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Abstract

I implement optimal monetary policy under heterogeneous expectations as in Di Bartolomeo et al.

(2016) by deriving an explicit interest rate rule under timeless commitment. Implementation requires

the derivation of agents’ consumption decisions that incorporate the higher-order beliefs assumption

of Branch and McGough (2009). As a result, ”rational” agents are not sophisticated enough to have

model-consistent individual consumption expectations, as assumed in Di Bartolomeo et al. (2016),

even though they forecast aggregate variables correctly on average. Further, I show that the optimal

interest rate rule yields substantial welfare gains compared to a rule that is derived from a conventional

inflation-targeting objective as in Gasteiger (2014). The implementation of the non-optimal inflation-

targeting rule already requires an increase of 14.5 percent of steady-state consumption to compensate

for the higher welfare losses relative to the optimal interest rate rule when only ten percent of the

population form (naive) backward-looking expectations. The presence of heterogeneous expectations

requires the central bank to be extraordinarily hawkish with respect to inflation to achieve optimality.

However, consumption dispersion increases with the central bank’s aggressiveness towards inflation.
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1 Introduction

The New Keynesian model emphasizes the ability of monetary policy to stabilize the macroeconomy

by managing agents’ expectations. Usually, optimal monetary policy is studied within a framework that

assumes all agents to form their expectations rationally (Clarida et al., 1999; Woodford, 1999; McCallum,

1999). However, econometric studies based on inflation expectation surveys show that the data favors

heterogeneous expectations with a certain degree of bounded rationality (Branch, 2004, 2007; Pfajfar

and Santoro, 2010; Cornea-Madeira et al., 2017). For instance, Branch (2004) and Cornea-Madeira

et al. (2017) find evidence for the existence of more sophisticated agents that employ a VAR-heuristic

alongside agents that form (naive) backward-looking expectations. Further, Cole and Milani (2016)

show that cross-equation restrictions imposed by New Keynesian models are heavily rejected under the

assumption of homogeneous rational expectations when trying to match actual survey expectation data.

However, these restrictions prove valuable under heterogeneous expectations, indicating that the main

source of misspecification in New Keynesian models stems from misspecified (rational) expectations.

Additionally, heterogeneity in forecasting schemes is confirmed by examining the expectation formation

of actual human subjects in a series of laboratory experiments (Hommes, 2011; Assenza et al., 2014;

Pfajfar and Žakelj, 2018). Starting from these observations, several New Keynesian models were designed

that include heterogeneous expectations (Branch and McGough, 2009, 2010; De Grauwe, 2011; Massaro,

2013; Hommes and Lustenhouwer, 2019; Hagenhoff and Lustenhouwer, 2019).

What are the implications of heterogeneous expectations for monetary policy and, in particular,

how should central banks set interest rates optimally given this knowledge? To answer this question I

derive an optimal interest rate rule under timeless commitment1 based on the Branch and McGough

(2009) framework and a model-consistent welfare criterion following Di Bartolomeo et al. (2016). One

feature of this interest rate rule is that it is extraordinarily hawkish with respect to inflation. This

theoretical finding underpins the experimental finding of Assenza et al. (2014), where a central bank

that is quite aggressive with respect to inflation yields more desirable aggregate outcomes in a world

with heterogeneous expectations. However, the present paper additionally suggests that there may be

undesirable distributional consequences as consumption dispersion increases with the aggressiveness of

monetary policy towards inflation.

To describe the micro level explicitly, I derive consumption Euler equations that adequately account

1The timeless commitment approach assumes that the optimal commitment policy was implemented in the distant past
so as to omit the first period’s optimality condition that is the same as under discretion (see for instance Woodford (2003)
and Woodford (2010)). The problem of the latter is that it renders the policy time-inconsistent. Hence, the drop of the
initial period’s optimality condition solves this problem.
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for the assumption of Branch and McGough (2009) about higher-order beliefs. More specifically, the

underlying model of this paper incorporates two types of agents. The more sophisticated agents, that I

call ”rational forecasters”, are able to forecast aggregate variables consistent with the model predictions

but are not smart enough to understand the micro level fully. In contrast, boundedly rational forecasters

use a simple backward-looking heuristic instead for forecasting. Such backward-looking heuristics are

broadly consistent with evidence from laboratory experiments (Hommes, 2011; Assenza et al., 2014;

Pfajfar and Žakelj, 2018).

While optimal monetary policy under homogeneous rational expectations is well known and exten-

sively studied, the strand of literature dealing with monetary policy under heterogeneous expectations

is rather new. Recent advances in the literature are made by Gasteiger (2014, 2018), Di Bartolomeo

et al. (2016) and Beqiraj et al. (2017). Beqiraj et al. (2017) investigate optimal discretionary monetary

policy under heterogeneous expectations based on the framework developed in Massaro (2013) that in-

cludes agents that forecast over all future periods up to infinity. On the other hand, Gasteiger (2014),

Gasteiger (2018) and Di Bartolomeo et al. (2016) follow the Euler-equation-learning approach of Branch

and McGough (2009). Gasteiger (2014) and Gasteiger (2018) explore interest rate rules derived from an

ad-hoc inflation-targeting objective while Di Bartolomeo et al. (2016) provide an extension based on a

model-consistent central bank objective.

Although Di Bartolomeo et al. (2016)’s solution algorithm implies that the central bank employs

expectations-based interest rate rules, they do not derive them analytically. Thus, the literature has so

far not provided an optimal interest rate rule under heterogeneous expectations based on the Branch

and McGough (2009) model. (Optimal) Interest rate rules are useful as they allow, in comprehensible

way, to identify which variables determine the interest rate and to which degree, especially with varying

degrees of heterogeneity in expectations, they should do so. In this paper, I will focus on the case where

the central bank is able to commit to its policy from timeless perspective (Blake et al., 2001; Woodford,

2003) as it elegantly addresses the issue of time-inconsistency under commitment and further allows the

central bank to efficiently target private sector (rational) expectations.

Additionally, I explore the role of the higher-order beliefs assumption of Branch and McGough (2009)

for agents’ individual consumption decisions. The authors impose this assumption as it is necessary

for aggregation, i.e. to arrive at the same functional forms as in the canonical New Keynesian model

but where the rational expectations operator is simply replaced by a weighted sum different expectation

operators. Further, consumption decisions have to be made explicit as the central bank’s objective

function introduced by Di Bartolomeo et al. (2016) depends on consumption dispersion. This approach
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allows me to clarify the properties of the expectations operator, ERt , of ”rational” forecasters in Branch

and McGough (2009). It is assumed that rational forecasters, by using ERt , predict aggregate variables

consistent with the model predictions which can, however, not be the case for expectations about the

distribution of individual consumption. This is a straightforward consequence of the higher-order beliefs

assumption which puts a particular (non-rational) structure on the agents believe about other agents’

individual expectations. In particular, all agents believe that all other agents form the same expectations

about their individual consumption as they do. Hence, even ”rational forecasters” are not smart enough

to sophisticatedly forecast individual consumption. The final consumption equations only depend on

aggregate variables and can, therefore, be used to substitute for individual consumption in the optimal

interest rate rule.

However, if an Euler equation with model-consistent individual consumption expectations as in

Di Bartolomeo et al. (2016) is applied, the first-order conditions of the central bank problem under

commitment can only be reduced to a second-order difference equation in one of the Lagrange-multipliers

to which the solution is fairly complicated and exponentially depends on time. Consequently, an in-

terpretable interest rate rule under commitment in this case cannot be derived. Further, it would not

be possible to substitute for individual consumption so that practical implementation would require

consumption of rational and boundedly rational forecasters to be observable. However, applying the

consumption equation that appropriately accounts for the higher-order beliefs assumption makes the

derivation of a meaningful interest rate rule under commitment possible.

