡𝑡−2))2                                                                    

.                    (11) 

Note that speculators’ excess demand, and, therefore, the market maker’s price 

                                                           
3 As we will see in the next section, however, one condition may already be sufficient for our model to 
produce extreme price changes and, consequently, fat-tailed return distributions. We remark that we also 
experimented with other conditions. For instance, similar dynamics to those discussed in the next section 
may be observed if (8) is replaced by 𝐶𝐶𝑡𝑡 = 𝑔𝑔𝐶𝐶𝑡𝑡−1 + (1 − 𝑔𝑔)(𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡−1)2, where 0 < 𝑔𝑔 < 1 is a memory 
parameter. In relation to (6), however, our simulations suggest that the memory parameter has to be set to 
a rather low value, say 𝑔𝑔 = 0.05, implying that coordination among market participants critically hinges on 
the stock market’s short-run behavior. To save one parameter, we opted for specification (8). Of course, 
this aspect deserves more attention in future work, in particular along the lines indicated above. 
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adjustment, increases with 𝜎𝜎𝑡𝑡2 and 𝜌𝜌𝑡𝑡, which, in turn, depend on 𝑉𝑉𝑡𝑡 and on 𝐶𝐶𝑡𝑡, respectively.4 

It might be helpful to realize that 𝑉𝑉𝑡𝑡 changes only slowly over time, provided that the 

memory parameter 𝑑𝑑 is not too small. As a result, speculators’ trading intensity remains 

high during turbulent market periods, keeping volatility high. In contrast, 𝐶𝐶𝑡𝑡 may change 

quickly and take larger values only for brief moments of time. In such an event, 

speculators’ trading behavior becomes correlated and a larger price change may occur. 

This is exactly what we will see when we simulate our model in the next section.  

 
3 Time series properties of actual and simulated stock markets 

Before we turn to the dynamics of our model, let us briefly recap the behavior of actual 

stock markets. As is well known, actual stock markets are characterized by a number of 

prominent stylized facts, including (i) bubbles and crashes, (ii) excess volatility, (iii) fat-

tailed return distributions, (iv) serially uncorrelated returns and (v) volatility clustering. See 

Mantegna and Stanley (2000), Cont (2001) and Lux and Ausloos (2002) for detailed 

reviews. In the following, we briefly visualize the dynamics of three major stock markets. 

The left panels of Figure 1 depict the evolution of the DAX, the NIKKEI and the DJI from 

1980 to 2019. Each time series, downloaded from Refinitiv Datastream, comprises about 

10,000 daily observations. Despite the long-run upward trends of the DAX and the DJI, 

the boom-bust nature of all three stock markets is clearly striking.5 The right panels of 

Figure 1 present the corresponding return dynamics, defined as log price changes. 

Obviously, actual stock markets are quite volatile. For instance, the standard deviations 

of the return time series of the DAX, the NIKKEI and the DJI are given by 0.013, 0.017 

and 0.011, respectively. Moreover, there are a number of larger price changes. In 

                                                           
4 The excess demand also increases with the number of speculators. For 𝑎𝑎 = 𝛼𝛼/𝑁𝑁 and 𝑁𝑁 → ∞, however, 
the price adjustment equation reads 𝑃𝑃𝑡𝑡+1 = 𝑃𝑃𝑡𝑡 + 𝛼𝛼{�𝑏𝑏(𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡−1) + 𝑐𝑐(𝐹𝐹 − 𝑃𝑃𝑡𝑡)� + 𝜎𝜎𝑡𝑡�𝜌𝜌𝑡𝑡  𝜀𝜀𝑡𝑡}. Hence, it is 
possible to rescale our model such that its dynamics does not depend on the number of speculators. While 
we prefer to keep 𝑁𝑁 as a model parameter, it might be worthwhile to try to endogenize the number of (active) 
speculators in future work. See Iori (2002), Alfi et al. (2009), Blaurock et al. (2018) and Dieci et al. (2018) 
for examples in this direction.  
5 Bubbles and crashes are difficult to identify in real stock markets. However, Galbraiht (1994), Kindleberger 
and Aliber (2011) and Shiller (2015) stress that bubbles and crashes do exist in these markets. See Schmitt 
and Westerhoff (2017c) and Majewski et al. (2020) for attempts on how to capture the mispricing of actual 
stock markets.   
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particular, the DJI produced the largest daily loss (25.6 percent), while the NIKKEI 

produced the largest daily gain (13.2 percent). It is also apparent that periods of low 

volatility alternate with periods of high volatility. 

***** Figure 1 about here ***** 

Figure 2 documents a number of distributional and correlation properties of the DAX, the 

NIKKEI and the DJI, using the same color coding as in Figure 1. The top left panel of 

Figure 2 compares the distributions of normalized stock market returns with the 

distribution of standard normally distributed returns (black line). The top right panel of 

Figure 2 shows the same, except that we present the evidence on a log-linear scale. As 

can be seen, the distributions of actual stock market returns are unimodal, almost 

symmetric and bell-shaped. Relative to the standard normal distribution, however, the 

distributions of actual stock market returns possess more probability mass in the center 

and in the tails. This is also evident from the center left panel of Figure 2, which illustrates 

the cumulative distributions of normalized actual stock market returns together with the 

cumulative distribution of standard normally distributed returns (black line) on a log-log 

scale. The outer parts of the distribution of actual stock market returns can be surprisingly 

well fitted by a power law in the form 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏(|𝑝𝑝𝑒𝑒𝑡𝑡𝑟𝑟𝑝𝑝𝑟𝑟| > 𝑥𝑥) ≈ 𝑐𝑐𝑥𝑥−𝛼𝛼, where 𝛼𝛼 is the so-called 

tail index. Note that a smaller tail index indicates fatter tails. In the center right panel of 

Figure 2, we plot the Hill tail index estimator (Hill 1975) as a function of the largest returns 

in percent. Using the largest 5 percent of the observations, for instance, the tail index for 

the DAX, the NIKKEI and the DJI is given by 3.07, 3.09 and 3.20, respectively.6 The 

bottom left panel of Figure 2 shows the autocorrelation functions of raw returns (the gray 

lines represent the 95 percent confidence band). As can be seen, the autocorrelation 

coefficients of raw returns are not significant for almost all lags, indicating that the paths 

of the DAX, the NIKKEI and the DJI are close to a random walk. The bottom right panel 

of Figure 2 reports the autocorrelation coefficients of absolute returns. Since the 

autocorrelation coefficients of absolute returns are significant for more than 100 lags, we 

can conclude that volatility outbursts are quite persistent. 

