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Abstract

We integrate a plausible expectation formation and learning scheme of boundedly ra-

tional investors into a standard user cost housing market model, involving a rental and

a housing capital market. In particular, investors switch between heterogeneous ex-

pectation rules according to an evolutionary �tness measure, given by the rules' past

pro�tability. We analytically show that our housing market model may produce endoge-

nous boom-bust dynamics. Furthermore, we demonstrate that policy makers may use

our model as a tool to explore how di�erent tax policies may a�ect the housing market's

steady state, its stability and out-of-equilibrium behavior.

Keywords: Housing markets, bubbles and crashes, heterogeneous expectations,

bounded rationality and learning, tax policy, steady state and stability analysis

JEL classi�cation: D84, H24, R31

1. Introduction

Glaeser (2013), Shiller (2015) and Piazessi and Schneider (2016) stress the fact that

history is replete with dramatic housing market bubbles that had serious e�ects on the

real economy. Unfortunately, the reasons for such market turbulence are still not well

understood. Against this backdrop, the goal of our paper is twofold. First, we propose

a novel model to enhance our understanding of the complex boom-and-bust behavior

of housing markets. Second, we use our model to explore the extent to which policy

makers can in�uence such dynamics by adjusting housing market-related taxes.

∗Corresponding author's email address: frank.westerho�@uni-bamberg.de



Our model reveals that endogenous housing market �uctuations may emerge through

the interaction of real and behavioral forces. The real forces acting inside our model

originate from a standard user cost housing market setup in the spirit of Poterba (1984,

1991), involving a rental and a housing capital market; these forces tie basic relations

between house prices, the housing stock and the rent level. The model's behavioral forces

are due to the expectation formation behavior of housing market investors who display

a boundedly rational learning behavior, as put forward by Brock and Hommes (1997,

1998). Accordingly, investors choose between extrapolative and regressive expectation

rules to forecast the future evolution of housing markets, based on the rules' relative past

pro�tability � an assumption that is also in line with empirical observations (Case and

Shiller 2003, Hommes 2011, Case et al. 2013, Bao and Hommes 2019). With a view to

the omnipresent wilderness-of-bounded-rationality critique, Glaeser (2013) and Hommes

(2013) argue that a simple and plausible rule-governed expectation formation scheme

describes reality better than a framework with fully rational expectations. Obviously,

we follow their line of reasoning in our paper.

Despite the behavioral nature of our model, it possesses a unique (fundamental)

steady state, given by the discounted value of future risk-adjusted rents or, in the jargon

of the housing market literature, by the relation between risk-adjusted rents and the

user cost of housing. Moreover, we analytically derive the conditions under which the

housing market's steady state becomes unstable. As it turns out, the steady state's

stability domain depends on the housing market's real and behavioral side. For instance,

higher interest rates are bene�cial for market stability, while the housing market loses its

stability and starts to display signi�cant oscillatory �uctuations if investors rely heavily

on the extrapolative expectation rule. Policy makers may therefore seek to stabilize the

housing market by imposing housing market-related taxes. Using a mix of analytical

and numerical tools, our model allows policy makers to clarify how such taxes may a�ect

the housing market's steady state, its stability and out-of-equilibrium behavior.

Our paper is organized as follows. After reviewing some related literature in Section

2, we present our model in Section 3. In Section 4, we study its steady state, stability

and out-of-equilibrium behavior, and explore how di�erent tax regimes a�ect the main

properties of our model in Section 5. In Section 6, we conclude our paper.
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2. Related literature

To embed our contribution into the literature, let us brie�y discuss some related research

in which the e�ects of expectations and taxes on housing market dynamics were studied.

First of all, it is important to note that Poterba (1984) developed his user cost model

to explore the extent to which the U.S. housing market boom in the 1970s can be

explained by changes in housing market-related taxes. In particular, he demonstrates

that a decrease in property taxes led to a reduction of the user cost of housing, which,

in turn, was at least partially responsible for the substantial house price increase at

that time. Poterba (1984) assumes that housing market investors have perfect foresight,

implying that his model exhibits the saddle-path stability property. If the steady state

of his model is disturbed, there is a unique path (the so-called "stable arm") along which

the system will approach its new steady state. The adjustment path can be summarized

as follows. At the time of the shock, the house price overshoots its new steady state

since the housing stock is initially �xed. As the housing stock also begins to adjust

towards its new steady-state value, the house price monotonically converges towards its

new steady state.

While Poterba (1991) underscores the fact that changing tax policies were an impor-

tant contributory factor in the house price rise in the late 1970s, he also admits that

his user cost argument is less able to explain the consequent housing market decline.

To better understand the boom-bust behavior of housing markets, Poterba (1991) rec-

ommends to take into account the possibility of housing market investors extrapolating

past price changes. Weil (1991) and Shiller (1991) strongly agree with this view. For

instance, Weil (1991, p. 188) states that "economists are going to have to bite the bullet

and look at models that allow for not-fully rational expectations", advocating, amongst

others, the modeling of extrapolative expectations. Moreover, Shiller (1991, p. 189)

questions both the e�ciency of housing markets and investors' forecasting ability, and

ultimately stresses that there "appears to be a purely speculative component of real es-

tate prices". In the end, Poterba (1992) concludes that his user cost framework allows

a clear-cut analysis of how tax reforms a�ect the steady-state levels of house prices, the

rent level and the stock of housing, but that future work needs to study the dynamics
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and adjustment processes of (ine�cient) housing markets in more detail.1

Despite such prominent encouragements, an empirically motivated modeling of mar-

ket participants' house price expectations within a dynamic context is only slowly taking

place in the economic profession. A rare and early exception is Wheaton (1999), who

demonstrates that Poterba's (1984, 1991) user cost framework can produce more real-

istic oscillatory house price dynamics if housing market investors follow a simple rule-

of-thumb behavior to predict house prices. Furthermore, Dieci and Westerho� (2012)

present a model of a speculative housing market in which housing market investors switch

between extrapolative and regressive expectations, subject to the market's mispricing,

thereby generating complex house price �uctuations. In the same vein, Kouwenberg and

Zwinkels (2014), Eichholtz et al. (2015), Diks and Wang (2016), Bolt et al. (2019), Bao

and Hommes (2019) and ter Ellen et al. (2020) show that models with extrapolators

and mean-reversion believers may help us to explain the boom-bust behavior of housing

markets.

Another line of research is motivated by Shiller's (2015) observation that mass psy-

chology and investor sentiment are elements that play an important role in the determi-

nation of house prices. Burnside et al. (2016) explain the irregular boom-bust behavior

of housing markets by a model in which housing market investors' projection of the future

(fundamental) state of the housing market is either optimistic or pessimistic; they show

that irregular boom-bust house price dynamics may occur due to waves of optimism and

pessimism. Piazzesi and Schneider (2009) show that even a small fraction of optimistic

housing market investors may be enough to trigger a housing market bubble. Glaeser

and Nathanson (2017) propose a powerful framework in which housing market investors

are boundedly rational, overcon�dent and extrapolate past house price changes into the

future. Interestingly, their calibrated model matches key stylized facts of housing mar-

kets quite well, thereby underscoring the explanatory power of models that deviate from

the assumption of full rationality.

However, our work is related more closely to the papers by Dieci and Westerho�

1Further tax-related housing market papers with a similar spirit include Poterba and Sinai (2008) and
Himmelberg et al. (2005). Poterba's (1984, 1991) model has been extended in many more directions.
See Glaeser and Nathanson (2015) for a recent appraisal.
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(2016) and Schmitt and Westerho� (2019). Dieci and Westerho� (2016) present a

discrete-time generalization of Poterba's (1984, 1991) user cost model in which hous-

ing market investors can choose between di�erent expectation rules, subject to market

circumstances. Their goal is to explore how the housing market's supply side, in con-

nection with speculative forces, may trigger and shape boom-bust dynamics. Schmitt

and Westerho� (2019) assume that risk-neutral housing market investors switch between

extrapolative and regressive expectation rules with respect to the rules' forecasting accu-

racy. They show that endogenous housing market dynamics, characterized by short-run

momentum, long-run mean reversion and excess volatility, may only arise if investors rely

heavily on extrapolative expectations. Note that this is one of the few contributions in

the �eld where market participants display a boundedly rational learning behavior � an

important model ingredient to counter the wilderness-of-bounded-rationality criticism,

as advocated in Glaeser (2013) and Hommes (2013).