Moreover, I compare the optimal interest rate rule to a micro-founded version of the policy rule in

Gasteiger (2014). As already indicated, the author derives an interest rate rule under timeless commit-

ment that recognizes the heterogeneity in expectations in the private sector equations but is optimized

under a conventional ad-hoc inflation-targeting objective. The resulting interest rate rule is sub-optimal

but also much simpler than the rule derived in this paper. While it is straight-forward that the opti-

mal rule must yield lower welfare losses than the non-optimal rule derived from the inflation-targeting

objective, it is not clear by how much.

The welfare analysis shows that the optimal interest rate rule generates substantial welfare gains,

given a non-autocorrelated one-standard-deviation cost-push shock. In that case, the implementation

of the non-optimal inflation-targeting rule already requires an increase of 14.5 percent of steady-state

consumption to compensate for the higher welfare losses relative to the optimal interest rate rule when

only ten percent of the population form (naive) backward-looking expectations. The welfare gains of the

optimal interest rate rule crucially depend on the relative fraction of agent types. The optimal interest
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rate rule performs relatively better the higher the fraction of boundedly rational forecasters.

Finally, I find that consumption dispersion is not necessarily lower under the optimal rule compared

the non-optimal inflation-targeting rule, even though the former explicitly incorporates consumption

heterogeneity as opposed to the latter. This is because consumption dispersion increases with the central

bank’s aggressiveness towards inflation, as rational and boundedly rational forecasters’ consumption

decisions become more unequal for stronger reactions of the policy rate. As a consequence, there is also

a (local) trade-off between minimizing welfare losses and reducing consumption dispersion.

The remainder of the paper is organized as follows. The underlying model including the modified

consumption rules are presented in Section 2. The optimal interest rate rule under heterogeneous ex-

pectations is derived in the subsequent section. Section 4 shows the impulse responses under optimal

monetary policy with an emphasis on the different consumption paths of rational and boundedly rational

forecasters, followed by the welfare analysis in Section 5. Finally, the conclusion is given in Section 6.

2 Model

In this section, I introduce the underlying model and derive individual consumption decisions that incor-

porate the higher-order beliefs assumption of Branch and McGough (2009). The economy is assumed to

be populated by an exogenous fraction α of rational forecasters (R) which have rational (model-consistent)

expectations with respect to aggregate variables and a fraction 1 − α of boundedly rational forecasters

(B) that employ a simple backward-looking heuristic. The general forecasting rule of boundedly ratio-

nal forecasters takes the form of EBt xt+1 = θ2xt−1 for some variable x while rational forecasters simply

use the expected value, ERt = Et, for forecasting aggregate variables. Backward-looking expectations for

θ < 1 are called steady-state-reverting, for θ = 1 naive and for θ > 1 trend-setting. Steady-state-reverting

expectations constitute a stabilizing force while trend-setting expectations imply a further amplification

of macroeconomic variables.

Assuming perfect consumption insurance within each of the two agent groups the model can be ex-

pressed in terms of two representative agents (RA). This approach, therefore, abstracts from further

individual characteristics in order to isolate the effects of heterogeneous expectations on individual con-

sumption (dispersion) and aggregate variables, as well as their implications for monetary policy. Both

RA’s aim at maximizing their individual expected discounted lifetime utility Eτ0
∑∞

t=0 β
tUt given their

subjective expectations Eτ0 with τ ∈ {R,B}. However, as in Branch and McGough (2009) agents follow

Euler-equation learning, i.e. they disregard their intertemporal budget constraint as an optimality con-
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dition and solely base their consumption decision on the variational intuition of the consumption Euler

equation.

The period utility function is of CES-form and is given by

Ut =
(Cτt )1− 1

σ

1− 1
σ

− (Y τ
t )1+η

1 + η
(1)

with Cτt being consumption of the RA of type τ , Y τ
t the output that each type-τ RA produces, 1

σ the

coefficient of relative risk aversion and η the elasticity of marginal disutility of producing output. Agents

must satisfy their real budget constraint

Cτt +Bτ
t =

1 + it−1

Πt
Bτ
t−1 + Ψτ

t (2)

with Bτ
t being real bond holdings, it−1 the nominal interest rate in t− 1, Πt gross inflation and Ψτ

t real

income of agent τ .

All agents in this economy are assumed to believe that all other agents will form the same expectations

as they do. Branch and McGough (2009) explicitly emphasize that this assumption is necessary for

aggregation. I explicitly show below that this assumption implies that ”rational” forecasters are not fully

rational in the conventional sense and therefore cannot have model-consistent individual consumption

expectations. Assuming rational forecasters to possess rational individual consumption expectation, as in

Di Bartolomeo et al. (2016), implies too much rationality to be consistent with the necessary higher-order

beliefs assumption. Incorporating the higher-order beliefs assumption into the consumption decisions of

agents is further crucial as an interpretable interest rate rule under timeless commitment cannot be

derived otherwise (see Appendix C).

I will show later on that the central bank’s welfare criterion can be re-written using market clearing

in a way that it only depends on the consumption decision of rational forecasters. Hence, for now I focus

on the consumption Euler equation for τ = R which is given by

(CRt )−
1
σ = βERt

[
(CRt+1)−

1
σ

1 + it
Πt+1

]
. (3)

Log-linearizing (3) gives

cRt = ERt c
R
t+1 − σ(it − ERt πt+1) (4)

where lower case letters indicate log-deviations from the zero-inflation steady state. Forward iteration
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yields

cRt = ERt c
R
∞ − σ

∞∑
k=0

(it+k − ERt πt+k+1). (5)

Rational forecasters assume that the Euler equation of boundedly rational forecasters will also be satisfied

and that market clearing yt = αcRt + (1 − α)cBt holds. Writing market clearing one period forward and

inserting equation (5), and equivalently the forward-iterated consumption Euler equation for boundedly

rational forecasters, yields

ERt yt+1 = ERt

[
α(ERt c

R
∞ − σERt+1

∞∑
k=1

(it+k − πt+k+1))

+ (1− α)(EBt c
B
∞ − σEBt+1

∞∑
k=1

(it+k − πt+k+1))
]
. (6)

Note that (6) contains higher-order beliefs, i.e. beliefs of rational forecasters ERt about the beliefs of

boundedly rational forecasters EBt and EBt+1. In order to arrive at the IS curve that has the same

functional form as in the model under homogeneous rational expectations, Branch and McGough (2009)

impose a specific (non-rational) structure on higher-order beliefs. In the context of the present paper, the

assumption states that agents’ believe that all other agents will forecast their individual consumption in

the same way they do. Mathematically and in the case of rational forecasters: ERt E
B
t+kct+l = ERt ct+l with

l > k. Hence, boundedly rational expectations just drop out under this assumption. Further, note that

making an alternative assumption, e.g. allowing rational forecasters to be fully rational, would result in

a different system of aggregate equations (see Hagenhoff and Lustenhouwer, 2019).

Using the higher-order beliefs assumption and the law of iterated expectations at the individual level

yields

ERt yt+1 = ERt y∞ − σ
∞∑
k=1

(it+k − ERt πt+k+1). (7)

It becomes obvious that (7) cannot hold under conventional rational expectations, i.e. when ERt = Et

would hold, as boundedly rational expectations, EBt and EBt+1, would not drop out and thus show up in

(7). Mathematically written: EtE
B
t = EBt and EtE

B
t+1 = EBt+1, which would contradict the higher-order

beliefs assumption of Branch and McGough (2009). Equation (7) would only hold under conventional

rational expectations when boundedly rational forecasters were absent, i.e. under homogeneous rational

expectations. In this case (6) would collapse to (7) without any further assumption.