***** Figure 2 about here ***** 

                                                           
6 Such estimates are representative for many different financial markets, see, e.g. Gopikrishnan et al. (1999) 
and Plearou et al. (1999). 
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Let us now illustrate the extent to which our simple agent-based computational model can 

replicate the dynamics of actual stock markets (a more detailed robustness analysis is 

presented in Appendix A). For this purpose, we have to determine the model’s 14 

parameters. In the first step, we decided to set 𝑁𝑁 = 100, 𝐹𝐹 = 0 and 𝑎𝑎 = 1. Roughly 

speaking, parameters 𝑁𝑁 and 𝑎𝑎 are scaling parameters, while parameter 𝐹𝐹 merely 

determines the level around which stock price fluctuations take place. Assuming 

furthermore that 𝑒𝑒𝑠𝑠 = 𝑓𝑓𝑠𝑠 = ∞ implies that the intensity of and the correlation between 

speculators’ trading signals jumps between their lower and upper boundaries. To fix the 

remaining nine model parameters, we conducted a tedious trial-and-error calibration 

exercise. In the end, we arrived at the following parameter values: 𝑏𝑏 = 0.00005, 𝑐𝑐 =

0.00001, 𝑑𝑑 = 0.87, 𝑒𝑒𝑙𝑙 = 0.00000055, 𝑒𝑒ℎ = 0.00000245, 𝑉𝑉� = 0.000125, 𝑓𝑓𝑙𝑙 = 0.0006,  𝑓𝑓ℎ =

0.055 and 𝐶𝐶̅ = 0.00257. Future work may try to estimate our model, e.g. via the method of 

simulated moments, as discussed by Franke and Westerhoff (2012, 2016) and Schmitt 

and Westerhoff (2017a, b).7 

Figures 3 and 4 portray the dynamics of three representative simulation runs. Each 

simulation run comprises 10,000 observations, corresponding to a time span of 40 years 

with 250 trading days per year. The first, second and third simulation runs differ only with 

respect to their random seeds. For comparability reasons, we selected the same layout 

for Figures 3 and 4 as we did for Figures 1 and 2. The left panels of Figure 3 show the 

evolution of three simulated stock markets in the time domain. As can be seen, simulated 

stock prices oscillate around their constant fundamental value, given by exp [𝐹𝐹] = 1. The 

amplitude of the boom-bust dynamics suggests that simulated stock prices tend to be “a 

factor 2” away from the fundamental value, a relation that is reported by Black (1986), 

Bouchaud et al. (2017) and Majewski et al. (2020) for actual stock markets, along with 

evidence that a self-correction of mispricing in stock markets can take several years.8 

Note that mispricing in the simulated stock market is also quite persistent. The right panels 

depict the corresponding return dynamics. On average, volatility is quite high in the 

                                                           
7 Of course, other estimation methods may also be useful, see, e.g., the work by Lamperti et al. (2018), Platt 
(2020), Kukacka and Kristoufek (2020) and Bertschinger and Mozzhorin (2020). 
8 The famous “factor 2” rule by Black (1986, p. 533) implies that the stock “price is more than half of value 
and less than twice value”. For our case, simulated stock prices should thus fluctuate in the interval 0.5 <
𝐹𝐹 = 1 < 2. 
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simulated stock markets. Although the fundamental value is constant, the standard 

deviations of the three return time series are given by 0.0124 (top), 0.0118 (center) and 

0.0117 (bottom), comparable to those reported for the DAX, the NIKKEI and the DJI. The 

same is true for extreme price changes, given, for instance, by 15.3 percent and -13 

percent for the first simulation run.  

***** Figure 3 about here ***** 

The first three panels of Figure 4 show that the distributions of simulated stock market 

returns are bell-shaped, yet possess more probability mass in their tails than warranted 

by a normal distribution. From the center right panel of Figure 4, we can conclude that the 

tail indices for the three simulated time series, taking again the largest 5 percent of the 

returns into account, range between 3.28 and 3.53, only somewhat higher than their 

empirical counterparts. As revealed by the bottom right panels of Figure 4, returns hardly 

display any kind of serial correlation, i.e. the evolution of simulated stock markets is close 

to a random walk. Accordingly, it is difficult to “beat the market”, an important (economic) 

property that holds for actual and simulated stock markets. The bottom right panel reveals 

that the autocorrelation coefficients of absolute returns are highly significant, up to 100 

lags. Of course, the ability of our simple agent-based computational stock market model 

to produce volatility clustering is already apparent from its return dynamics, depicted in 

Figure 3. 

***** Figure 4 about here ***** 

The Monte-Carlo study presented in Appendix A.1 suggests that we may indeed regard 

the simulation runs discussed above as representative simulation runs. Overall, we can 

thus conclude that our simple agent-based computational stock market model is able to 

match the stylized facts of stock markets in a systematic and robust manner.  

 

4 Functioning of the model 

Let us now explain the functioning of our model. Figure 5 depicts a snapshot of the 

dynamics of the first simulation run (750 observations, ranging from period 4351 to 5100). 

The left panels show the evolution of simulated stock prices and returns while the right 

panels show speculators’ trading intensity (variance) and their coordination (correlation). 
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Based on these panels, our model’s ability to match the stylized facts of stock markets 

may be understood as follows: 

• Bubbles and crashes: The intricate trading behavior of speculators, and in particular 

their reliance on technical and fundamental trading signals, creates significant bubbles 

and crashes. As can be seen in the top left panel of Figure 5, for instance, the stock 

market is overvalued up to around period 250 and then enters a significant bear market. 

While technical trading tends to drive stock prices away from their fundamental value, 

fundamental trading exercises a long-run mean reversion pressure.  

• Excess volatility: Since the fundamental value of the simulated stock market is 

constant, we have to regard all stock price changes as excessive. Clearly, once stock 

prices mirror their fundamental value, there is no need for further stock market 

adjustments. However, speculators constantly receive new trading signals, which 

translate into new speculative orders and prompt the market maker to quote new stock 

prices, as visible in the left panels of Figure 5. 