In this paper, we follow Brock and Hommes (1997, 1998) by assuming that housing

market investors are risk averse and switch between competing expectation rules, subject

to the rules' past pro�tability.2 Despite investors' learning behavior, our model may

produce endogenous boom-bust housing market dynamics. In addition, we demonstrate

that our model may serve as a framework to explore the extent to which policy makers

may stabilize housing markets by adjusting the tax code. As we will see, policy makers

have the opportunity to a�ect the housing market via the housing market's real and

behavioral side. As far as we are aware, such a modeling and policy perspective is new

in this line of research.

3. The basic model framework

Our model combines the housing market framework by Poterba (1984, 1991) with the

heuristic switching approach by Brock and Hommes (1997, 1998). In particular, the

housing market consists of two interrelated markets � a rental market and a housing

capital market � that �x basic relations between house prices, the housing stock and the

2The heuristic switching approach by Brock and Hommes (1997, 1998) has been used in numerous
models and applications. Powerful examples include Droste et al. (2002), de Grauwe and Grimaldi
(2006), Boswijk et al. (2007) and Anufriev and Hommes (2012). Dieci and He (2018) provide a detailed
review of this �eld, and also discuss its connection with the housing market literature.
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rent level. Investors' demand for housing stock depends on their house price expecta-

tions. Motivated by the aforementioned theoretical and empirical literature, we assume

that housing market investors select between an extrapolative and a regressive expecta-

tion rule to forecast future house prices, depending on the evolutionary �tness of these

rules, measured in terms of past realized pro�ts. For ease of exposition, we �rst abstain

from considering housing market-related taxes. These will be introduced in Section 5.

Let us turn to the details of the model. Market clearing in the rental market takes

place in every period t, implying that the demand for housing services Dt is equal to

the supply of housing services St, i.e.

Dt = St. (1)

Demand for housing services is assumed to be linearly decreasing at the current rent

level Rt, the price of housing services, and is formalized as

Dt = a− bRt, (2)

where a and b are positive parameters. The supply of housing services is proportional

to the current housing stock Ht, and can be expressed by

St = cHt, (3)

where c > 0. Combining (1), (2) and (3) reveals that the rent level Rt depends negatively

on the existing housing stock, i.e.

Rt = α− βHt, (4)

where α = a
b > 0 is a scaling parameter and β = c

b > 0 denotes the sensitivity of the

rent level with respect to the housing stock.3 Of course, the model parameters have to

ensure that Rt > 0.

Housing market investors can invest in a risk-free asset or in housing capital over the

time horizon from period t to period t+1. The risk-free asset pays a �xed rate of return

r > 0, while housing generates (imputed) rents Rt, which are �xed at the beginning of

the period. By de�ning Pt as a hypothetical house price level at time t, the wealth of

3Proposition 1 reveals that parameter α a�ects the level of the model's steady state, but not its
stability domain. For this reason, α may be regarded as a scaling parameter.
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investor i in period t+ 1 is given by

W i
t+1 = (1 + r)W i

t + Zit(Pt+1 +Rt − (1 + r + δ)Pt)− ci, (5)

where W i
t and Zit represent the wealth and demand for housing stock of investor i

at time t. Note that parameter 0 < δ < 1 denotes the housing depreciation rate,

and parameter ci ≥ 0 captures possible costs associated with investors i 's investment

behavior. Moreover, variables indexed with t+ 1 are random.

Housing market investors are assumed to be myopic mean-variance maximizers, im-

plying that their demand for housing stock follows from

maxZi
t

{
Eit [W

i
t+1]−

λi

2
V it [W

i
t+1]

}
, (6)

where Eit [W
i
t+1] and V it [W

i
t+1] describe the belief of investor i about the conditional

expectation and conditional variance of his wealth in period t + 1, while parameter λi

denotes the corresponding (absolute) risk aversion. Solving (6) for Zit then yields

Zit =
Eit [Pt+1] +Rt − (1 + r + δ)Pt

λiV it [Pt+1]
. (7)

Accordingly, investor i 's optimal demand for housing stock depends positively on house

price expectations and the rent level, and negatively on the interest rate, the depreciation

rate, the current house price and the perceived housing market risk.

In the following, we introduce a few simplifying assumptions. First, investors' beliefs

about conditional variance of the price are constant for all t and uniform across all

investors i, i.e. V it [Pt+1] = σ2 > 0. Second, all investors have the same risk aversion,

i.e. λi = λ > 0. Therefore, investors' total housing demand can be expressed as

Zt =
N∑
i=1

Zit =
N
λσ2

(
1
N

N∑
i=1

Eit [Pt+1] +Rt − (1 + r+ δ)Pt

)
. Finally, by denoting investors'

average house price expectations by Et[Pt+1] =
1
N

N∑
i=1

Eit [Pt+1] and normalizing the mass

of investors to N = 1, we obtain

Zt =
Et[Pt+1] +Rt − (1 + r + δ)Pt

λσ2
. (8)

As equilibrium of demand and supply in the housing capital market is given by

Zt = Ht, (9)

the market clearing price Pt can be expressed as

Pt =
Et[Pt+1] + R̂t

1 + r + δ
, (10)
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where R̂t = Rt−Htλσ
2. Accordingly, the house price is equal to the discounted value of

investors' next period's average house price expectation plus risk-adjusted rent payments;

a standard no-arbitrage condition common in models with an asset-pricing nature.

The housing stock evolves as

Ht = It + (1− δ)Ht−1, (11)

where It indicates the amount of new housing construction in period t. Note that we

assume that houses are built with a one-period production lag. Moreover, home builders

are risk neutral, and maximize expected pro�ts, subject to a quadratic cost function,

i.e. maxIt{Et−1[Pt]It−Ct}, where Ct = 1
2γ I

2
t . Consequently, new housing construction

is given by

It = γEt−1[Pt], (12)

where γ > 0 is an inverse cost parameter which implies that a lower value of γ generates

higher building costs and a more sluggish housing supply. By assuming that home

builders form naive expectations, i.e. Et−1[Pt] = Pt−1, the evolution of the housing

stock can be rewritten as

Ht = γPt−1 + (1− δ)Ht−1. (13)

Let us now turn to the expectation formation behavior of housing market investors.

Inspired by Brock and Hommes (1997, 1998), investors select between competing ex-

pectation rules to forecast future house prices. In this paper, we concentrate on two

representative types of expectation rules: a free extrapolative expectation rule, denoted

by EEt [Pt+1], and a costly regressive expectation rule, i.e. ERt [Pt+1]. Investors' average

house price expectations can thus be de�ned as

Et[Pt+1] = NE
t E

E
t [Pt+1] +NR

t E
R
t [Pt+1], (14)

where NE
t and NR

t stand for the market shares of investors relying on extrapolative and

regressive expectations, respectively. Extrapolative expectations presume that house

prices move in trends; it can be expressed by

EEt [Pt+1] = Pt−1 + χ(Pt−1 − Pt−2). (15)

Accordingly, extrapolators pay attention to the most recent price trend, where χ ≥ 0

indicates how strongly investors extrapolate past house price trends into the future.
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For χ = 0, (15) implies naive expectations. In contrast, regressive expectations are

formalized as

ERt [Pt+1] = Pt−1 + φ(F − Pt−1), (16)

where F represents the housing market's fundamental value and 0 < φ ≤ 1 the expected

adjustment speed. Thus, investors who follow this rule believe that house prices will

return towards their fundamental value over time.4 Note that both expectation rules

forecast in period t the house price for period t + 1, conditional on the information set

available at period t− 1.

In each time step, housing market investors have to determine which expectation rule

to follow. This decision depends on the rules' �tness. We assume that the higher the

�tness of an expectation rule, the more investors will follow it. As in Brock and Hommes

(1997, 1998), and based on Manski and McFadden (1981), we update the market share of

investors using the extrapolative and the regressive expectation rule via the multinomial

discrete-choice model. Therefore, we obtain

NE
t =

exp[νAEt ]

exp[νAEt ] + exp[νARt ]
(17)

and

NR
t =

exp[νARt ]

exp[νAEt ] + exp[νARt ]
, (18)

where AEt and ARt denote the �tness of extrapolative and regressive expectations in

period t, respectively. Parameter ν ≥ 0 measures how sensitively investors choose the

most attractive expectation rule. For ν = 0, investors do not observe any �tness di�er-

entials between the two expectations rules, and both market shares will be equal to 1
2 .