The main crucial point that follows from this consideration is that rational forecasters in this model

are not smart enough to have model-consistent expectations with respect to the distribution of individual
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consumption when there is heterogeneity. Thus, assuming model-consistent individual consumption ex-

pectations in the Euler equation of rational forecasters, as in Di Bartolomeo et al. (2016), is inconsistent

with the underlying framework.

Using (7) to replace the infinite sum in (5), one obtains

cRt = ERt yt+1 + ERt (cR∞ − y∞)− σ(it − ERt πt+1) (8)

which is the true consumption decision of rational forecasters satisfying the higher-order beliefs assump-

tion from above.

Equation (8) could have been derived for the general case of agent τ as the assumption on higher-order

beliefs holds for both agent types. In the general case (8) reads

cτt = Eτt yt+1 + Eτt (cτ∞ − y∞)− σ(it − Eτt πt+1). (9)

To be consistent with Branch and McGough (2009), I assume that agents believe to be back in steady

state in the long-run.2 In this case Eτt (cτ∞ − y∞) = 0 holds and, thus, (9) becomes

cτt = Eτt yt+1 − σ(it − Eτt πt+1). (10)

From (10) one can infer that agents only forecast aggregate variables when making consumption

decisions. Note that, as rational forecasters have rational expectations with respect to aggregate variables,

ERt can be replaced by Et in the consumption decision of rational forecasters.

Using goods market clearing and (10) the IS curve is given by

yt = αEtyt+1 + (1− α)θ2yt−1 − σ(it − αEtπt+1 − (1− α)θ2πt−1). (11)

Further, output is produced under monopolistic competition. Calvo pricing is assumed where a fixed

fraction ξp of yeoman farmers cannot reset their prices in a given period (Calvo, 1983). Price dispersion

arises because, first, optimal prices are different between expectation types since they depend on expected

future marginal costs and, second, they differ within each type due to the fact that only a fraction of

2Branch and McGough (2009) assume that agents agree on expected differences in expected limiting consumption, so
that long-run expectations drop out when aggregating the individual consumption decisions. As the authors are interested
only in aggregate dynamics, there is no need to explicitly specify what these expectations actually are. However, this model
differs because optimal monetary policy depends on consumption dispersion. Branch and McGough (2009, p.1041) mention
that one assumption, consistent with their own, would be to assume that agents believe to be back in the steady state in
the long-run which I employ here.
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firms can reset prices. Thus, the Phillips-curve can be derived as

πt = αβEtπt+1 + (1− α)βθ2πt−1 + κyt + et (12)

with κ =
(1−ξp)(1−βξp)(η+σ−1)

ξp(1+εη) where ε is the price elasticity of demand for a differentiated good.3 As in

Di Bartolomeo et al. (2016) the Phillips curve is augmented with a random cost-push shock et.
4

Note that inflation and output exhibit some degree of persistence due to the presence of backward-

looking expectations. The degree of persistence depends on the fraction of boundedly rational forecasters

1 − α and their forecasting coefficient θ. The higher the two parameters the higher the degree of per-

sistence. This persistence is also recognized by rational forecasters which feeds back into the aggregate

equations (11) and (12) via rational expectations. Hence, the interaction between rational and bound-

edly rational expectations leads, ceteris paribus, to an amplification of shocks as identified by Gasteiger

(2018). However, the central bank’s ability to manipulate (rational) expectations by setting interest rates

accordingly is a powerful tool to counteract this amplification effect.

The model is calibrated as in Di Bartolomeo et al. (2016) for the US economy following Rotemberg

and Woodford (1997) with the time unit being one quarter.

α = 0.7 θ = 1 β = 0.99 σ = 6.25 ε = 7.84 η = 0.47 ξp = 0.66

Table 1: Baseline calibration

3 An optimal interest rate rule from a timeless perspective

In this section I derive, first, an optimal timeless interest rate rule from a model-consistent welfare criterion

and, second, a non-optimal rule under a conventional inflation-targeting objective as in Gasteiger (2014).

3.1 Loss functions

As in Gasteiger (2014, 2018) and Di Bartolomeo et al. (2016) the central bank aims at maximizing social

welfare. I follow the approach of Di Bartolomeo et al. (2016) where the central bank exploits its detailed

knowledge about the heterogeneity in expectations and minimizes a social welfare loss that is a second-

order approximation of household utility (1). The intertemporal second-order approximated aggregate

3For the derivation of the Phillips curve (12) please refer to Branch and McGough (2009).
4This shock can, for instance, be micro-founded by assuming an exogenous time-varying wage mark-up as in Gaĺı (2015).
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welfare loss can be derived as

W = − C̄UC
2

∞∑
t=0

βtLt + t.i.p. (13)

with

Lt =

(
η +

1

σ

)
y2
t + (ε2η)vari(pt(i)) +

1

σ
vari(ct(i)). (14)

and

vari(pt(i)) = δπ2
t +

δξp(1− α)

α

[
πt − βθ2πt−1 − κ

cBt + ησyt
1 + ησ

]2

(15)

vari(ct(i)) = α(1− α)(cRt − cBt )2. (16)

where δ =
ξp

(1−βξp)(1−ξp) is a measure of price stickiness and t.i.p. are the terms independent of policy.

Using market clearing to eliminate cBt as well as (15) and (16), loss function (14) can be rewritten as

Lt =Γ1y
2
t + Γ2π

2
t + Γ3π

2
t−1 + Γ4(cRt )2 (17)

+Γ5ytc
R
t + Γ6πtc

R
t + Γ7πt−1c

R
t + Γ8πtπt−1 + Γ9πtyt + Γ10πt−1yt

where the Γx-coefficients are given in the Appendix B.1.

Under homogeneous rational expectations, i.e for α = 1, price dispersion reduces to vari(pt(i)) = δπ2
t

and vari(ct(i)) to zero. Hence, in this case (14) reduces to

Lα=1
t =

(
η +

1

σ

)
y2
t + ε2ηδπ2

t . (18)

Equation (14) can be called the model-consistent loss function, i.e. it is consistently microfounded under

heterogeneous expectations as assumed in this paper, and (18) the conventional5 inflation-targeting loss

function.

In general agents dislike volatility due to the concave nature of their utility function. However, the

weight that is placed on inflation in second-order approximated utility functions in the canonical New

Keynesian model such as (18) is usually considerably higher compared to the weight on output (see

Woodford, 2003 or Gaĺı, 2015). This reflects that price dispersion, due to inflation and sticky prices, is

the source of inefficiency in the baseline model, quickly resulting in relatively large welfare losses. In case

of the conventional inflation-targeting loss (18), the weight on inflation is roughly 160 times the weight

5It is conventional in the sense that it can be derived from the conventional three-equation NK model under homogeneous
rational expectations.
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on output under baseline calibration.6

However, when producers have heterogeneous expectations, price dispersion arises not only due to

sticky prices but also because they have different expectations regarding future inflation and marginal

costs, as reflected by (15). The weight on contemporaneous inflation in the model-consistent loss function

(17) is roughly 230 times of the weight on contemporaneous output under baseline calibration with a 70

percent of rational forecasters, and increases to 270 times of the weight on contemporaneous output for

50 percent of rational forecasters. Additionally, the weights on lagged inflation and on the interaction

between contemporaneous and lagged inflation are non-negligible. Hence, inflation results in even higher

welfare losses through the price dispersion channel under heterogeneous expectations. However, even

though inflation explains most of the results in the the welfare analysis in Section 5, there is still a

trade-off between inflation and output (and consumption dispersion) under a cost-push shock that can

be important in some cases.