• Serially uncorrelated returns: Due to speculators’ heterogeneous trading behavior – 

each speculator obtains her own individual trading signals, either from private market 

research or from following complex (algorithmic) trading systems – the path of 

simulated stock prices closely resembles a random walk, implying that (log) price 

changes are serially uncorrelated. 

• Fat-tailed return distributions: Occasionally, however, we observe a breakdown of 

speculators’ heterogeneity. For instance, salient price patterns may result in panic-

induced herding behavior, leading to a spontaneous synchronization of speculators’ 

trading behavior. Moreover, certain price signals may be hard-wired into speculators’ 

complex (algorithmic) trading system, producing coordinated buying or selling 

behavior. One such example occurs shortly after period 250. As evident from the 

bottom left panel of Figure 5, the stock market decreases by more than 12 percent. The 

bottom right panel of Figure 5 illustrates that this event is associated with a strong 

correlation between speculators’ trading signals.9 

• Volatility clustering: If volatility picks up, speculators extract stronger trading signals out 

                                                           
9 Note that a high correlation between speculators’ trading behavior does not always lead to a strong stock 
price change. For this to be the case, speculators have to coordinate on a significant trading signal. 
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of past price movements. Since this leads to more forceful trading behavior, volatility 

may remain high. Moreover, speculators may overreact to their trading signals in 

periods of heightened volatility since they are agitated and thus classify their trading 

signals as relatively important. Such behavior lends volatility outbursts persistency. In 

fact, note that in periods when speculators’ trading intensity is high (top right panel of 

Figure 5), the variability of stock prices also tends to be high (bottom left panel of Figure 

5).10 
***** Figure 5 about here ***** 

 
5 Circuit breakers 
Understanding the functioning of stock markets is important. In particular, policymakers 

need to develop a sound economic knowledge of what really drives stock markets if they 

plan to implement new regulatory measures. Since our model is able to replicate a number 

of important stylized facts of stock markets, we may use it as an artificial laboratory to 

study the effects of regulatory policy measures. In this paper, we explore whether 

policymakers may stabilize the dynamics of stock markets by implementing circuit 

breakers.11  Circuit breakers (trading halts) automatically interrupt the trading process for 

a given period of time when price changes are about to exceed a pre-specified limit. 

Policymakers hope that, by interrupting an overheated market, speculators are given time 

to cool off and reassess market conditions, enabling the trading process to resume in a 

more orderly manner after the interruption. Following the stock market crash of 1987, 

circuit breakers were widely implemented and are now in practice in many leading stock 

markets around the world. See Kim and Yang (2004) and Sifat and Mohamad (2019) for 

surveys. 

Here we follow Westerhoff (2003, 2006, 2008) and implement circuit breakers as follows. 

                                                           
10 Note that speculators’ trading intensity (variance) may remain high for extended periods of time, thereby 
producing lasting volatility outbreaks, while their coordination (correlation) spikes only occasionally, forming 
the base for rare but extreme returns. We discuss this aspect in more detail in Appendix A.2.  
11 As pointed out by an anonymous referee, it might also be worthwhile to use our model to study the effects 
of margin requirements, leverage cycles and short-selling constraints. For inspiring work in this direction, 
see, for instance, Poledna et al. (2014), Aymanns et al. (2016) and  Sng et al. (2020). Aymanns et al. (2018) 
and Westerhoff and Franke (2018) discuss in more detail how policymakers may use models with 
heterogeneous interacting agents as test beds to evaluate the effectiveness of regulatory policies. 
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Let parameter 𝑠𝑠 stand for the maximum allowed log price change for a given trading 

period. Then the market maker’s price adjustment rule turns into 

𝑃𝑃𝑡𝑡+1 = �
𝑃𝑃𝑡𝑡 + 𝑠𝑠                          𝑖𝑖𝑓𝑓               𝑎𝑎 ∑ 𝐷𝐷𝑡𝑡,𝑖𝑖 > 𝑠𝑠𝑁𝑁

𝑖𝑖=1

𝑃𝑃𝑡𝑡 + 𝑎𝑎 ∑ 𝐷𝐷𝑡𝑡,𝑖𝑖
𝑁𝑁
𝑖𝑖=1         𝑖𝑖𝑓𝑓  − 𝑠𝑠 < 𝑎𝑎 ∑ 𝐷𝐷𝑡𝑡,𝑖𝑖 < 𝑠𝑠𝑁𝑁

𝑖𝑖=1

𝑃𝑃𝑡𝑡 − 𝑠𝑠                          𝑖𝑖𝑓𝑓          − 𝑠𝑠 < 𝑎𝑎 ∑ 𝐷𝐷𝑡𝑡,𝑖𝑖
𝑁𝑁
𝑖𝑖=1

.                                                                    (12) 

If policymakers set 𝑠𝑠 = 0.05, for instance, then the market maker has to interrupt the 

trading process when the log price is about to either increase or decrease by more than 5 

percent. The stock market reopens in the next trading period, i.e. there are no further 

transactions in a period when trading has been interrupted. For simplicity, we assume that 

all orders that have not been executed are deleted. 

Figure 6 depicts a number of possible effects of circuit breakers. The top panels show the 

evolution of stock prices and returns for s = 0.05. For comparability, the simulation run is 

based on the same random seed as the first simulation run in Figure 3 (top panels, marked 

blue). First of all, circuit breakers manage to limit extreme returns to 5 percent. However, 

there are further important effects. The blue lines in the bottom panels of Figure 6 report 

the stock market’s distortion, defined as 𝑑𝑑𝑖𝑖𝑠𝑠 = 1
𝑇𝑇
∑ |𝑃𝑃𝑡𝑡 − 𝐹𝐹|𝑇𝑇
𝑡𝑡=1 , and volatility, defined as 

𝑣𝑣𝑝𝑝𝑣𝑣 = 1
𝑇𝑇
∑ |𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡−1|𝑇𝑇
𝑡𝑡=1 , for 0 < 𝑠𝑠 < 0.1. The sample length is set to 𝑇𝑇 = 100,000 

observations and parameter s is increased in 25 discrete steps. As circuit breakers 

become more restrictive, both volatility and distortion decline. In the extreme case of 𝑠𝑠 =

0, volatility is completely eliminated. If we furthermore assume that the initial value of the 

stock price is identical to its fundamental value, then circuit breakers also suppress the 

emergence of any kind of distortion.  