As the intensity of choice parameter ν increases, more and more investors switch to the

expectation rule with the higher �tness. For ν → +∞, �tness di�erentials are perfectly

observed, and all investors opt for the expectation rule yielding the highest �tness. Since

the weights of the two expectation rules add up to 1, the market share of extrapolative

(regressive) expectations can also be written as NE
t = 1−NR

t (NR
t = 1−NE

t ).

The �tness of the two expectation rules in period t depends on realized past pro�ts

4An implicit assumption we make is that investors make no prediction errors at the steady state.
As shown in the Appendix, F therefore corresponds to the housing markets' unique steady-state price,
re�ecting the discounted value of future risk-adjusted rent payments.
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and can be described by

AEt = (Pt−1 +Rt−2 − (1 + r + δ)Pt−2)Z
E
t−2 (19)

and

ARt = (Pt−1 +Rt−2 − (1 + r + δ)Pt−2)Z
R
t−2 − c, (20)

where

ZEt =
EEt [Pt+1] +Rt − (1 + r + δ)Pt

λσ2
(21)

and

ZRt =
ERt [Pt+1] +Rt − (1 + r + δ)Pt

λσ2
(22)

represent investors' demand for housing stock in period t when forming extrapolative

and regressive expectations, respectively. Note that it may be costly to use the regressive

expectation rule since investors have to acquire some kind of knowledge about the econ-

omy. In particular, investors have to examine what the housing market's fundamental

house price will be, and how quickly the housing market will return to this value. This

e�ort is captured by the information cost parameter c ≥ 0, and reduces the �tness of

regressive expectations. As pointed out by Hommes (2013), realized net pro�ts are a

natural candidate for an evolutionary �tness measure since this is what investors seem

to care about most in real markets.

4. Implications of our basic model framework

We now explore our basic model framework. In Section 4.1, we �rst present our main

analytical results. In Section 4.2, we then continue with a numerical investigation of our

model.

4.1. Analytical insights

In the Appendix, we show that the dynamics of our model is driven by a six-dimensional

nonlinear map, and prove the following results.
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Proposition 1. The model's unique steady state, implying, amongst others, that P =

F = αδ
(r+δ)δ+(β+λσ2)γ = R−λσ2H

r+δ , H = γ
δP and R = α − βH, loses its local asymptotic

stability if either

(i) N
E
χδ + γ(β+λσ2)N

E
χ

1+r+δ−NE
χ

< N
R
φ+ 2δ+r

1−δ

or

(ii) N
R
φ+ γ(β+λσ2)

2−δ < 2 + r + δ + 2N
E
χ

becomes violated, where N
E

= 1
1+exp[−νc] and N

R
= 1

1+exp[νc] , respectively. Moreover,

a violation of the �rst (second) inequality is associated with a Neimark-Sacker (Flip)

bifurcation.

Proposition 1 deserves comment. Let us start with the properties of the model's

steady state. Note that P , H and R are independent of any behavioral parameters.

Since P = F = R−λσ2H
r+δ = R̂

r+δ , it becomes clear that investors discount future risk-

adjusted rent payments to compute the housing market's fundamental value. This is

also in line with Poterba (1984, 1991), who de�nes the term r + δ as the user cost of

housing. Although he considers perfect foresight, our steady state is basically equivalent

to the one in his models because our housing market investors make no prediction errors

at the steady state. For this reason, we regard the model's unique steady state as a

fundamental steady state.

Proposition 1 allows us to draw the following steady-state conclusions. An increase

in the interest rate decreases investors' demand for housing stock and, consequently,

leads to a reduction of the house price; a lower housing stock; and a higher rent level.

Comparable e�ects are observed if housing market investors become more risk averse

and/or perceive a higher housing market risk. If it gets cheaper to build new houses, i.e.

if the inverse cost parameter γ increases, house prices as well as the rent level decrease,

while the housing stock increases. A higher depreciation rate reduces the stock of housing

and, consequently, yields a higher rent level. However, house prices only decrease if

δ >
√
(β + λσ2)γ. In this case, the e�ects of an increase in the interest rate and the

depreciation rate are qualitatively the same. With respect to the parameters describing

the rental market, we can conclude that an increase in the scaling parameter α increases
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the house price, the housing stock and the rent level, while an increase in the sensitivity

parameter β causes the opposite. For completeness, we mention that Z
E

= Z
R

= H,

A
E

= (R − (r + δ)P )H and A
R

= (R − (r + δ)P )H − c. Since A
E − A

R
= c, the

steady-state fractions of investors relying on extrapolative and regressive expectations,

given by N
E

= 1
1+exp[−νc] and N

R
= 1

1+exp[νc] , depend only on investors' intensity of

choice and on the costs of forming regressive expectations.

Let us now turn to the steady state's stability properties. Note that both stability

conditions depend on real and behavioral parameters. Since housing markets display

cyclical dynamics, a phenomenon associated with a Neimark-Sacker bifurcation, our

main focus is on Proposition 1's �rst stability condition.5 First of all, if we assumed

naive versus regressive expectations, i.e. χ = 0 and 0 < φ < 1, the Neimark-Sacker

condition would always be ful�lled. Cyclical housing market dynamics can thus only

arise within our model if investors extrapolate past price changes. However, it is also

obvious from stability condition (i) that cyclical housing market dynamics becomes less

likely if investors expect house prices to return towards their fundamental value more

quickly. Furthermore, the Neimark-Sacker condition is also violated when N
E
χ moves

towards 1+ r+ δ (see the denominator of the second term on the left-hand side). In this

respect, it might be insightful to explore two extreme scenarios. If either information

costs c or the intensity of choice parameter ν converge to in�nity, then all investors form

extrapolative expectations. Hence, stability will be lost at the latest as χ approaches

1 + r + δ. If c and/or ν converge to zero, only half of investors form extrapolative

expectations, and stability will be lost at the latest as χ approaches 2(1+ r+ δ). In this

sense, we can conclude that an increase in c or ν may destabilize the model's steady state.

Finally, increasing values of the real parameters β, γ, λ and σ2 harm the stability of

housing markets, while an increase in r has a bene�cial e�ect. Introducing the innocuous

assumption that r + δ < 1 furthermore reveals that an increase in the depreciation rate

5A Neimark-Sacker bifurcation occurs if the modulus of a pair of complex, conjugate eigenvalues
crosses the unit circle, giving rise to periodic or quasi-periodic motion. The contributions by Wheaton
(1999), Kouwenberg and Zwinkels (2014), Dieci and Westerho� (2016), Glaeser and Nathanson (2017)
and Bao and Hommes (2019) also focus on scenarios with complex, conjugate eigenvalues, seeking to
explain the oscillatory boom-bust behavior of real housing markets, as documented by Glaeser (2013),
Shiller (2015) and Piazzesi and Schneider (2016). In contrast, a Flip bifurcation requires that a real
eigenvalue passes through -1, causing the emergence of a period-two cycle.
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also contributes to the stability of housing markets.

From an economic perspective, the violation of the Flip bifurcation boundary, caus-

ing a period-two cycle, is of secondary importance. Nevertheless, the second stability

condition of Proposition 1 reveals that an increase in parameter φ, capturing investors'

expected mean reversion speed, may create a period-two cycle, provided that parame-

ters β, γ, λ and σ2 are su�ciently large. Such a bifurcation becomes more likely if the

market share of regressive expectations increases, which is the case if information costs

and/or investors' intensity of choice decrease. Finally, we note that an increase in the

interest rate, the depreciation rate or investors' extrapolation strength may reverse a

Flip bifurcation.

4.2. Numerical insights

Equipped with our analytical insights, we are now ready to explore the model's out-

of-equilibrium behavior. Table 1 presents the base parameter setting for our numerical

investigations. Since the interest rate and the depreciation rate are given by �ve percent,

one time step in our simulations may roughly be regarded as one year. Accordingly, the

production lag in the housing market is also given by about one year, which seems to be

a reasonable choice for a model like ours. The remaining parameters are selected such

that our model is able to mimic - at least in a qualitative sense - the boom-bust behavior

of housing markets, as documented in Glaeser (2013), Shiller (2015) and Piazzesi and

Schneider (2016). However, we remark that the behavioral parameters of our model,

in particular those a�ecting investors' expectation formation, are in line with empirical

and experimental observations (Case and Shiller 2003, Case et al. 2012, Anufriev and

Hommes 2012, Bao and Hommes 2019 and ter Ellen et al. 2020).

Note that the base parameter setting implies that P = F = 1, H = 20, R = 0.3

and N
E ≈ 0.731. Furthermore, the model's steady state is unstable. For instance,

the extrapolation parameter, which is given by χ = 1.1, is slightly above the Neimark-

Sacker threshold χNScrit ≈ 1.08 (while the Flip condition is not violated). And, in fact, the

dynamics depicted in Figure 1 displays endogenous boom-bust housing market dynamics.