Further, an interesting novelty of (14) is the appearance of consumption dispersion, i.e. the cross-

sectional variance in consumption vari(ct(i)). It should be noted, however, that the weight on consump-

tion dispersion in (14) is even smaller compared to the weight on output. This indicates that agents might

accept a certain degree of heterogeneity when the economy is relatively stable instead. This finding is

also in line with Debortoli and Gaĺı (2017) who derive a model-consistent loss function in a Two Agent

New Keynesian (TANK) model and show that it depends on a measure of heterogeneity but where the

corresponding weight relative to inflation and output is also very low.

3.2 An optimal interest rate rule under timeless commitment

The central bank is assumed to set its interest rate so as to minimize the model-consistent loss function

(17) or, respectively, the conventional inflation-targeting objective (18) subject to the private sector

equations

yt = αEtyt+1 + (1− α)θ2yt−1 − σ[it − αEtπt+1 − (1− α)θ2πt−1] (19)

πt = αβEtπt+1 + (1− α)βθ2πt−1 + κyt + et (20)

cRt = Etyt+1 − σ(it − Etπt+1). (21)

Minimizing the conventional inflation-targeting objective (18) subject to the Phillips curve (20) under

6The fact that the weight on inflation is high relative to the weight on output is general and robust with respect to the
calibration.
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timeless commitment gives the inflation-targeting interest rate rule

it = γ1yt−1 + γ2Etyt+1 + γ3πt−1 + γ4Etπt+1 + γ5et (22)

with

γ1 =
(1− α)θ − α

σ
+ α

δε2ηκ2

1 + ησ + δε2ηκ2σ
(23)

γ2 = α
1

σ
− (1− α)

σ

[
β2θ2(1 + ησ)

1 + ησ + δε2ηκ2σ

]
(24)

γ3 = (1− α)

[
θ2(1 + η(σ + δε2κ(β + κσ)))

1 + ησ + δε2ηκ2σ

]
(25)

γ4 = α

[
1 +

βδε2ηκ

1 + ησ + δε2ηκ2σ

]
(26)

γ5 =
δε2ηκ

1 + ησ + δε2ηκ2σ
. (27)

Equation (22) is similar to the rule derived by Gasteiger (2018) and Gasteiger (2014).7 Note that timeless

commitment introduces persistence even in the absence of boundedly rational forecasters, i.e. γ1 reduces

to δε2ηκ2

1+ησ+δε2ηκ2σ
− 1

σ and does not vanish for for α = 1.

The optimal commitment interest rate rule can be obtained by minimizing (17) subject to the private

sector equation (19), (20) and (21) under timeless commitment as

it =Ω1Etπt+1 + Ω2Etπt+2 + Ω3πt−3 + Ω4πt−2 + Ω5πt−1 + Ω6Etyt+1 + Ω7Etyt+2 (28)

+Ω8yt−2 + Ω9yt−1 + Ω10Etc
R
t+1 + Ω11Etc

R
t+2 + Ω12c

R
t−2 + Ω13c

R
t−1 + Ω14et

where the reaction coefficients Ωx and derivations are given in the Appendix B.2. A first inspection of (28)

shows that the central bank reacts to output and inflation as usual but also to individual consumption of

rational forecasters due to the consumption dispersion dimension. However, a more striking observation

is that the central bank finds it optimal to react to lags and leads of all variables ranging from t−2 to t+2

(and additionally t− 3 for inflation). This will be clarified further below. Note that under homogeneous

rational expectations, α = 1, all coefficients associated with heterogeneous expectations vanish as well

as the additional coefficients due to commitment, except for yt−1 which can be seen in table (5) in the

Appendix B.4.

Further, efficiently controlling private sector rational expectations requires the central bank to induce

7The author uses a non-micro-founded version of (18), i.e. Lt = 1
2
(π2
t +ωy2t ). Setting ω = ση+1

ε2ηδσ
and calculating through

the optimization problem yields the interest rate rule (22).
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substantial persistence by including terms with timing t − 2 and t − 3 in the optimal rule (28). This

becomes clear when one would construct a hypothetical case in which the central bank observes and

reacts to expectations but neglects the endogenous nature of rational expectations with respect to its

policy.8 In such a hypothetical case, the interest rate rule would be given by9

it =Ω∗1yt−1 + Ω∗2Etyt+1 + Ω∗3Etyt+2 + Ω∗4πt−1 + Ω∗5Etπt+1 + Ω∗6Etπt+2

+ Ω∗7Etc
R
t+1 + Ω∗8Etc

R
t+2 + Ω∗9et (29)

where all terms with timing t− 2 and t− 3 drop out.
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Figure 1: Individual inflation expectations in percentage deviation from steady state following a single,
non-autocorrelated cost-push shock of one percent with monetary policy given by (28).

Moreover, to understand the appearance of the t + 2 terms consider Figure (1) which displays the

reaction of the inflation expectations of both agent types following a one standard deviation i.i.d. cost-

push shock under the policy rule (28). Since all subsequent shock realizations are zero and rational

forecasters know the true aggregate equations, they have de facto perfect foresight. Thus, rational

forecasters’ expectations in t = 1 about inflation in t+1 will be correct, i.e. Etπt+1 = πt+1. However, the

backward-looking expectations of boundedly rational forecasters in t about inflation in t+ 1 will be zero,

i.e. EBt πt+1 = πt−1 = 0 (where θ = 1 for simplicity). In period t+ 1 boundedly rational forecasters will

8Such a behavior would, for instance, be consistent with a boundedly rational central bank that operates under some
sort of ”limited” commitment. However, I use this only for the sake of exposition.

9the reaction coefficients are given in the Appendix B.2
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expect inflation to increase drastically in t + 2 as their expectations are based on the period where the

shock hits, i.e. EBt+1πt+2 = πt . On the contrary, rational forecasters correctly expect inflation to decrease

further as the central bank increases the nominal interest rate a second time (see impulse responses in

Figure 2 in section 4). Thus, the central bank induces the different expectations in t + 1 about t + 2

to diverge transitorily. Consequently, rational expectations counteract boundedly rational ones which

stabilizes inflation. However, as price dispersion is additionally caused by differences in expectations

about inflation and marginal costs, the central bank includes terms with t+2 timing into its interest rate

rule to prevent sub-optimally high dispersion in expectations.

Moreover, it seems, at first glance, that for practical implementation the optimal interest rate rule

(28) requires to observe individual consumption of rational forecasters which is, however, not observable

in reality. As already indicated, an advantage of the consumption decision (10) is that it only depends

on aggregate variables as a result of the explicit incorporation of the higher-order beliefs assumption.

Therefore, it is possible to substitute for individual consumption so that the optimal interest rate rule is

merely a function of several leads and lags of aggregate variables.

I do not discuss determinacy issues as the model is determinate for all considered parameter constel-

lations. There are two reasons for this. First, an expectations-based interest rate rule is derived, i.e.

it properly accounts for private sector expectations which are known to perform exceptionally well as

opposed to fundamentals-based reaction functions (Evans and Honkapohja, 2006). Second, the interest

rate rule is derived from the model-consistent loss function and is, therefore, optimal.10

4 Impulse Responses

This section briefly describes the simulation outcomes under baseline calibration given in Table 1. The

impulse responses of a one percent i.i.d cost-push shock with monetary policy given by (28) are depicted

in Figure 2. The aggregate behavior of the model is straightforward: taking into account subjective

expectations, the real interest rates of both agent types, rτt = it −Eτt πt+1, increase due to an increase of

the nominal rate by the central bank. Hence, both agent types cut their individual consumption which

leads to a quite severe recession which counteracts the cost-push shock to some extent. Consequently,

inflation increases by less than one percent. Thus, the central bank finds it optimal to be extraordinarily

hawkish with respect to inflation which comes at the cost of a significant recession.