Let us briefly explain how circuit breakers affect the model’s stock market dynamics. 

Obviously, circuit breakers have an immediate direct effect: if policymakers set 𝑠𝑠 = 0.05, 

for instance, there will be no stock price change larger than 5 percent. Importantly, 

however, there are also indirect effects that amplify the direct effect. First, circuit breakers 

naturally reduce the strength of speculators’ technical trading signals by preventing sharp 

stock price changes. Technically, this effect originates from Equation (5). Second, circuit 

breakers reduce speculators’ trading intensity (variance) by reducing the stock market’s 

volatility, as can be concluded from Equations (6) and (7). Third, circuit breakers prevent 
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(or at least deter) speculators from displaying panic-induced herding behavior and/or from 

coordinating on certain salient price patterns that are hard-wired into their complex 

(algorithmic) trading systems, as is evident from Equations (8) and (9).  

***** Figure 6 about here ***** 

However, Fama (1989) argues that stock markets are efficient and thus warns that circuit 

breakers may only lead to a delayed price discovery and to a spillover of volatility. Here, 

volatility spillover means that a stock market that hits its upper or lower price boundary in 

the current trading period will experience greater volatility in the next trading period, since 

the necessary price adjustment has not yet been fulfilled. Our model allows us to address 

this issue, at least partially, by assuming that the stock market’s fundamental value is not 

constant, but evolves in the form of a random walk. Accordingly, we specify the stock 

market’s log fundamental value by  

𝐹𝐹𝑡𝑡 = 𝐹𝐹𝑡𝑡−1 + 𝑟𝑟𝑡𝑡,                                                                                                               (13) 

where the fundamental shocks 𝑟𝑟𝑡𝑡 that hit the stock market are normally distributed with 

mean zero and constant standard deviation 𝜎𝜎𝐹𝐹. The blue, green and red lines depicted in 

the bottom lines of panels of Figure 6 are computed on the basis of 𝜎𝜎𝐹𝐹 = 0, 𝜎𝜎𝐹𝐹 = 0.006 

and 𝜎𝜎𝐹𝐹 = 0.012. As reported in Section 3, the standard deviations of actual and simulated 

stock markets returns hover around 0.012. Assuming that the stock market’s excess 

volatility is given by a factor of two (Shiller 2015), a reasonable guess for the stock 

market’s fundamental volatility may be given by 𝜎𝜎𝐹𝐹 = 0.006. In order to push our analysis 

to the limit, we also explore the case 𝜎𝜎𝐹𝐹 = 0.012.  

One important finding of our simulations is that circuit breakers may reduce the stock 

market’s volatility, independently of its fundamental volatility. Another important finding of 

our simulations is that circuit breakers may increase the stock market’s distortion if they 

are too restrictive. To put it differently, stock markets apparently need some price 

flexibility, though not a perfect price flexibility. The reason behind this outcome is that 

circuit breakers prevent technical and fundamental orders. If the fundamental value 

evolves randomly, at least some fundamental orders are needed for the stock price to be 

able to track its fundamental value. However, even for 𝜎𝜎𝐹𝐹 = 0.012, at least a mild reduction 

of the stock market’s volatility and distortion is possible. Fundamental values are 

presumably less volatile than implied by 𝜎𝜎𝐹𝐹 = 0.012 and thus circuit breakers seem to be 
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a useful tool for policymakers to stabilize stock markets. In this sense, our results 

contradict the hypothesis of a delayed price discovery process and a volatility spillover, 

as put forward by Fama (1989). Interestingly, the results presented in Westerhoff (2003, 

2006, 2008) are quite similar to ours, despite resting on different stock market models. 

See also Yeh and Yang (2010, 2013) and Jacob Leal and Napoletano (2019) for more 

work in this direction. 

 
6 Conclusions 

Galbraiht (1994), Kindleberger and Aliber (2011) and Shiller (2015) emphatically stress 

that the boom-bust nature of stock markets as well as their excessively volatile behavior 

and tendency to produce occasionally very large price changes may be quite harmful to 

the real economy. In this paper, we therefore develop a simple agent-based computational 

model that may help us to foster our understanding of the functioning of stock markets. 

Within our model, stock prices adjust with respect to the excess demand of speculators, 

who, in turn, derive their trading signals either from private market research or from 

applying complex (algorithmic) trading systems. Our modeling strategy is inspired by the 

work of Gode and Sunder (1993), Cont and Bouchaud (2000), Iori (2002) and Alfi et al. 

(2009) in the sense that we use a rather minimalistic approach to represent speculators’ 

trading behavior. In particular, we formalize speculators’ orders via multivariate normally 

distributed random variables, which allows us to acknowledge speculators’ use of 

technical and fundamental analysis and to condition the intensity and correlation of their 

trading activities on the stock market’s past behavior.  

Despite the simplicity of our approach, simulations reveal that our model is able to mimic 

a number of important stylized facts of stock markets and, consequently, may be deemed 

to be validated. One crucial model insight is that we may regard stock markets as self-

exciting systems. If volatility picks up, speculators trade more aggressively, an outcome 

that keeps volatility high. Moreover, certain salient price patterns may prompt complex 

(algorithmic) trading systems to trigger correlated trading signals or may result in panic-

induced herding behavior, yielding extreme price changes. Put differently, stock markets 

display a life of their own and their dynamics contains a larger endogenous component 
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that policymakers may seek to influence. In fact, simulations reveal that policymakers may 

stabilize the dynamics of stock markets by implementing circuit breakers. 

We conclude our paper by pointing out a few avenues for future research. The simplicity 

of our model allows for a number of straightforward model extensions. For instance, one 

may try to endogenize the number of (active) speculators, e.g. by considering interactions 

between different stock markets. Alternatively, one may consider that the correlation of 

speculators’ trading signals does not depend on a single, deterministic condition, but on 

multiple conditions, possibly time-varying and containing stochastic elements. Although 

our model contains a larger number of parameters, it might be interesting to try to estimate 

it. The method of simulated moments seems to us to be quite appropriate for such an 

endeavor. We hope that our paper stimulates more work in this important and exciting 

research direction. 

 

Appendix A: Robustness analysis 

The robustness analysis we carry out in this appendix consists of two parts. In Appendix 

A.1, we first conduct a Monte Carlo study to demonstrate that the simulation runs 

presented in the main body of our paper may in fact be deemed as representative 

simulation runs. In Appendix A.2, we then conduct a sensitivity analysis to explain in more 

detail how certain building blocks of our model may affect its dynamics. 