To be precise, the panels show, from top to bottom, the evolution of house prices, the

market share of extrapolators, the housing stock and the rent level, respectively. The

simulation run comprises 30 observations; a longer transient period has been deleted.
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Table 1: Base parameter setting

α = 2.3 scaling parameter rental market
β = 0.1 sensitivity of rental market
γ = 1 sensitivity of home building supply side of housing market
δ = 0.05 depreciation rate
r = 0.05 interest rate
χ = 1.1 extrapolative parameter price expectations
φ = 0.6 regressive parameter
ν = 1 intensity of choice
λ = 0.0025 risk aversion risk perception
σ2 = 4 variance beliefs
c = 1 information cost �tness

The functioning of the model may be explained as follows. Suppose that the house

price has just increased above its fundamental value. In such a situation, the extrap-

olative expectation rule has correctly predicted a further price increase, while regressive

expectations have falsely predicted a reversion towards the fundamental value. For this

reason, the extrapolative expectation rule is more pro�table than the regressive one.

As extrapolative expectations now attract more followers, house prices increase further.

Eventually, however, the market loses momentum. This could happen for several reasons.

First, the market share of extrapolators cannot grow forever. Second, the remaining in-

vestors who rely on the regressive expectation rule bet increasingly aggressively on a

mean reversion of the housing market. Third, the housing stock has increased due to

the construction of new housing during the formation of the bubble. This depresses

the rent level and therefore dampens house prices, too. At the bubble's turning point,

extrapolative expectations are wrong, while regressive expectations are right. But once

the direction of the housing market reverses, both expectation rules correctly anticipate

a downturn of the housing market. Moreover, new housing construction � due to house

prices that are still relatively high � lets the housing stock grow for a few more periods,

pushing the rent level down further. Together, these behavioral and real forces lead to

an overshooting in the housing market, i.e. house prices drop below their fundamental

value. Then, we once again have a situation in which extrapolative expectations pro-

duce more accurate predictions than the regressive expectation rule. However, investors'

learning behavior depends on past realized pro�ts, which is why the market share of ex-

trapolators recovers with some delay. In between, the rent level increases again. Since
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Figure 1: Snapshot of the model dynamics for our base parameter setting. The panels show, from top
to bottom, the evolution of house prices, the market share of extrapolators, the housing stock and the
rent level, respectively. The dynamics is depicted for 30 time steps; a longer transient period has been
deleted.

a considerable fraction of investors still uses the regressive expectation rule, prices are

pushed upwards, and we see the emergence of the next housing market bubble.

In fact, it is the complex interplay between real and behavioral forces that keeps the

dynamics alive. While real forces, in particular the housing stock and rent adjustments,

tend to stabilize the housing market, behavioral forces have a double-edged e�ect. Ex-

trapolative expectations tend to push house prices away from fundamentals; regressive

expectations, in turn, exercise mean-reversion pressure. Note that the boom-bust cycle

depicted in Figure 1 repeats itself in a more or less regular manner. Figure 2 reveals,
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Figure 2: Snapshot of the model dynamics for an alternative parameter setting. The panels show, from
top to bottom, the evolution of house prices, the market share of extrapolators, the housing stock and
the rent level, respectively. The dynamics is depicted for 60 time steps; a longer transient period has
been deleted. Parameter setting as in Figure 1, except that χ = 1.35, φ = 0.75 and ν = 1.3.

however, that our model is also able to produce more irregular dynamics. The simu-

lation run � now for 60 time steps � rests on the base parameter setting, except that

χ = 1.35, φ = 0.75 and ν = 1.3. These parameter changes leave the model's fundamen-

tal steady state una�ected, although N
E
increases from 0.731 to 0.786. Of course, the

model's instability is still due to a Neimark-Sacker bifurcation. As can be seen, stronger

house price cycles result in strong housing stock oscillations, and thus in more volatile

rent levels. Needless to say, irregular dynamics may also be observed in the presence

of exogenous noise (not depicted), although our model may generate them completely
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endogenously.

Figure 3: E�ects of behavioral parameters on house price dynamics. The panels show, from top left
to bottom right, bifurcation diagrams for the extrapolative parameter χ, the regressive parameter φ,
information costs c and the intensity of choice ν. Parameters are as in our base parameter setting.

To demonstrate how the dynamics of our model depends on its parameters, we next

present a number of bifurcation diagrams in Figure 3. Here, we provide examples of

how our behavioral parameters χ, φ, c and ν may in�uence house price dynamics. The

panels depict, from top left to bottom right, bifurcation diagrams for 1.04 < χ < 1.16,

0.52 < φ < 0.78, 0.8 < c < 1.2 and 0.8 < ν < 1.2, respectively. As already stated in

Proposition 1, these parameters do not a�ect the housing market's fundamental steady-

state price, i.e. P = F = 1. In the top left panel, the fundamental steady state is

initially stable and loses its stability as soon as χ exceeds the critical value χNScrit ≈

1.08, for which endogenous quasi-periodic dynamics emerges. While the amplitude of

house price �uctuations becomes larger if extrapolators react more aggressively to past
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house price trends, the top right panel shows that a stronger belief in mean reversion

reduces their amplitude. In fact, a convergence to the steady state sets in when φ

surpasses φNScrit ≈ 0.674. Of course, these observations correspond to our analytical

results, which are supported further by the bottom two panels. The bifurcation diagram

for parameter c shows that the fundamental steady state becomes unstable at cNScrit ≈

0.953, after which the amplitude of house price dynamics increases with information

costs. The reason for this is that rising information costs increasingly reduce the �tness

of the stabilizing regressive expectation rule. Consequently, more and more investors

switch to extrapolative expectations, which has a destabilizing impact on housing market

dynamics. A very similar bifurcation route can be observed in the bottom right panel. As

can be seen, at νNScrit ≈ 0.953, the �xed-point dynamics turns into quasi-periodic motion.

The destabilizing impact of an increasing intensity of choice can be easily explained.

Recall that extrapolative expectations have a higher steady-state �tness than regressive

expectations. Since investors react more sensitively to �tness di�erences as ν increases,

more and more of them will opt for extrapolative expectations, which destabilizes the

dynamics, and the amplitude of house price �uctuations increases.6

In Figure 4, we show how house prices react to an increase in the model's real

parameters. The six panels show bifurcation diagrams for 0.02 < r < 0.1, 0.045 <

δ < 0.065, 0.9 < γ < 1.1, 0 < λ < 0.004, 0.09 < β < 0.11 and 2.15 < α < 2.45.

It can be seen from the top left panel that an increasing interest rate decreases the

amplitude of house price �uctuations. Moreover, the quasi-periodic dynamics converges

into a stable �xed point when r exceeds rNScrit ≈ 0.06. However, the steady-state house

price P decreases with r. Similar observations are apparent in the top right panel,

where the amplitude of house price �uctuations becomes smaller when the depreciation

rate increases. At δNScrit ≈ 0.058, the quasi-periodic dynamics segues into our stable

fundamental steady state which, in turn, increases with δ. The destabilizing impact

of the inverse cost parameter γ, the risk aversion parameter λ and the rental market's

sensitivity parameter β are presented in the two middle panels and the bottom left

panel, respectively. Note that their bifurcation routes are very similar. For increasing

6Interestingly, similar e�ects of the behavioral parameters can be observed in the related asset-pricing
and cobweb model by Brock and Hommes (1997, 1998).
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Figure 4: E�ects of real parameters on house price dynamics. The panels show, from top left to bottom
right, bifurcation diagrams for the interest rate r, the depreciation rate δ, the inverse cost parameter
γ, the risk aversion parameter λ, the sensitivity parameter β and the scaling parameter α. Parameters
are as in our base parameter setting.

values of parameters γ, λ and β, the stable steady-state house price decreases and

becomes unstable at bifurcation values γNScrit ≈ 0.933, λNScrit ≈ 0.00066 and βNScrit ≈ 0.093,
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respectively. At these points, a Neimark-Sacker bifurcation occurs, and the amplitude

of house price �uctuations becomes larger as the parameters increase further. Finally, it

becomes apparent from the bottom right panel that the scaling parameter α has no e�ect

on the stability of housing market dynamics, as the amplitude of house price oscillations

basically remains constant as α increases.