On the individual level, the disparity between the consumption adjustment paths of both agent types

becomes obvious. While boundedly rational forecasters cut their consumption by approximately three

10Given the restrictions imposed by the timeless commitment assumption.
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Figure 2: Impulse responses in %-deviations from steady state following a single, non-autocorrelated
cost-push shock.

percent on impact, rational forecasters decrease consumption by almost ten percent. This is, first, because

of substantially negative rational output gap expectations and, second, due to a slightly higher subjective

real interest rate. On the other hand, as boundedly rational forecasters are backward-looking, their output

gap expectations are zero on impact and, therefore, cut their consumption because of the increase in the

subjective real interest rate only. This results in a consumption cut that is far smaller compared to

rational forecasters and thereby in significant differences in individual consumption on impact.11

Thus, boundedly rational forecasters seem to be better off than rational ones at first. However,

boundedly rational forecasters make less smart decisions than rational forecasters by definition. This

becomes clear when looking at the following periods where boundedly rational forecasters have to pay

for their initially higher consumption by giving up a lot of future consumption. Specifically, one can

observe that boundedly rational output gap expectations in the second period (t+ 1) drop drastically to

EBt+1yt+2 = yt which is approximately minus 8 percent, resulting in a further cut of consumption. This is

the case even though the subjective real interest rate of boundedly rational forecasters becomes negative

11In this context, I simply define a weighted difference between consumption of rational and boundedly rational agents as
αcRt − (1− α)cBt .
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which is due to the jump of their inflation expectations to EBt+1πt+2 = πt. At the same time, output

gap expectations of rational forecasters increase as the output gap recovers. From this period onwards

rational forecasters are able to consume more than boundedly rational ones for a prolonged time.

5 Welfare evaluation

This section provides a comparison between the optimal interest rate rule (28) and the non-optimal

inflation-targeting rule (22) in terms of welfare and a brief discussion on consumption dispersion. In

particular, I analyze the welfare consequences of these rules following a one-percent i.i.d. cost-push shock

as before. It should be noted that shocks to inflation directly (and hence to price dispersion) induce high

welfare losses. The reason is, first, that price dispersion leads to dispersion in imperfectly substitutable

individual production and, therefore, to losses in the final consumption bundle and, second, that output

itself needs to be contracted in order to bring down inflation. Further, I will restrict the analysis in this

Section to the case of naive expectations, i.e. θ = 1, of boundedly rational forecasters for simplicity.

5.1 Optimal vs. inflation-targeting rule

In the following, I show to what extent the optimal interest rate rule (28) yields lower welfare losses com-

pared to rule (22) depending on the fraction of rational forecasters. To that end, I compute consumption

equivalent welfare losses following Ravenna and Walsh (2011). Let

WO = − C̄Uc
2
Et

∞∑
t=0

βtLOt + t.i.p. = − C̄Uc
2(1− β)

LO + t.i.p. (30)

be the welfare loss under the optimal commitment policy (28), and

WIT = − C̄Uc
2
Et

∞∑
t=0

βtLITt + t.i.p. = − C̄Uc
2(1− β)

LIT + t.i.p. (31)

be the welfare loss under the non-optimal inflation-targeting objective (22), where instantaneous losses

are measured by (17) in both cases. The welfare loss of implementing policy (22) instead of (28) can be

measured as the percentage increase of steady state consumption, CE, satisfying

U((1 + CE)× C̄)

1− β
+WIT =

U(C̄)

1− β
+WO. (32)
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Inserting consumption utility U(C̄) = C̄1− 1
σ

1− 1
σ

,(30), (31) and Uc = C̄−
1
σ , and solving for CE gives12

CE =

(
1− σ − 1

2σ

(
LO − LIT

)) σ
σ−1

− 1. (33)

Table 2 shows absolute losses LO and LIT (second and third column) as well as the consumption

equivalent welfare costs, CE, (fifth column) for different fractions of rational agents, α. The other

columns of Table 2 are discussed further below.

α LT∗ LO LIT LIT∗ CE CE∗

0.95 161.65 127.077 127.138 127.08 0.030 0.006

0.9 183.82 144.988 145.274 144.99 0.145 0.034

0.7 277.56 243.455 246.632 244.02 1.744 0.286

0.5 400.36 394.547 402.428 395.45 4.693 0.47

Table 2: Column 2-4 show absolute welfare losses for numerically optimized simple Taylor rule (T ∗),
the optimal (O) interest rate rule (28), the inflation-targeting (IT ) rule (22) and the inflation-targeting
rule where the all reaction coefficients are numerically optimized (IT ∗). Column 5-6 depict consumption
equivalent welfare costs of implementing the non-optimal inflation-targeting (IT) interest rate rule (22)
relative to the optimal (O) commitment policy (28) in percent, CE, and also for the numerically optimized
inflation-targeting (IT ∗) rule relative to the optimal rule, CE∗. All shown values are calculated for
different fractions of rational agents, α.

A first, more trivial, observation is that absolute welfare losses increase with the fraction of boundedly

rational forecasters for both interest rate rules. The higher the fraction of naive forecasters, the more

persistent the deviations of variables from steady state and, therefore, the higher the long-run variances.

Further, welfare losses are naturally lowest under the optimal interest rate rule (28). Deriving the interest

rate rule from the conventional inflation-targeting (IT) objective (18) is costly in terms of consumption

equivalents, CE. The implementation of the non-optimal inflation-targeting rule (22) already requires an

increase of 14.5 percent of steady-state consumption to compensate for the higher welfare losses relative

to the optimal interest rate rule (28) when only ten percent of the population form (naive) backward-

looking expectations. Welfare costs become substantially higher for higher fractions of boundedly rational

forecasters (lower α). Hence, the optimal interest rate rule (28) yields considerable welfare gains when

the underlying economy features high degree of bounded rationality.

The difference between the two rules can be explained by their relative ability to stabilize inflation.

12Note that the terms independent of policy (t.i.p.) are the same for both WIT and WO and, therefore, drop out.
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The first two rows in Table 3 depict the variances of inflation and output for different values of rational

forecasters, α, for both interest rate rules. In general, the optimal interest rate rule (first row) yields

lower inflation but higher output volatility across all fractions of rational forecasters, α. This is a

straightforward implication of the relatively higher weights on inflation in the model-consistent loss

function (17) compared to the conventional inflation-targeting objective (18), as discussed in Section

3.1. While the differences in output and inflation volatility are relatively low for α = 0.95, they become

substantial for higher fractions of boundedly rational forecasters, resulting in quite extreme consumption

equivalents.

Further, as discussed in Section 3.2, the optimal interest rate rule (28) depends on much more leads

and lags of all variables compared to the non-optimal inflation-targeting rule (22). This raises the question

whether it is the absence of these leads and lags that makes (22) sub-optimal or if it is rather an issue of

weighting the different variables in the interest rate rule, or both. To answer this question, I numerically

optimize the reaction coefficients in (22) with respect to welfare (17). The corresponding absolute welfare

losses, LIT∗, and consumption equivalent welfare costs relative to the optimal commitment policy, CE∗,

can be found in columns four and six in Table 2, respectively. Consumption-equivalent welfare costs,

CE∗, substantially decrease relative to the consumption-equivalent welfare costs, CE. This indicates

that the inflation-targeting interest rate rule (22) is sub-optimal especially because of the sub-optimal

weighting of its different terms.13 However, for α = 0.7 and α = 0.5 the welfare gains of the optimal

interest rate rule (28) are still non-negligible, suggesting that its additional leads and lags are, at least

to some extent, important when heterogeneity increases.