Appendix A.1: Monte Carlo study 

Our Monte Carlo study rests on 5,000 simulation runs with 10,000 observations each, 

generated with the parameter setting introduced in Section 3 and different random seeds. 

Based on these simulations, Figure 7 shows probability density functions for volatility, 

distortion, the tail index at the 5 percent level, the autocorrelation coefficient of raw returns 

at lag 1 and the autocorrelation coefficients of absolute returns at lag 5 and at lag 95, 

respectively. Using these summary statistics (moments), we seek to capture a number of 

important stylized facts of stock markets, as discussed in Sections 3 and 4.  

Our measure of volatility is defied as in Section 5, i.e. 𝑣𝑣𝑝𝑝𝑣𝑣 = 1
𝑇𝑇
∑ |𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡−1|𝑇𝑇
𝑡𝑡=1 . As can be 

seen from the top left panel of Figure 7, our volatility estimates hover around a value of 
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about 0.0082. Further computations reveal that 90 percent of the volatility estimates are 

located in the range 0.0080 and 0.0096. To put these numbers into perspective, note that 

the volatility estimate for the DAX, at 0.0093, fits nicely into this interval. The top right 

panel of Figure 7 portrays the probability density function of the simulated stock markets’ 

distortion, defined as 𝑑𝑑𝑖𝑖𝑠𝑠 = 1
𝑇𝑇
∑ |𝑃𝑃𝑡𝑡 − 𝐹𝐹|𝑇𝑇
𝑡𝑡=1 . Apparently, the average mispricing of 

simulated stock markets is usually above 10 percent, and can easily increase to as much 

as 30 percent or more. While we cannot compute the distortion for the time series 

discussed in Section 3, we remark that Schmitt and Westerhoff (2017b) report that the 

distortion of the S&P500 between 1871 and 2015 was about 30 percent.    

The center left panel of Figure 7 depicts the probability density function of our estimates 

of the tail index (at the 5 percent level). The median estimate is 3.55, while the 90 percent 

confidence interval ranges from 3.2 to 3.88. According to Lux and Ausloos (2002), the tail 

indices for most financial market data scatter between 3 and 4. In this sense, our simple 

agent-based computational model is able to replicate the fat-tail property of stock market 

returns (though Gopikrishnan et al. 1999 and Plearou et al. 1999 stress that the tail indices 

of major stock markets are somewhat closer to 3). The center right panel of Figure 7 

reveals that the estimated autocorrelation coefficients of raw returns at lag 1 are near 

zero. To be more precise, 90 percent of the estimated autocorrelation coefficients fall into 

the interval -0.03 and 0.03, with a median estimate of about 0.01, implying that the paths 

of simulated stock prices are indeed close to random walks. 

The bottom two panels show probability density functions for the autocorrelation 

coefficients of absolute returns at lag 5 and lag 95, respectively, demonstrating our 

model’s ability to generate volatility clustering and long memory effects. For instance, 90 

percent of the estimated autocorrelation coefficients of absolute returns at lag 5 are 

between 0.7 and 0.22, while more than 95 percent of the estimated autocorrelation 

coefficients of absolute returns at lag 95 are still larger than 0.04. Hence, the volatility 

outbursts produced by our model are quite persistent. 

***** Figure 7 about here ***** 

 
Appendix A.2: Sensitivity analysis 
Finally, we outline how certain building blocks of our model may affect its dynamics. For 
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convenience, the top panels of Figure 8 show simulated stock prices and the 

corresponding return dynamics for the full model, using the same parameter setting and 

random seed as in the top panels of Figure 3. As demonstrated above, our model is able 

to replicate key stylized facts of stock markets, in particular fat-tailed return distributions 

and volatility clustering. The center panels of Figure 8 report the dynamics of our model 

when its coordination mechanism is switched off (achieved by setting 𝜌𝜌𝑡𝑡 = 𝑓𝑓𝑙𝑙 = 0.0006). 

Apparently, the model is still able to produce lasting volatility outbursts, yet its ability to 

generated extreme returns diminishes. The bottom panels of Figure 8 present the 

dynamics of the model when the trading intensity mechanism is switched off (we now fix 

𝜎𝜎𝑡𝑡2 = 0.000003).12 Obviously, our model is able to generate extreme returns, yet its ability 

to produce lasting volatility outbursts is basically gone. More precisely, the 90 percent 

confidence intervals of simulated autocorrelation coefficients of absolute returns at lag 5 

and at lag 95 are 0.16 and 0.21 and 0.03 and 0.09 for the model without the coordination 

mechanism and 0.00 and 0.04 and -0.02 and 0.02 without the trading intensity 

mechanism. Moreover, the 90 percent confidence intervals for the tail index (at the 5 

percent level) are 3.73 and 4.59 for the model without the coordination mechanism and 

3.26 and 3.78 without the trading intensity mechanism. To conclude, our simple agent-

based computational model is only able to match the stylized facts of stock markets when 

the coordination and the trading intensity mechanism act together.  
***** Figure 8 about here ***** 

 
References 
Alfi, V., Cristelli, M., Pietronero, L. and Zaccaria, A. (2009): Minimal agent based model 

for financial markets I. European Physical Journal B, 67, 385-397. 
Anufriev, M., Bao, T. and Tuinstra, J. (2016): Microfoundations for switching behavior in 

heterogeneous agent models: an experiment. Journal of Economic Behavior and 
Organization, 129, 74-99. 

Arthur, B., Holland, J., LeBaron, B., Palmer, R. and Tayler, P. (1997): Asset pricing under 
endogenous expectations in an artificial stock market. In: Arthur, B., Durlauf, S. and 
Lane, D. (eds.): The economy as an evolving complex system II. Addison-Wesley, 
Reading, 15-44. 

Aymanns, C., Farmer, D., Kleinnijenhuis, A. and Wetzer, T. (2018): Models of financial 
stability and their application in stress tests. In: Hommes, C. and LeBaron, B. (eds.): 

                                                           
12 Our model is also able to generate extreme returns for lower values of   𝜎𝜎𝑡𝑡2 = 0.000003. However, we 
found that this number matches actual tail indices quite well. 