5. The housing market model with taxes

In Sections 5.1 to 5.6, we explore the model's steady state and stability properties as

well as out-of-equilibrium e�ects when various di�erent tax policies are considered. In

doing so, we seek to demonstrate that our model provides a useful framework to address

the e�ects of housing market-related taxes. With respect to the steady state's stability

domain, we focus on the Neimark-Sacker stability condition. Our main results are sum-

marized by Propositions 2 to 7 (their proofs are analogous to the one of Proposition 1,

see the Appendix) and illustrated in bifurcation diagrams.

5.1. Tax on the value of houses

Let us start our analysis with the case of a property tax, imposed periodically (annually)

on the value of houses. Note that such a tax a�ects investor i 's wealth equation, which

turns into

W i
t+1 = (1 + r)W i

t + Zit(Pt+1 +Rt − (1 + r + δ + τ)Pt)− ci, (23)

where τ stands for the tax rate. Straightforward computations reveal that investors' total

demand then becomes Zt =
Et[Pt+1]+Rt−(1+r+δ+τ)Pt

λσ2 , implying that house prices follow

Pt = Et[Pt+1]+R̂
1+r+δ+τ . Moreover, the �tness functions of the extrapolative and regressive

expectation rule now read AEt = (Pt−1 + Rt−2 − (1 + r + δ + τ)Pt−2)Z
E
t−2 and ARt =

(Pt−1 +Rt−2− (1+ r+ δ+ τ)Pt−2)Z
R
t−2− c, respectively. All other equations remain as

before. Proposition 2 summarizes our main analytical results.

Proposition 2. At the model's unique steady state, we have P = αδ
(r+δ+τ)δ+(β+λσ2)γ =

F , H = γ
δP and R = α − βH, implying that N

E
= 1

1+exp[−νc] and N
R

= 1
1+exp[νc] .

Suppose that the steady state is locally asymptotically stable. If N
E
χδ+ γ(β+λσ2)N

E
χ

1+r+δ+τ−NE
χ
<

N
R
φ+ 2δ+r+τ

1−δ is violated, a Neimark-Sacker bifurcation occurs.
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A comparison of Propositions 1 and 2 shows that an increase in the property tax rate

τ has quite similar e�ects as an increase in the interest rate r. More precisely, higher

tax rates make the housing market less attractive for investors. Therefore, the demand

for housing stock decreases, which causes the fundamental house price P to fall. Con-

sequently, the fundamental housing stock H declines and the fundamental rent level

R increases. Importantly, higher tax rates may prevent a Neimark-Sacker bifurcation.

Note that this also becomes obvious from the bifurcation diagram depicted in the top

left panel of Figure 5. Here, we use our base parameter setting, except that τ is varied

between 0 and 0.1, and show how the dynamics of the housing market depends on the

tax rate. As can be seen, higher property taxes rates initially decrease the amplitude of

house price �uctuations, and a convergence to the steady state sets in when τ exceeds

τNScrit ≈ 0.010. We can therefore conclude that a property tax has a stabilizing e�ect on

housing markets, although it also yields lower house prices and, consequently, a lower

housing stock and higher rent levels.

5.2. Tax on rental income

A tax on rental income changes investor i 's wealth equation to

W i
t+1 = (1 + r)W i

t + Zit(Pt+1 + (1− τ)Rt − (1 + r + δ)Pt)− ci, (24)

where τ again denotes the tax rate imposed by policy makers. Accordingly, investors'

total demand becomes Zt =
Et[Pt+1]+(1−τ)Rt−(1+r+δ)Pt

λσ2 , and the house price is given by

Pt =
Et[Pt+1]+R̂−τRt

1+r+δ . The two �tness functions modify to AEt = (Pt−1 + (1− τ)Rt−2 −

(1 + r + δ)Pt−2)Z
E
t−2 and ARt = (Pt−1 + (1− τ)Rt−2 − (1 + r + δ)Pt−2)Z

R
t−2 − c. Since

the other equations do not change, we arrive at the following results.

Proposition 3. At the model's unique steady state, we have P = (1−τ)αδ
(r+δ)δ+((1−τ)β+λσ2)γ =

F , H = γ
δP and R = α−βH, implying that N

E
= 1

1+exp[−νc] and N
R
= 1

1+exp[νc] . Sup-

pose that the steady state is locally asymptotically stable. If N
E
χδ+ γ((1−τ)β+λσ2)N

E
χ

1+r+δ−NE
χ

<

N
R
φ+ 2δ+r

1−δ is violated, a Neimark-Sacker bifurcation occurs.

Proposition 3 reveals that a tax on rental income has a similar e�ect on the model's

steady state as a property tax. With an increasing tax rate on rental income, investors

have fewer incentives to invest in the housing market. As a consequence, the demand
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Figure 5: E�ects of taxes on the value of houses, rental income, owning housing stock and revenue of
housing constructors, respectively. Base parameter setting, except that τ is varied as indicated on the
axis.

for housing stock is lower and the fundamental house price P declines. Therefore, the

fundamental housing stock H decreases and the fundamental rent level R increases. A

higher tax on rental income makes a Neimark-Sacker bifurcation also less likely. The

bifurcation diagram depicted in the top right panel of Figure 5 shows that increasing

values for τ make the amplitude of house price �uctuations smaller up to the point where

the threshold value τNScrit ≈ 0.073 is reached. Then, quasi-periodic dynamics turns into

�xed-point dynamics.
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5.3. Tax on owning housing stock

Policy makers may also consider imposing a tax on owning housing stock. Investor i 's

wealth equation can then be written as

W i
t+1 = (1 + r)W i

t + Zit(Pt+1 +Rt − τ − (1 + r + δ)Pt)− ci, (25)

where τ is the tax rate. Investors' total demand becomes Zt =
Et[Pt+1]+Rt−τ−(1+r+δ)Pt

λσ2 ,

house prices are given by Pt =
Et[Pt+1]+R̂−τ

1+r+δ , and the �tness functions turn into AEt =

(Pt−1+Rt−2−τ−(1+r+δ)Pt−2)Z
E
t−2 and A

R
t = (Pt−1+Rt−2−τ−(1+r+δ)Pt−2)Z

R
t−2−c.

The following proposition summarizes the main e�ects of such a tax.

Proposition 4. At the model's unique steady state, we have P = (α−τ)δ
(r+δ)δ+(β+λσ2)γ = F ,

H = γ
δP and R = α − βH, implying that N

E
= 1

1+exp[−νc] and N
R

= 1
1+exp[νc] .

Suppose that the steady state is locally asymptotically stable. If N
E
χδ+ γ(β+λσ2)N

E
χ

1+r+δ−NE
χ
<

N
R
φ+ 2δ+r

1−δ is violated, a Neimark-Sacker bifurcation occurs.

Proposition 4 shows that higher tax rates on owning housing stock also reduces the

fundamental house price P . As a result, the fundamental housing stock H decreases and

the fundamental rent level R increases. However, the Neimark-Sacker stability condition

reveals that it is independent of the tax rate τ . Moreover, the bifurcation diagram

depicted in the bottom left panel of Figure 5 indicates that house price oscillations

remain basically constant if the tax rate increases. Hence, a tax on owning housing

stock merely shifts the dynamics downwards.

5.4. Revenue tax for housing constructors

Alternatively, policy makers may decide to tax housing constructors. For instance, a

revenue tax for housing constructors turns their pro�t maximization problem into

maxIt{(1− τ)Et−1[Pt]It − Ct}, (26)

where τ denotes the tax rate. The optimal supply of new housing is then given by

It = (1 − τ)γPt−1, and the housing stock evolves as Ht = (1 − δ)Ht−1 + (1 − τ)γPt−1.

Since all other equations remain una�ected by such a tax, we arrive at the following

results.

Proposition 5. At the model's unique steady state, we have P = αδ
(r+δ)δ+(β+λσ2)(1−τ)γ =

F , H = (1−τ)γ
δ P and R = α − βH, implying that N

E
= 1

1+exp[−νc] and N
R

=
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1
1+exp[νc] . Suppose that the steady state is locally asymptotically stable. If N

E
χδ +

(1−τ)γ(β+λσ2)N
E
χ

1+r+δ−NE
χ

< N
R
φ+ 2δ+r

1−δ is violated, a Neimark-Sacker bifurcation occurs.