Finally, for the sake of comparison, I add a numerically optimized simple Taylor rule with contempo-

raneous inflation and output to the analysis. Absolute welfare losses, LT∗, are shown in the first column

of Table 2 and the corresponding variances of inflation and output can be found in the last row of Table

3. For a fraction of 70 percent of rational forecasters, or higher, the numerically optimized simple Taylor

rule is the worst performing among all alternatives. However, interestingly, for 50 percent of rational

forecasters it trumps the analytically derived inflation-targeting rule (22). Note that the Taylor rule is

numerically optimized under the model-consistent loss function (17) which, in particular, recognizes the

complex nature of price dispersion which is highest around α = 0.5. On the other hand, the inflation-

targeting rule is derived from the conventional inflation-targeting objective (18) which abstracts from

13I started by optimizing the coefficients on inflation (expectations) and the cost-push shock while ”fixing” the coefficients
on output to the analytically derived ones, (23) and (24). The resulting absolute welfare losses and consumption equivalents
are nearly the same as in Table 2, indicating that the sub-optimal weighting in the analytically derived inflation-targeting
rule (22) is mainly because of sub-optimal weighting of inflation expectations and the shock.
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V ar(y) V ar(π)

rule α = 0.95 α = 0.9 α = 0.7 α = 0.5 α = 0.95 α = 0.9 α = 0.7 α = 0.5

Optimal 41.23 50.66 115.17 231.69 0.58 0.60 0.66 0.67

IT 38.62 44.80 88.98 179.89 0.59 0.62 0.75 0.83

IT ∗ 41.37 50.93 116.82 232.55 0.58 0.60 0.66 0.66

T ∗ 42.00 59.98 149.45 240.37 0.78 0.78 0.70 0.65

Table 3: Theoretical variances of inflation and output under the optimal (O) rule (28), the inflation-
targeting (IT) objective (22), the numerically optimized inflation-targeting (IT ∗) rule and the numerically
optimized simple Taylor rule (T ∗) for different values of rational forecasters α.

the complex nature of price dispersion.14 Further, in the case of α = 0.5, the numerically optimized

Taylor rule generates lower inflation volatility than the optimal commitment policy. This is, however,

not welfare maximizing as the Taylor rule implies the highest output volatility among all interest rate

rules and for all α. This indicates that, although inflation is the most important driver of welfare, there

is still a welfare-relevant trade-off between inflation and output.

5.2 Inflation and welfare vs. consumption dispersion

In this section, I briefly discuss the issue of distribution, measured by the cross-sectional variance in con-

sumption (16), and monetary policy. It should be noted, however, that welfare losses due to consumption

dispersion are in general very low under the model-consistent loss function (17), where individual utilities

are weighted equally and simply summed up. Of course, different conclusions may be reached when a

social planer would attach higher weights to consumption dispersion.

Table 4 shows consumption dispersion (CD) and the variance of inflation for both the optimal in-

terest rate rule (O) and inflation-targeting rule (IT ) for different fractions of rational forecasters, α.

Interestingly, consumption dispersion is higher under the optimal interest rate rule (28) compared to the

(analytically derived) inflation-targeting rule (22) for all α. This is the case even though the former ex-

plicitly incorporates consumption heterogeneity as opposed to the latter. At the same time, the optimal

interest rate rule yields lower inflation volatility, as discussed in the previous section. This indicates that

the model additionally implies a trade-off between stabilizing inflation and consumption heterogeneity.

14For α 6= 0.5 (where the case of α < 0.5 is not explicitly shown here) the numerically optimized Taylor rule performs
relatively worse as it does not react to rational and boundedly rational expectations (and the shock) while the inflation-
targeting rule (22) does. Hence, it seems that reacting to the contemporaneous values of aggregate variables works relatively
well only when fractions are equal.
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α CDO CDIT var(π)O var(π)IT

0.95 1.904 1.104 0.580 0.590

0.9 4.071 2.567 0.597 0.618

0.7 17.805 12.700 0.664 0.750

0.5 39.071 25.812 0.670 0.833

Table 4: Consumption dispersion (CD) vari(ct(i)) under the optimal (O) interest rate rule (28) and the
non-optimal inflation-targeting (IT) rule (22) for different fractions of rational forecasters α.

The trade-off between stabilizing inflation and consumption dispersion in this model becomes more

evident when considering Figure 3. Figure 3 depicts consumption dispersion, the inflation variance (right

ordinate) and absolute welfare losses (left ordinate) in case of a simple Taylor rule against different

values of the coefficient on inflation. The higher the coefficient on inflation, the lower inflation volatility

and the higher consumption dispersion. Therefore, it is not surprising that this also implies a local

trade-off between minimizing welfare losses and reducing consumption dispersion.15 Minimizing welfare

losses requires the central bank to get a tight grip on inflation causing a substantial drop of individual

consumption over time. As both agents react quite differently to the increase in the policy rate, as

discussed in Section 4, consumption dispersion increases with the central bank’s aggressiveness towards

inflation.

Another observation worth mentioning is that consumption dispersion is minimized when the coef-

ficient on inflation in the Taylor rule is one, i.e. when it = πt holds. This was analytically shown by

Hagenhoff and Lustenhouwer (2019) in a model with fully rational agents and boundedly rational agents

similar to this paper. Thus, the appearance of the same finding in this model serves as a robustness check

for Hagenhoff and Lustenhouwer (2019).

15On the left side of the minimum, welfare losses decrease because of decreasing inflation. At the same time, consumption
dispersion increases. At some point, however, welfare losses increase again as output volatility (not shown in Figure 3)
becomes substantially higher as the central bank needs to contract output further to achieve further reductions in inflation.
Therefore, the trade-off between welfare and consumption dispersion arises only locally, i.e. on the left side of the minimum
where welfare losses and inflation decrease simultaneously.
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Figure 3: Trade-off between minimizing welfare, inflation and consumption dispersion under a simple
Taylor rule and 70% of rational agents.

6 Conclusion

In this paper, I propose an optimal interest rate rule under heterogeneous expectations where the central

bank commits to its policy from a timeless perspective. This rule incorporates the more complex nature

of price dispersion and consumption dispersion under heterogeneous expectations as identified by Di Bar-

tolomeo et al. (2016). Further, this rules performs considerably better than a microfounded version of the

interest rate rule as in Gasteiger (2014). The implementation of the non-optimal inflation-targeting rule

already requires an increase of 14.5 percent of steady-state consumption to compensate for the higher

welfare losses relative to the optimal interest rate rule when only ten percent of the population form

(naive) backward-looking expectations.

I additionally explore the properties of the expectations operator of ”rational” agents in the Branch

and McGough (2009) framework and find that the consumption Euler equation that includes model-

consistent individual consumption expectations as in Di Bartolomeo et al. (2016) is inconsistent with the

higher-order beliefs assumption of Branch and McGough (2009). This assumption puts a specific (non-

rational) structure on higher-order beliefs which implies that not even ”rational forecasters” understand

the micro level fully. Therefore, I derive consumption decisions that account for this particular assumption

which makes it the implementation of the optimal commitment policy by an interest rate rule possible

in the first place.

Finally, I illustrate that the model implies a local trade-off between maximizing welfare and reducing
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consumption dispersion. The reason is that consumption dispersion increases with the central bank’s

aggressiveness towards inflation, as rational and boundedly rational forecasters’ consumption decisions

become more unequal with more aggressive inflation-targeting. Because inflation is the most important

determinant of welfare, the central bank has to allow for a certain heterogeneity in consumption to

maximize welfare.
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A Implementation under the conventional inflation-targeting objec-

tive

The policy problem under commitment and the conventional inflation-targeting objective is given by

L = Et

∞∑
s=0

βs
1

2

[(
η +

1

σ

)
y2
t+s + ε2ηδπ2

t+s

]
(34)

+ λt+s[πt+s − αβEtπt+s+1 − (1− α)βθ2πt+s−1 − κyt+s − et+s]
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∂L
∂πt+s

: Et

{
ε2ηδπt+s +

λt+s
2
− (1− α)β2θ2λt+s+1

2
− αλt+s−1

2

}
!