21 
 

Handbook of computational economics: heterogeneous agent modeling. North-
Holland, Amsterdam, 329-391. 

Aymanns, C., Caccioli, F., Farmer, D. and Tan, V. (2016): Taming the Basel leverage 
cycle. Journal of Financial Stability, 27, 263-277. 

Bertschinger, N. and Mozzhorin, I. (2020): Bayesian estimation and likelihood-based 
comparison of agent-based volatility models. Journal of Economic Interaction and 
Coordination, in press. 

Beja, A. and Goldman, M. (1980): On the dynamic behaviour of prices in disequilibrium. 
Journal of Finance, 34, 235-247. 

Black, F. (1986): Noise. Journal of Finance, 41, 528-543. 
Blaurock, I., Schmitt, N. and Westerhoff, F. (2018): Market entry waves and volatility out-

bursts in stock markets. Journal of Economic Behavior and Organization, 153, 19-37. 
Bouchaud, J.-P., Ciliberti, S., Lemperiere, Y., Majewski, A., Seager, P. and Sin Ronia, K. 

(2017): Black was right: price is within a factor 2 of value. Available at SSRN: 
https://ssrn.com/abstract=3070850. 

Brock, W. and Hommes, C. (1998): Heterogeneous beliefs and routes to chaos in a simple 
asset pricing model. Journal of Economic Dynamics and Control, 22, 1235-1274. 

Chang, I. and Stauffer, D. (1999): Fundamental judgement in Cont-Bouchaud herding 
model of financial fluctuations. Physica A, 264, 294-298. 

Chen, S.-H. and Yeh, C.-H. (2001): Evolving traders and the business school with genetic 
programming: a new architecture of the agent-based artificial stock market. Journal of 
Economic Dynamics and Control, 25, 363-393. 

Chiarella, C. (1992): The dynamics of speculative behavior. Annals of Operations 
Research, 37, 101-123. 

Chiarella, C. and Iori, G. (2002): A simulation analysis of the microstructure of double 
auction markets. Quantitative Finance, 2, 1-8. 

Cont, R. (2001): Empirical properties of asset returns: stylized facts and statistical issues. 
Quantitative Finance, 1, 223-236. 

Cont, R. and Bouchaud, J.-P. (2000): Herd behavior and aggregate fluctuations in 
financial markets. Macroeconomic Dynamics, 4, 170-196.  

Daniels, M., Farmer, D., Gillemot, L., Iori, G. and Smith, E. (2003): Quantitative model of 
price diffusion and market friction based on trading as a mechanistic random process. 
Physical Review Letters, 90, 108102. 

Day, R. and Huang, W. (1990): Bulls, bears and market sheep. Journal of Economic 
Behavior and Organization, 14, 299-329. 

De Grauwe, P., Dewachter, H. and Embrechts, M. (1993): Exchange rate theory: chaotic 
models of foreign exchange markets. Blackwell, Oxford. 

Delli Gatti, D., Fagiolo, G., Gallegati, M., Richiardi M. and Russo, A. (2018): Agent-based 
models in economics: a toolkit. Cambridge University Press, Cambridge. 

Demirer, R., Demos, G., Gupta, R. and Sornette, D. (2019): On the predictability of stock 
market bubbles: evidence from LPPLS confidence multi-scale indicators. Quantitative 
Finance, 19, 843-858. 



22 
 

Dieci, R. and He, X.-Z. (2018): Heterogeneous agent models in finance. In: Hommes, C. 
and LeBaron, B. (eds.): Handbook of computational economics: heterogeneous agent 
modeling. North-Holland, Amsterdam, 257-328. 

Dieci, R., Schmitt, N. and Westerhoff, F. (2018): Interactions between stock, bond and 
housing markets. Journal of Economic Dynamics and Control, 91, 43-70. 

Diem, C., Pichler, A., Thurner, S. (2020): What is the minimal systemic risk in financial 
exposure networks? Journal of Economic Dynamics and Control, 116, 103900. 

Fagiolo, G., Guerini, M., Lamperti, F., Moneta, A. and Roventini, A. (2017): Validation of 
agent-based models in economics and finance. In: Beisbart, C. and Saam, N. (eds.): 
Computer simulation validation. Springer, Berlin, 763-787. 

Fama, E. (1989): Perspectives on October 1987, or, what did we learn from the crash? In: 
Kampuis, R. Kormendi, R. and Watson, J. (eds.): Black Monday and the future of 
financial markets. Irwin, Homewood, 71-82. 

Farmer, D. and Joshi, S. (2002): The price dynamics of common trading strategies. 
Journal of Economic Behavior and Organization, 49, 149-171. 

Farmer, D., Patelli, P. and Zovko, I. (2005a): The predictive power of zero intelligence in 
financial markets. Proceedings of the National Academy of Sciences, 102, 2254-2259. 

Farmer, D., Gillemot, l., Iori, G., Krishnamurthy, S., Smith, E. and Daniels, M. (2005b): A 
random order placement model of price formation in the continuous double auction. In: 
Blume, L. and Durlauf, S. (eds.): The economy as an evolving complex system, III: 
current perspectives and future directions. Oxford University Press, Oxford, 133-173. 

Franke, R. and Westerhoff, F. (2012): Structural stochastic volatility in asset pricing 
dynamics: estimation and model contest. Journal of Economic Dynamics and Control, 
36, 1193-1211. 

Franke, R. and Westerhoff, F. (2016): Why a simple herding model may generate the 
stylized facts of daily returns: explanation and estimation. Journal of Economic 
Interaction and Coordination, 11, 1-34. 

Galbraiht, J. K. (1994): A short history of financial suphoria. Penguin Books, London. 
Gode, D. and Sunder, S. (1993): Allocative efficiency of markets with zero-intelligence 

traders: market as a partial substitute for individual rationality. Journal of Political 
Economy, 101, 119-137. 

Gode, D. and Sunder, S. (1997): What makes markets allocationally efficient? Quarterly 
Journal of Economics, 112, 603-630.  

Gomber, P. and Zimmermann, K. (2018): Algorithmic trading in practice. In: Chen, S.-H., 
Kaboudan, M. and Du, Y.-R. (eds.): The Oxford handbook on computational economics 
and finance, Oxford University Press, Oxford, 311-332. 