As stated in Proposition 5, the e�ects of an increasing revenue tax for housing con-

structors are qualitatively similar to those of a decrease in the inverse cost parameter γ,

i.e. to higher building costs. This can be explained as follows. Higher tax rates make

housing construction less pro�table for constructors. Since fewer houses are built, the

fundamental housing stock H declines. Therefore, both the fundamental house price P

and the fundamental rent level R increase. A higher tax rate for housing constructors is

bene�cial for market stability in the sense that it may counter a Neimark-Sacker bifur-

cation. In fact, it becomes clear from the bifurcation diagram presented in the bottom

right panel of Figure 5 that the amplitude of house price �uctuations becomes smaller

as the tax rate increases. Moreover, the steady state becomes stable if τ exceeds the

critical value τNScrit ≈ 0.067.

5.5. Tax on wealth of investors

How does a wealth tax a�ect the dynamics of housing markets? Suppose, for simplicity,

that investors' wealth is always positive. Then investor i 's wealth equation is given by

W i
t+1 = (1− τ)((1 + r)W i

t + Zit(Pt+1 +Rt − (1 + r + δ)Pt))− ci, (27)

where τ represents the wealth tax rate. Note that investors' total demand for housing

stock is now determined by Zt =
Et[Pt+1]+Rt−(1+r+δ)Pt

(1−τ)λσ2 , and house prices follow Pt =

Et[Pt+1]+R̂+τλσ2Ht

1+r+δ . Furthermore, the expectation rules' �tness functions take the form

AEt = (1− τ)(Pt−1 +Rt−2− (1+ r+ δ)Pt−2)Z
E
t−2 and A

R
t = (1− τ)(Pt−1 +Rt−2− (1+

r + δ)Pt−2)Z
R
t−2 − c. In Proposition 6, we capture the main e�ects of a wealth tax.

Proposition 6. At the model's unique steady state, we have P = αδ
(r+δ)δ+(β+(1−τ)λσ2)γ =

F , H = γ
δP and R = α−βH, implying that N

E
= 1

1+exp[−νc] and N
R
= 1

1+exp[νc] . Sup-

pose that the steady state is locally asymptotically stable. If N
E
χδ+ γ(β+(1−τ)λσ2)N

E
χ

1+r+δ−NE
χ

<

N
R
φ+ 2δ+r

1−δ is violated, a Neimark-Sacker bifurcation occurs.

Since higher wealth taxes reduce the housing market risk for investors, their demand

for housing stock increases. Consequently, the fundamental house price P and the

fundamental housing stock H increase, while the fundamental rent level R decreases.
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Proposition 6 also indicates that higher wealth taxes may stabilize the housing market.

As illustrated by the top left panel of Figure 6, a wealth tax of τNScrit ≈ 0.734 is needed to

suppress endogenous house price �uctuations. Taking these values literally, the stability

e�ect of a wealth tax seems to be rather weak, and the fundamental house price P rises

strongly with τ . However, the strength of τ depends on the risk parameters λ and σ2.

Figure 6: E�ects of wealth taxes and partial deductibility of information costs. Top left: Base parameter
setting, except that τ is varied as indicated on the axis. Top right: The same, except that d = 0.25.
Bottom left: Base parameter setting, except that τ = 0.25 and ν as indicated on the axis. Bottom
right: Base parameter setting, except that τ = 0.25, ν = 1.1 and d as indicated on the axis.

5.6. Tax deductibility of information costs

Finally, we discuss the case in which the information costs associated with using the re-

gressive expectation rule are partially deductible from wealth taxes. The wealth equation

of investors opting for regressive expectations then reads

WR
t+1 = (1− τ)((1 + r)Wt + Zt(Pt+1 +Rt − (1 + r + δ)Pt))− c(1− τd), (28)
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where 0 ≤ d ≤ 1 denotes the degree of deductibility of information costs. Compared

to the scenario discussed in the previous section, the �tness function of the regressive

expectation rule now becomes ARt = (1−τ)(Pt−1+Rt−2−(1+r+δ)Pt−2)Z
R
t−2−(1−τd)c.

This leads to the following results.

Proposition 7. At the model's unique steady state, we have P = αδ
(r+δ)δ+(β+(1−τ)λσ2)γ =

F , H = γ
δP and R = α − βH, implying that N

E
= 1

1+exp[−(1−τd)νc] and N
R

=

1
1+exp[(1−τd)νc] . Suppose that the steady state is locally asymptotically stable. If N

E
χδ+

γ(β+(1−τ)λσ2)N
E
χ

1+r+δ−NE
χ

< N
R
φ+ 2δ+r

1−δ is violated, a Neimark-Sacker bifurcation occurs.

As reported in Proposition 7, a partial tax deductibility of information costs promotes

the use of the stabilizing regressive expectation rule. Note that this does not change

the steady-state values P , H and R, but does a�ect the steady state's stability domain.

Since the market share of extrapolative expectations N
E
decreases with d, a violation

of the Neimark-Sacker condition becomes less likely if a larger fraction of information

costs can be deducted from tax payments. In the top right panel of Figure 6, we repeat

the simulation from the top left panel, except that we set d = 0.25. As can be seen,

increasing wealth taxes again decrease the range of house price oscillations, but the

dynamics already converges towards the steady state if the tax rate exceeds τNScrit ≈ 0.151.

The bottom left panel of Figure 6 shows a bifurcation diagram for the intensity of

choice with τ = 0.25 and d = 0. As already discussed in Section 4, increasing values

of ν destabilize the system. In this case, the steady state becomes unstable, and quasi-

periodic dynamics emerges as soon as ν ≥ νNScrit ≈ 0.969. Now suppose we have a situation

in which τ = 0.25 and ν = 1.1, and parameter d is increased, as it is illustrated in the

bottom right panel. Obviously, endogenous dynamics dies out at d = dNScrit ≈ 0.478, and

the system settles down at its steady state. A remark is in order. The original contribu-

tion by Brock and Hommes (1997) studies a cobweb model in which �rms switch between

a free destabilizing and a costly stabilizing expectation rule. As the �rms' intensity of

choice increases, more and more of them opt for the free destabilizing expectation rule,

and �xed-point dynamics turns into increasingly complex and volatile dynamics, a phe-

nomenon that has been called a "rational route to randomness". Schmitt and Westerho�

(2015) show that a pro�t tax, reducing the �tness di�erentials between expectation rules,

may reverse this outcome. Interestingly, we observe a similar phenomenon within our
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model. Note that the steady-state fraction of the regressive expectation rule increases

with d and τ , provided that d, τ > 0. For d = 1, any destabilizing increase in ν can

be countered by an increase in τ . If possible, policy makers should promote the use of

regressive expectations. Such a change in investors' behavior improves market stability,

without a�ecting the housing market's steady-state level.

6. Conclusions

Housing markets regularly display dramatic bubbles. According to Case and Shiller

(2003) and Case et al. (2013), such dynamics, which may be quite harmful for the real

economy, are due to investors' optimistic house price expectations. However, Glaeser et

al. (2008) argue that the real side of housing markets is also relevant for the formation

and duration of bubbles. By combining Poterba's (1984, 1991) user cost model and Brock

and Hommes' (1997, 1998) heuristic switching approach, we develop a novel housing

market model that seeks to take these observations into account.

The real part of our model comprises a rental market and a housing capital market,

and determines key relations between the house price, the housing stock and the rent

level. The behavioral part of our model consists of housing market investors who switch

between competing expectation rules with respect to their past performance, thereby

re�ecting a boundedly rational learning behavior. Amongst others, our model reveals

that endogenous boom-bust housing market dynamics may arise if investors rely heavily

on extrapolative expectations. Fortunately, policy makers have the opportunity to sta-

bilize such dynamics by adjusting the tax code. For instance, a property tax or a tax on

rental income tames the housing market. However, such a tax also a�ects the housing

market's steady-state level, an aspect which should not be overlooked.