= 0 (35)

∂L
∂yt+s

: Et

{
βs
[(
η +

1

σ

)
yt+s −

κ

2
λt+s

]}
!

= 0. (36)

Combining and solving for inflation gives

πt = − 1 + ησ

σε2ηδκ
[yt − αyt−1 − (1− α)β2θ2Etyt+1] (37)

where the index s was dropped as the central bank employs timeless commitment. Combining with the

Phillips and IS curve yields (22).

B Optimal monetary policy

B.1 Rewriting the model-consistent loss function

The period loss function Lt is given by

Lt =
ση + 1

σ
y2
t +

α(yt − cRt )2

(1− α)σ

+ ε2ηδ

{
π2
t +

ξp(1− α)

α

[
πt − βθ2πt−1 − κyt −

ακ(yt − cRt )

(1 + ησ)(1− α)

]2
}
. (38)

which can be rewritten using market clearing to eliminate cBt as

Lt =
ση + 1

σ
y2
t +

α(yt − cRt )2

(1− α)σ

+ ε2ηδ

{
π2
t +

ξp(1− α)

α

[
πt − βθ2πt−1 − κyt −

ακ(yt − cRt )

(1 + ησ)(1− α)

]2
}
. (39)

By multiplying out, we get

Lt =Γ1y
2
t + Γ2π

2
t + Γ3π

2
t−1 + Γ4(cRt )2 (40)

+Γ5ytc
R
t + Γ6πtc

R
t + Γ7πt−1c

R
t + Γ8πtπt−1 + Γ9πtyt + Γ10πt−1yt
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with

Γ1 =
((α− 1)ησ − 1)(α(η2σ2(δε2κ2ξp − 1)− 1− 2ησ)− δε2ηκ2ξpσ(1 + ησ))

(1− α)ασ(1 + ησ)2
(41)

Γ2 =
δε2η(α+ ξp − αξp)

α
(42)

Γ3 =
(1− α)β2δε2ηθ4ξp

α
(43)

Γ4 =
α(1 + ησ(2 + δε2κ2ξp) + η2σ2)

(1− α)σ(1 + ησ)2
(44)

Γ5 =
2(α+ 2αησ + αη2σ2(1− δε2κ2ξp) + δε2ηκ2ξpσ(1 + ησ))

(α− 1)σ(1 + ησ)2
(45)

Γ6 =
2δε2ηκξp
1 + ησ

(46)

Γ7 = −2βδε2ηθ2κξp
1 + ησ

(47)

Γ8 =
2(α− 1)βδε2ηθ2ξp

α
(48)

Γ9 =
2δε2ηκξp((α− 1)ησ − 1)

α+ αησ
(49)

Γ10 =
2βδε2ηθ2κξp(1 + ησ(1− α))

α+ αησ
. (50)

B.2 Optimal interest rate rule

The policy problem under full commitment takes the following form:

L = Et

∞∑
s=0

βs

[
Γ1y

2
t+s + Γ2π

2
t+s + Γ3π

2
t+s−1 + Γ4(cRt+s)

2

+Γ5yt+sc
R
t+s + Γ6πt+sc

R
t+s + Γ7πt+s−1c

R
t+s + Γ8πt+sπt+s−1 + Γ9πt+syt+s + Γ10πt+s−1yt+s

+ λ1,t+s[yt+s − αEtyt+s+1 − (1− α)θ2yt+s−1 + σ[it+s − αEtπt+s+1 − (1− α)θ2πt+s−1]]

+ λ2,t+s[πt+s − αβEtπt+s+1 − (1− α)βθ2πt+s−1 − κyt+s − et+s]

+λ3,t+s[c
R
t+s − Etyt+s+1 + σ(it+s − Etπt+s+1)]

]
. (51)
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The first order conditions are

∂L
∂yt+s

: Et

{
βs[2Γ1yt+s + Γ5c

R
t+s + Γ9πt+s + Γ10πt+s−1 + λ1,t+s − κλ2,t+s] (52)

− βs+1(1− α)θ2λ1,t+s+1 − βs−1[αλ1,t+s−1 + λ3,t+s−1]

}
!

= 0

∂L
∂πt+s

: Et

{
βs[2Γ2πt+s + Γ6c

R
t+s + Γ8πt+s−1 + Γ9yt+s + λ2,t+s]

+ βs+1[2Γ3πt+s + Γ7ct+s+1 + Γ8πt+s+1 + Γ10yt+s+1 − (1− α)θ2σλ1,t+s+1 (53)

− (1− α)βθ2λ2,t+s+1]− βs−1[ασλ1,t+s−1 + αβλ2,t+s−1 + σ λ3,t+s−1]

}
!

= 0

∂L
∂cRt+s

: Et

{
βs[2Γ4c

R
t+s + Γ5yt+s + Γ6πt+s + Γ7πt+s−1 (54)

+ λ3,t+s]

}
!

= 0

∂L
∂it+s

: Et

{
βsσλ1,t+s + βsσλ3,t+s

}
!

= 0. (55)

Again, the index s can be dropped assuming commitment from a timeless perspective. Using λ3,t = −λ1,t

the FOCs can equivalently be written as

2Γ1yt + Γ5c
R
t + Γ9πt + Γ10πt−1 + λ1,t − κλ2,t − (1− α)βθ2λ1,t+1−

β−1(α− 1)λ1,t−1
!

= 0 (56)

2Γ2πt + Γ6c
R
t + Γ8πt−1 + Γ9yt + λ2,t

+ 2Γ3βπt + Γ7βct+1 + Γ8βπt+1 + Γ10βyt+1 − (1− α)βθ2σλ1,t+1 (57)

− (1− α)β2θ2λ2,t+1 + β−1(1− α)σλ1,t−1 − αλ2,t−1
!

= 0

2Γ4c
R
t + Γ5yt + Γ6πt + Γ7πt−1 − λ1,t

!
= 0. (58)

Eliminating the Lagrange multipliers yields the reduced-form FOC

∆c
1πt + ∆c

2πt+1 + ∆c
3πt+2 + ∆c

4πt−3 + ∆c
5πt−2 + ∆c

6πt−1 + ∆7yt + ∆c
8yt+1 (59)

+∆c
9yt+2 + ∆c

10yt−2 + ∆c
11yt−1 + ∆12c

R
t + ∆c

13c
R
t+1 + ∆c

14c
R
t+2 + ∆c

15c
R
t−2 + ∆c

16c
R
t−1

!
= 0.
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with

∆1 = Γ6 + Γ9 + (1− α)(−1 + 2α)βΓ6θ
2 + 2Γ2κ+ 2βΓ3κ (60)

+ (α− 1)βθ2(Γ7 + β(Γ10 + Γ7) + Γ7κσ) (61)

∆2 = β(Γ8κ+ (α− 1)θ2(β(Γ9 + (α− 1)βΓ7θ
2) + Γ6(1 + β + κσ))) (62)

∆3 = (α− 1)2β3Γ6θ
4 (63)

∆4 =
(α− 1)αΓ7

β
(64)

∆5 =
α2Γ6 + Γ7 + Γ7κσ − α(Γ6 + Γ7 + β(Γ10 + Γ7) + Γ7κσ)

β
(65)

∆6 = Γ10 + Γ7 − α(Γ6 + Γ9) + (−1 + (3− 2α)α)βΓ7θ
2 + Γ8κ (66)

− (α− 1)Γ6(1 + κσ)

β
(67)

∆7 = 2Γ1 + Γ5 + (1− α)(2α− 1)βΓ5θ
2 + Γ9κ (68)