Graham, B. and Dodd, D. (1951): Security analysis. McGraw-Hill, New York. 
Greenwald, B. and Stein, J. (1991): Transactional risk, market crashes, and the role of 

circuit breakers. Journal of Business 64, 443-462.  
Gopikrishnan, P., Plerou, V., Amaral, L., Meyer, M. and Stanley, E. (1999): Scaling of the 

distributions of fluctuations of financial market indices. Physical Revue E, 60, 5305-
5316. 

Guerini, M. and Moneta, A. (2017): A method for agent-based models validation. Journal 

http://dx.doi.org/10.1162/003355397555307


23 
 

of Economic Dynamics and Control, 82, 125-141. 
Harris, L. (1998): Circuit breakers and program trading limits: what have we learned? In: 

Litan, R. and Santomero, A. (eds.): Brookings-Wharton papers on financial services. 
Brookings Institution Press, Washington, 17-64. 

Hill, B. (1975): A simple general approach to inference about the tail of a distribution. 
Annals of Statistics, 3, 1163-1174. 

Hommes, C. (2011): The heterogeneous expectations hypothesis: some evidence from 
the lab. Journal of Economic Dynamics and Control, 35, 1-24. 

Iori, G. (2002): A microsimulation of traders activity in the stock market: the role of 
heterogeneity, agents’ interactions and trade frictions. Journal of Economic Behavior 
and Organization, 49, 269-285. 

Iori, G. and Porter, J. (2018): Agent-based modeling for financial markets. In: Chen, S.- 
H., Kaboudan, M. and Du, Y.-R. (eds.): The Oxford handbook of computational 
economics and finance. Oxford University Press, Oxford, 635-666. 

Jacob Leal, S., Napoletano, M., Roventini, A. and Fagiolo, G. (2016): Rock around the 
clock: an agent-based model of low- and high-frequency trading. Journal of 
Evolutionary Economics, 26, 49-76 

Jacob Leal, S. and Napoletano, M. (2019): Market stability vs. market resilience: 
regulatory policies experiments in an agent-based model with low- and high-frequency 
trading. Journal of Economic Behavior and Organization, 157, 15-41. 

Keynes, J.M. (1936): The general theory of employment, interest, and money. Harcourt, 
Brace and Company, New York. 

Kim, Y. and Yang, J. (2004): What makes circuit breakers attractive to financial markets? 
A survey. Financial Markets, Institutions and Instruments, 13, 109-146. 

Kindleberger, C. and Aliber, R. (2011): Manias, panics, and crashes: a history of financial 
crises. Wiley, New Jersey. 

 Kukacka, J. and Kristoufek, L. (2020):  Do ‘complex’ financial models really lead to 
complex dynamics? Agent-based models and multifractality. Journal of Economic 
Dynamics and Control, 113, 103855. 

Ladley, D. (2012): Zero intelligence in economics and finance. Knowledge Engineering 
Review, 27, 273-286. 

Ladley, D., Lensberg, T., Palczewski, J. and Schenk-Hoppe, K. R. (2015): Fragmentation 
and stability of markets. Journal of Economic Behavior and Organization, 119, 466-
481. 

Ladley, D. (2020): The high frequency trade off between speed and sophistication. Journal 
of Economic Dynamics and Control, 116, 103912. 

Lamperti, F., Roventini, A., and Sani, A. (2018): Agent-based model calibration using 
machine learning surrogates. Journal of Economic Dynamics and Control, 90, 366-389. 

LeBaron, B., Arthur, B. and Palmer, R. (1999): Time series properties of an artificial stock 
market. Journal of Economic Dynamics and Control, 23, 1487-1516. 

Lo, A., Mamaysky, H. and Wang, J. (2000): Foundations of technical analysis: 
computational algorithms, statistical inference, and empirical implementation. Journal 
of Finance, 4, 1705-1765. 



24 
 

Lux, T. (1995): Herd behaviour, bubbles and crashes. Economic Journal, 105, 881-896. 
Lux, T. and Ausloos, M. (2002): Market fluctuations I: scaling, multiscaling, and their 

possible origins. In: Bunde, A., Kropp, J. and Schellnhuber, H. (eds.): Science of 
disaster: climate disruptions, heart attacks, and market crashes. Springer, Berlin, 373-
410. 

Lux, T. and Zwinkels, R. (2018): Empirical validation of agent-based models. In: Hommes, 
C. and LeBaron, B. (eds.): Handbook of computational economics: heterogeneous 
agent modeling. North-Holland, Amsterdam, 437-482. 

Majewski, A., Ciliberti, S. and Bouchaud, J.-P. (2020): Co-existence of trend and value in 
financial markets: estimating an extended Chiarella model. Journal of Economic 
Dynamics and Control, 112, 103791. 

Mantegna, R. and Stanley, E. (2000): An introduction to econophysics. Cambridge 
University Press, Cambridge. 

Manzan, S. and Westerhoff, F. (2005): Representativeness of news and exchange rate 
dynamics. Journal of Economic Dynamics and Control, 29, 677-689. 

Menkhoff, L. and Taylor, M. (2007): The obstinate passion of foreign exchange 
professionals: technical analysis. Journal of Economic Literature, 45, 936-972. 

Murphy, J. (1999): Technical analysis of financial markets. New York Institute of Finance, 
New York. 

Palmer, R., Arthur, B., Holland, J., LeBaron, B. and Tayler, P. (1994): Artificial economic 
life: a simple model of a stock market. Physica D, 75, 264-274. 

Platt, D. (2020): A comparison of economic agent-based model calibration methods. 
Journal of Economic Dynamics and Control, 113, 103859. 

Plerou, V., Gopikrishnan, P., Amaral, L., Meyer, M. and Stanley, E. (1999): Scaling of the 
distribution of price fluctuations of individual companies. Physical Revue E, 60, 6519-
6529. 

Poledna, S., Thurner, S., Farmer, D. and Geanakoplos, J. (2014): Leverage-induced 
systemic risk under Basle II and other credit risk policies. Journal of Banking and 
Finance, 42, 199-212. 

Raberto, M., Cincotti, S., Focardi, S. and Marchesi, M. (2001): Agent-based simulation of 
a financial market. Physica A, 299, 319-327. 

Schmitt, N. (2020): Heterogeneous expectations and asset price dynamics. 
Macroeconomic Dynamics, forthcoming. 