Without question, the dynamics of housing markets is driven by a complex interplay

between real and behavioral forces, and a complete understanding of the functioning of

housing markets is still lacking. However, we hope that our model makes some progress

in this direction. Moreover, we would like to stress that our model may serve as a

framework to explore how policy makers may a�ect the steady state, its stability and

the out-of-equilibrium behavior of housing markets via adjusting the tax code. Of course,

much more work is needed in this exciting and relevant research �eld.
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Appendix

Here, we provide a detailed proof of Proposition 1. Note that the derivation of Propo-

sitions 2-7 follows along quite similar lines of reasoning. First of all, we need to express

our model in form of a dynamical system. We therefore introduce the auxiliary variables

xt = Pt−1, yt = xt−1, zt = yt−1 and kt = Ht−1. Moreover, it is helpful to use the di�er-

ence in fractions, given by mt = NR
t −NE

t = Tanh
[
ν
2 (A

R
t −AEt )

]
. Since NR

t +NE
t = 1,

it follows that NE
t = 1−mt

2 and NR
t = 1+mt

2 . The dynamical system of our model can

thus be summarized by the following six-dimensional nonlinear map

T :



Pt =
Et[Pt+1]+α−β(γPt−1+(1−δ)Ht−1)−λσ2(γPt−1+(1−δ)Ht−1)

1+r+δ

Ht = γPt−1 + (1− δ)Ht−1

xt = Pt−1

kt = Ht−1

yt = xt−1

zt = yt−1

,

where

Et[Pt+1] =
1−mt

2

(
Pt−1 + χ(Pt−1 − xt−1)

)
+

1 +mt

2

(
Pt−1 + φ(F − Pt−1)

)
and

mt = Tanh

[
ν

2

{(
Pt−1+α−βkt−1−(1+r+δ)xt−1

)φ(F − yt−1)− χ(yt−1 − zt−1)

λσ2
−c
}]
.

By imposing the fact that price expectations are realized at the steady state, i.e. Et[P ] =

P , implying that P = F , the model's dynamical system gives rise to the unique steady

state FSS = (P ,H, x, k, y, z) = (P ,H, P ,H, P , P ), where P = F = αδ
βγ+δ(r+δ)+γλσ2 and

H = P γ
δ . Since prices mirror their fundamental value at the steady state, we call it

the fundamental steady state. Furthermore, by using R = α − βH we can also express

steady-state prices as P = F = R−λσ2H
r+δ .

To explore the steady state's stability properties, we use the Jacobian matrix, com-
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puted at the fundamental steady state, i.e.

J(FSS) =



2−2γ(β+γσ2)−φ+χ−(φ+χ)m
2(1+r+δ)

(δ−1)(β+λσ2)
1+r+δ − χ(1−m)

2(1+r+δ) 0 0 0

γ 1− δ 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0


,

where m = Tanh
[
−ν2 c

]
, and derive the characteristic polynomial

κ3(κ3 − a1κ2 − a2κ− a3) = 0,

where a1 = −4+2r(δ−1)+2δ2+2γ(β+λσ2)+φ+mφ+(m−1)χ
2(1+r+δ) , a2 = (δ−1)(−2+φ+mφ)+(m−1)(δ−2)χ

2(1+r+δ)

and a3 = − (m−1)(δ−1)χ
2(1+r+δ) . The �xed point of our model is locally asymptotically stable

if and only if all six eigenvalues of the Jacobian matrix are less than one in absolute

value. Note that three eigenvalues, say κ1,2,3, are equal to zero, while the other three

eigenvalues, say κ4,5,6, result from the remaining third-degree characteristic polynomial.

For this reason, we follow Lines et al. (2019), who provide a simpli�ed set of conditions

to explore a steady state's stability properties for such a problem. In fact, they show

that a �xed point of a third-degree characteristic polynomial loses its stability if (I)

1+ a1 + a2 + a3 > 0, (II) 1− a1 + a2 − a3 > 0 or (III) 1− a2 + a1a3 − a23 > 0 is violated

by a continuous change of a model parameter. Moreover, a violation of (I), (II) or (III),

while the other two conditions hold, is associated with a Fold, Flip and Neimark-Sacker

bifurcation, respectively. In our case, tedious computations reveal that this results in

(I) φ(1 +m)δ > −2
(
βγ + δ(r + δ) + γλσ2

)
,

(II) φ(1 +m) < 2
(
r +

γ(β + λσ2)

(δ − 2)
+ 2 + δ + χ−mχ

)
and

(III) (1−m)χδ +
2γ(β + λσ2)(1−m)χ

2(1 + r + δ)− (1−m)χ
< (1 +m)φ+

2(2δ + r)

1− δ
.

Recall that 0 ≤ φ ≤ 1, 0 < δ < 1 and β, γ, r, λσ2 > 0. Also, we have 0 ≤ m ≤ 1 which

implies that condition (I) is always satis�ed. Finally, we use m = N
R−NE

, N
E
= 1−m

2
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and N
R
= 1+m

2 , and rewrite inequalities (II) and (III) as

(II') N
R
φ+

γ(β + λσ2)

2− δ
< 2 + r + δ + 2χN

E

and

(III') N
E
χδ +

γ(β + λσ2)N
E
χ

1 + r + δ −NE
χ
< N

R
φ+

2δ + r

1− δ
,

which correspond to (ii) and (i) in Proposition 1, respectively. For the derivation of

Propositions 2-7, it is helpful to note that the tax parameter τ is always closely related

to a real or behavioral model parameter, as pointed out in Section 5. For instance, in

the case of a property tax, τ always appears in connection with r.

References

[1] Anufriev, M. and Hommes, C. (2012): Evolutionary selection of individual expec-

tations and aggregate outcomes in asset pricing experiments. American Economic

Journal: Microeconomics, 4, 35-64.

[2] Bao, T. and Hommes, C. (2019): When speculators meet suppliers: positive versus

negative feedback in experimental housing markets. Journal of Economic Dynamics

and Control, 107, 103730.

[3] Bolt, W., Demertzis, M., Diks, C., Hommes, C. and van der Leij, M. (2019): Identi-

fying booms and busts in house prices under heterogeneous expectations. Journal of

Economic Dynamics and Control, 103, 234-259.

[4] Boswijk, P., Hommes, C. and Manzan, S. (2007): Behavioral heterogeneity in stock

prices. Journal of Economic Dynamics and Control, 31, 1938-1970.

[5] Brock, W. and Hommes, C. (1997): A rational route to randomness. Econometrica,

65, 1059-1095.

[6] Brock, W. and Hommes, C. (1998): Heterogeneous beliefs and routes to chaos in

a simple asset pricing model. Journal of Economic Dynamics and Control, 22, 1235-

1274.

[7] Burnside, C., Eichenbaum, M. and Rebelo, S. (2016): Understanding booms and

busts in housing markets. Journal of Political Economy, 124, 1088-1147.

30



[8] Case, K. and Shiller, R. (2003): Is there a bubble in the housing market? Brookings

Papers on Economic Activity, 2, 299-342.

[9] Case, K., Shiller, R. and Thompson, A. (2012): What have they been thinking?

Home buyer behavior in hot and cold markets. Brookings Papers on Economic Activ-

ity, 2, 265-98.

[10] De Grauwe, P. and Grimaldi, M. (2006): Exchange rate puzzles: a tale of switching

attractors. European Economic Review, 50, 1-33.

[11] Dieci, R. and He, X.-Z. (2018): Heterogeneous agent models in �nance. In: Hommes,

C., LeBaron, B. (Eds.): Handbook of Computational Economics, 4, Heterogeneous

Agent Modeling. North-Holland, Amsterdam, 257-328.

[12] Dieci, R. and Westerho�, F. (2012): A simple model of the speculative housing

market. Journal of Evolutionary Economics, 22, 303-329.

[13] Dieci, R. and Westerho�, F. (2016): Heterogeneous expectations, boom-bust hous-

ing, and supply conditions: a nonlinear dynamics approach. Journal of Economic

Dynamics and Control, 71, 21-44.

[14] Diks, C. and Wang, J. (2016): Can a stochastic cusp catastrophe model explain

housing market crashes? Journal of Economic Dynamics and Control, 69, 68-88.

[15] DiPasquale, D. and Wheaton W.C. (1992): The markets for real estate assets and

space: a conceptual framework. Journal of American Real Estate and Urban Eco-

nomics Association, 20, 181-197.

[16] Droste, E., Hommes, C. and Tuinstra, J. (2002): Endogenous �uctuations under

evolutionary pressure in Cournot competition. Games and Economic Behavior, 40,

232-269.

[17] Eichholtz, P., Huisman, R. and Zwinkels, R. (2015): Fundamentals or trends? A

long-term perspective on house prices. Applied Economics, 47, 1050-1059.

[18] Glaeser, E., Gyourko, J. and Saiz, A. (2008): Housing supply and housing bubbles.

Journal of Urban Economics, 64, 198-217.

31



[19] Glaeser, E. (2013): A nation of gamblers: real estate speculation and American

history. American Economic Review, 103, 1-42.

[20] Glaeser, E. and Nathanson C. (2015): Housing bubbles. In: Duranton, G., Hender-

son, V. and Strange, W. (Eds.): Handbook of Regional and Urban Economics, 5B,

North-Holland, Amsterdam, 701-751.

[21] Glaeser, E. and Nathanson C. (2017): An extrapolative model of house price dy-

namics. Journal of Financial Economics, 126, 147-170.

[22] Hommes, C. (2011): The heterogeneous expectations hypothesis: some evidence

from the lab. Journal of Economic Dynamics and Control, 35, 1-24.

[23] Hommes, C. (2013): Behavioral rationality and heterogeneous expectations in com-

plex economic systems. Cambridge University Press, Cambridge.

[24] Kouwenberg, R. and Zwinkels, R. (2014): Forecasting the US housing market. In-

ternational Journal of Forecasting, 30, 415-425.

[25] Lines, M., Schmitt, N. and Westerho�, F. (2019): Stability conditions for three-

dimensional maps and their associated bifurcation types. Applied Economics Letters,

forthcoming.

[26] Manski, C. and McFadden, D. (1981): Structural analysis of discrete data with

econometric applications. MIT Press, Cambridge.

[27] Piazzesi, M. and Schneider, M. (2009): Momentum traders in the housing market:

survey evidence and a search model. American Economic Review, 99, 406-411.

[28] Piazzesi, M. and Schneider, M. (2016): Housing and macroeconomics. In: Taylor, J.

and Uhlig, H. (Eds.): Handbook of Macroeconomics, 2, North-Holland, Amsterdam,

1547-1640.

[29] Poterba, J. (1984): Tax subsidies to owner-occupied housing: an asset market

approach. The Quarterly Journal of Economics, 99, 729-752.

[30] Poterba, J. (1991): House price dynamics: the role of tax policy and demography.

Brookings Papers on Economic Activity, 2, 143-203.

32



[31] Poterba, J. (1992): Taxation and housing: old question, new answers. American

Economic Review, 82, 237-242.

[32] Poterba, J. and Sinai, T. (2008): Tax expenditures for owner-occupied housing:

deductions for property taxes and mortgage interest and the exclusion of imputed

rental income. American Economic Review, 98, 84-89.

[33] Schmitt, N. and Westerho�, F. (2015): Managing rational routes to randomness.

Journal of Economic Behavior and Organization, 116, 157-173.

[34] Schmitt, N. and Westerho�, F. (2019): Short-run momentum, long-run mean re-

version and excess volatility: an elementary housing model. Economics Letters, 176,

43-46.

[35] Shiller, R. (1991): Comment on "House price dynamics: the role of tax policy and

demography" by James Poterba. Brookings Papers on Economic Activity, 2, 189-197.

[36] Shiller, R. (2015): Irrational exuberance. Princeton University Press, Princeton.

[37] ter Ellen, S., Hommes, C. and Zwinkels, R. (2020): Comparing behavioral het-

erogeneity across asset classes. Journal of Economic Behavior and Organization, in

press.

[38] Weil, D. (1991): Comment on "House price dynamics: the role of tax policy and

demography" by James Poterba. Brookings Papers on Economic Activity, 2, 184-188.

[39] Wheaton, W. (1999): Real estate "cycles": some fundamentals. Real Estate Eco-

nomics, 27, 209-230.

33





BERG Working Paper Series (most recent publications) 
 

 

123 Johanna Sophie Quis and Simon Reif, Health Effects of Instruction Intensity – Evidence 
from a Natural Experiment in German High-Schools, May 2017 

124 Lisa Planer-Friedrich and Marco Sahm, Strategic Corporate Social Responsibility, 
May 2017 

125 Peter Flaschel, Matthieu Charpe, Giorgos Galanis, Christian R. Proaño and Roberto 
Veneziani, Macroeconomic and Stock Market Interactions with Endogenous Aggregate 
Sentiment Dynamics, May 2017 

126 Christian Menden and Christian R. Proaño, Dissecting the Financial Cycle with Dynam-
ic Factor Models, May 2017 

127 Christoph March and Marco Sahm, Contests as Selection Mechanisms: The Impact of 
Risk Aversion, July 2017 

128 Ivonne Blaurock, Noemi Schmitt and Frank Westerhoff, Market entry waves and vola-
tility outbursts in stock markets, August 2017 

129 Christoph Laica, Arne Lauber and Marco Sahm, Sequential Round-Robin Tournaments 
with Multiple Prizes, September 2017 

130 Joep Lustenhouwer and Kostas Mavromatis, Fiscal Consolidations and Finite Planning 
Horizons, December 2017 

131 Cars Hommes and Joep Lustenhouwer, Managing Unanchored, Heterogeneous Expec-
tations and Liquidity Traps, December 2017 

132 Cars Hommes, Joep Lustenhouwer and Kostas Mavromatis, Fiscal Consolidations and 
Heterogeneous Expectations, December 2017 

133 Roberto Dieci, Noemi Schmitt and Frank Westerhoff, Interactions between stock, bond 
and housing markets, January 2018 

134 Noemi Schmitt, Heterogeneous expectations and asset price dynamics, January 2018 

135 Carolin Martin and Frank Westerhoff, Regulating speculative housing markets via pub-
lic housing construction programs: Insights from a heterogeneous agent model, May 
2018 

136 Roberto Dieci, Noemi Schmitt and Frank Westerhoff, Steady states, stability and bifur-
cations in multi-asset market models, July 2018 

137 Steffen Ahrens, Joep Lustenhouwer and Michele Tettamanzi, The Stabilizing Role of 
Forward Guidance: A Macro Experiment, September 2018 

138 Joep Lustenhouwer, Fiscal Stimulus in an Expectation Driven Liquidity Trap, Septem-
ber 2018 



139 Tim Hagenhoff, An aggregate welfare optimizing interest rate rule under heterogeneous 
expectations, October 2018 

140 Johanna Sophie Quis, Anika Bela and Guido Heineck, Preschoolers’ self-regulation, 
skill differentials, and early educational outcomes, December 2018 

141 Tomasz Makarewicz, Traders, forecasters and financial instability: A model of individu-
al learning of anchor-and-adjustment heuristics, January 2019 

142 Carolin Martin, Noemi Schmitt and Frank Westerhoff, Housing markets, expectation 
formation and interest rates, January 2019 

143 Marc P. Saur, Markus G. Schlatterer and Stefanie Y. Schmitt, Horizontal product dif-
ferentiation with limited attentive consumers, January 2019 

144 Tim Hagenhoff and Joep Lustenhouwer, The Rationality Bias, February 2019 

145 Philipp Mundt and Ilfan Oh, Asymmetric competition, risk, and return distribution, Feb-
ruary 2019 

146 Ilfan Oh, Autonomy of Profit Rate Distribution and Its Dynamics from Firm Size 
Measures: A Statistical Equilibrium Approach, February 2019 

147 Philipp Mundt, Simone Alfarano and Mishael Milakovic, Exploiting ergodicity in fore-
casts of corporate profitability, March 2019 

148 Christian R. Proaño and Benjamin Lojak, Animal Spirits, Risk Premia and Monetary 
Policy at the Zero Lower Bound, March 2019 

149 Christian R. Proaño, Juan Carlos Peña and Thomas Saalfeld, Inequality, Macroeconom-
ic Performance and Political Polarization: An Empirical Analysis, March 2019 

150 Maria Daniela Araujo P., Measuring the Effect of Competitive Teacher Recruitment on 
Student Achievement: Evidence from Ecuador, April 2019 

151 Noemi Schmitt and Frank Westerhoff, Trend followers, contrarians and fundamental-
ists: explaining the dynamics of financial markets, May 2019 

152 Yoshiyuki Arata and Philipp Mundt, Topology and formation of production input inter-
linkages: evidence from Japanese microdata, June 2019 

153 Benjamin Lojak, Tomasz Makarewicz and Christian R. Proaño, Low Interest Rates, 
Bank’s Search-for-Yield Behavior and Financial Portfolio Management, October 2019 

154 Christoph March, The Behavioral Economics of Artificial Intelligence: Lessons from 
Experiments with Computer Players, November 2019 

155 Christoph March and Marco Sahm, The Perks of Being in the Smaller Team: Incentives 
in Overlapping Contests, December 2019 

156 Carolin Martin, Noemi Schmitt and Frank Westerhoff, Heterogeneous expectations, 
housing bubbles and tax policy, February 2020 


	Introduction
	Related literature
	The basic model framework
	Implications of our basic model framework
	Analytical insights
	Numerical insights

	The housing market model with taxes
	Tax on the value of houses
	Tax on rental income
	Tax on owning housing stock
	Revenue tax for housing constructors
	Tax on wealth of investors
	Tax deductibility of information costs

	Conclusions
	Leere Seite