Schmitt, N. and Westerhoff, F. (2017a): Heterogeneity, spontaneous coordination and 
extreme events within large-scale and small-scale agent-based financial market 
models. Journal of Evolutionary Economics, 27, 1041-1070. 

Schmitt, N. and Westerhoff, F. (2017b): Herding behaviour and volatility clustering in 
financial markets. Quantitative Finance, 17, 1187-1203. 

Schmitt, N. and Westerhoff, F. (2017c): On the bimodality of the distribution of the S&P 
500's distortion: empirical evidence and theoretical explanations. Journal of Economic 
Dynamics and Control, 80, 34-53. 

Schmitt, N., Tramontana, F. and Westerhoff, F. (2020): Nonlinear asset-price dynamics 
and stabilization policies. Nonlinear Dynamics, in press. 



25 
 

Shiller, R. (2015): Irrational exuberance. Princeton University Press, Princeton. 
Sifat, I. and Mohamad, A. (2019): Circuit breakers as market stability levers: a survey of 

research, praxis, and challenges. International Journal of Finance and Economics, 24, 
1130-1169. 

Sng, H., Zhang, Y. and Zheng, H. (2020): Margin trade, short sales and financial stability. 
Journal of Economic Interaction and Coordination, 15, 673-702. 

Stanek, F. and Kukacka, J. (2018): The impact of the Tobin tax in a heterogeneous agent 
model of the foreign exchange market. Computational Economics, 51, 856-892. 

Stauffer, D. and Penna, T. (1998): Crossover in the Cont-Bouchaud percolation model for 
market fluctuations. Physica A, 256, 284. 

Stauffer, D. and Sornette, D. (1999): Self-organized percolation model for stock market 
fluctuation. Physica A, 271, 496-506. 

Stauffer, D. and Jan, N. (2000): Sharp peaks in the percolation model for the stock 
markets. Physica A, 277, 215-219. 

Vassiliadis, V and Dounias, G. (2018): Algorithmic trading based on biologically inspired 
algorithms. In: Chen, S.-H., Kaboudan, M. and Du, Y.-R. (eds.): The Oxford handbook 
on computational economics and finance. Oxford University Press, Oxford, 295-310. 

Westerhoff, F. (2003): Speculative markets and the effectiveness of price limits. 
Journal of Economic Dynamics and Control, 28, 493-508. 

Westerhoff, F. (2006): Technical analysis based on price-volume signals and the power 
of trading breaks. International Journal of Theoretical and Applied Finance, 9, 227-244. 

Westerhoff, F. (2008): The use of agent-based financial market models to test the 
effectiveness of regulatory policies. Jahrbücher für Nationalökonomie und Statistik 
(Journal of Economics and Statistics), 228, 195-227. 

Westerhoff, F. and Franke, R. (2018): Agent-based models for policy analysis: two 
illustrative examples. In: Chen, S.-H., Kaboudan, M. and Du, Y.-R. (eds.): The Oxford 
handbook of computational economics and finance. Oxford University Press, Oxford, 
520-558. 

Westphal, R. and Sornette, D. (2020): Market impact and performance of arbitrageurs of 
financial bubbles in an agent-based model. Journal of Economic Behavior and 
Organization, 171, 1-23. 

Xing, G. and Ladley, D. (2019): Noise trading and market stability. Available at SSRN: 
https://ssrn.com/abstract=3415141 

Yeh, C.-H. and Yang, C.-Y. (2010): Examining the effectiveness of price limits in an 
artificial stock market. Journal of Economic Dynamics and Control, 34, 2089-2108. 

Yeh, C.-H. and Yang, C.-Y. (2013): Do price limits hurt the market? Journal of Economic 
Interaction and Coordination, 8, 125-153. 

Zeeman, E.C. (1974): On the unstable behaviour of stock exchanges. Journal of 
Mathematical Economics, 1, 39-49. 

Zhang, Q., Sornette, D. and Zhang, H. (2019): Anticipating critical transitions of the 
housing market: new evidence from China. European Journal of Finance, 25, 1251-
1276. 



26 
 

 
Figure 1: Time series dynamics of actual stock markets. The left panels show the 

evolution of the DAX, the NIKKEI and the DJI from 1980 to 2019, comprising about 10,000 

daily observations. The right panels show the corresponding return dynamics. 
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Figure 2: Distributional and correlation properties of actual stock markets. The 

panels show a number of distributional and correlation properties of the DAX, the NIKKEI 

and the DJI. The same data set and color coding as in Figure 1. 
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Figure 3: Time series dynamics of simulated stock markets. The left panels show the 

evolution of three stock market simulations, comprising 10,000 daily observations. The 

right panels show the corresponding return dynamics. Parameter setting as in Section 3. 
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Figure 4: Distributional and correlation properties of simulated stock markets. The 

panels show a number of distributional and correlation properties of three representative 

stock market simulations. The same data set and color coding as in Figure 3. 
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Figure 5: Functioning of model. The left panels show the evolution of simulated stock 

prices and returns while the right panels show speculators’ trading intensity (variance) and 

their coordination (correlation). Extract of the first simulation run, as depicted in Figure 3, 

ranging from period 4351 to 5100. 
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Figure 6: Effects of circuit breakers. The top panels show the evolution of stock prices 

and returns for s = 0.05, respectively. The bottom panels show the stock market’s 

distortion and volatility for 0 < 𝑠𝑠 < 0.1. Blue, green and red lines are based on 𝜎𝜎𝐹𝐹 = 0, 

𝜎𝜎𝐹𝐹 = 0.006 and 𝜎𝜎𝐹𝐹 = 0.012, respectively. Remaining parameters as in Section 3. 
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Figure 7: Monte Carlo study. The panels show probability density functions for volatility, 

distortion, the tail index, the autocorrelation coefficient of raw returns at lag 1 and the 

autocorrelation coefficients of absolute returns at lag 5 and lag 95, respectively, based on 

5,000 simulation runs with 10,000 observations each. Parameter setting as in Section 3. 
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Figure 8: Sensitivity analysis. The left and right panels show simulated stock prices and 

return dynamics for 10,000 time steps, respectively. Top: full model. Center: model without 

coordination mechanism, i.e. 𝜌𝜌𝑡𝑡 = 0.0006. Bottom: model without trading intensity 

mechanism, i.e. 𝜎𝜎𝑡𝑡2 = 0.000003. Remaining parameters as in Section 3. 
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