∆8 = β(Γ10κ+ (α− 1)θ2(Γ5 + β(2Γ1 + Γ5) + Γ5κσ) (69)

∆9 = (α− 1)2β3Γ5θ
4 (70)

∆10 =
(α− 1)αΓ5

β
(71)

∆11 =
Γ5 + Γ5κσ − α(Γ5 + β(2Γ1 + Γ5) + Γ5κσ)

β
(72)

∆12 = 2Γ4 + Γ5 − 2(α− 1)(2α− 1)βΓ4θ
2 + Γ6κ) (73)

∆13 = β(Γ7κ+ (α− 1)θ2(βΓ5 + 2Γ4(1 + β + κσ)) (74)

∆14 = 2(α− 1)2β3Γ4θ
4 (75)

∆15 =
2(α− 1)αΓ4

β
(76)

∆16 = −αΓ5 −
2Γ4(−1 + α+ αβ + (α− 1)κσ)

β
. (77)

Solving (59) for πt and setting it equal to the NK Phillips curve yields

yt = − 1

∆7 + ∆1κ
((αβ∆1 + ∆2)πt+1 + ∆3πt+2 + ∆4πt−3 + ∆5πt−2

+ (∆6 + (1− α)βθ2∆1)πt−1 + ∆8yt+1 + ∆9yt+2 + ∆10yt−2 + ∆11yt−1 (78)

+ ∆13c
R
t+1 + ∆14c

R
t+2 + ∆15c

R
t−2 + ∆16c

R
t−1)
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Setting (78) equal to the New IS curve, substituting cRt for consumption demand and solving for it gives

the central bank’s reaction function under commitment (28):

it =Ω1Etπt+1 + Ω2Etπt+2 + Ω3πt−3 + Ω4πt−2 + Ω5πt−1 + Ω6Etyt+1 + Ω7Etyt+2 (79)

+Ω8yt−2 + Ω9yt−1 + Ω10Etc
R
t+1 + Ω11Etc

R
t+2 + Ω12c

R
t−2 + Ω13c

R
t−1 + Ω14et

with

Ω1 =
αβ∆1 + ∆2 + σ∆12 + ασ(∆7 + ∆1κ)

σ(∆7 + ∆12 + ∆1κ)
(80)

Ω2 =
∆3

σ(∆7 + ∆12 + ∆1κ)
(81)

Ω3 =
∆4

σ(∆7 + ∆12 + ∆1κ)
(82)

Ω4 =
∆5

σ(∆7 + ∆12 + ∆1κ)
(83)

Ω5 =
∆6 + (1− α)θ2(β∆1 + σ(∆7 + ∆1κ))

σ(∆7 + ∆12 + ∆1κ)
(84)

Ω6 =
∆12 + α∆7 + ∆8 + ακ∆1

σ(∆7 + ∆12 + ∆1κ)
(85)

Ω7 =
∆9

σ(∆7 + ∆12 + ∆1κ)
(86)

Ω8 =
∆10

σ(∆7 + ∆12 + ∆1κ)
(87)

Ω9 =
∆11 + (1− α)θ2(∆7 + ∆1κ)

σ(∆7 + ∆12 + ∆1κ)
(88)

Ω10 =
∆13

σ(∆7 + ∆12 + ∆1κ)
(89)

Ω11 =
∆14

σ(∆7 + ∆12 + ∆1κ)
(90)

Ω12 =
∆15

σ(∆7 + ∆12 + ∆1κ)
(91)

Ω13 =
∆16

σ(∆7 + ∆12 + ∆1κ)
(92)

Ω14 =
∆1

σ(∆7 + ∆12 + ∆1κ)
. (93)
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B.3 Taking rational expectations as given

Defining ft+s = Etyt+s+1, gt+s = Etπt+s+1 and ht+s = Etc
R
t+s+1, the policy problem is

L = Et

∞∑
s=0

βs

[
Γ1y

2
t+s + Γ2π

2
t+s + Γ3π

2
t+s−1 + Γ4(cRt+s)

2

+Γ5yt+sc
R
t+s + Γ6πt+sc

R
t+s + Γ7πt+s−1c

R
t+s + Γ8πt+sπt+s−1 + Γ9πt+syt+s + Γ10πt+s−1yt+s

+ λ1,t+s[yt+s − αft+s − (1− α)θ2yt+s−1 + σ[it+s − αgt+s − (1− α)θ2πt+s−1]]

+ λ2,t+s[πt+s − αβgt+s − (1− α)βθ2πt+s−1 − κyt+s − et+s]

+λ3,t+s[c
R
t+s − ht+s + σ(it+s − gt+s)]

]
. (94)

The first order conditions are

∂L
∂yt+s

: Et

{
βs[2Γ1yt+s + Γ5c

R
t+s + Γ9πt+s + Γ10πt+s−1 + λ1,t+s − κλ2,t+s] (95)

− βs+1(1− α)θ2λ1,t+s+1

}
!

= 0

∂L
∂πt+s

: Et

{
βs[2Γ2πt+s + Γ6c

R
t+s + Γ8πt+s−1 + Γ9yt+s + λ2,t+s]

+ βs+1[2Γ3πt+s + Γ7ct+s+1 + Γ8πt+s+1 + Γ10yt+s+1 − (1− α)θ2σλ1,t+s+1 (96)

− (1− α)βθ2λ2,t+s+1]

}
!

= 0

∂L
∂cRt+s

: Et

{
βs[2Γ4c

R
t+s + Γ5yt+s + Γ6πt+s + Γ7πt+s−1 + λ3,t+s]

}
!

= 0

∂L
∂it+s

: Et

{
βsσλ1,t+s + βsσλ3,t+s

}
!

= 0. (97)
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Since the central bank acts under timeless commitment, the index s can be dropped. Using λ3,t = −λ1,t

the FOCs can equivalently be written as

2Γ1yt + Γ5c
R
t + Γ9πt + Γ10πt−1 + λ1,t − κλ2,t − (1− α)βθ2Etλ1,t+1

!
= 0 (98)

2Γ2πt + Γ6c
R
t + Γ8πt−1 + Γ9yt + λ2,t + 2Γ3βπt + Γ7βEtc

R
t+1 + Γ8βEtπt+1 (99)

+ Γ10βEtyt+1 − (1− α)βθ2σEtλ1,t+1 − (1− α)β2θ2Etλ2,t+1
!

= 0

2Γ4c
R
t + Γ5yt + Γ6πt + Γ7πt−1 − λ1,t

!
= 0. (100)

Eliminating the Lagrange multipliers yields the reduced-form FOC

∆1πt + ∆2Etπt+1 + ∆3Etπt+2 + ∆4πt−1 + ∆5yt + ∆6Etyt+1 + ∆7Etyt+2

+ ∆8c
R
t + ∆9Etc

R
t+1 + ∆10Etc

R
t+2

!
= 0 (101)

with

∆1 = −Γ6 + Γ9 + 2Γ2κ+ 2βΓ3κ− (1− α)βθ2(Γ7 + β(Γ10 + Γ7) + Γ7κσ)

κ
(102)

∆2 =
(1− α)βθ2(β(Γ9 − (1− α)βΓ7θ

2) + Γ6(1 + β + κσ))

κ
− βΓ8 (103)

∆3 = −(α− 1)2β3θ4Γ6

κ
(104)

∆4 = −Γ10 + Γ7 + Γ8κ

κ
(105)

∆5 = −2Γ1 + Γ5 + Γ9κ

κ
(106)

∆6 = −β((α− 1)β(2Γ1 + Γ5)θ2 + Γ10κ+ (α− 1)Γ5θ
2(1 + κσ))

κ
(107)

∆7 = −(α− 1)2β3θ4Γ5

κ
(108)

∆8 = −2Γ4 + Γ5 + Γ6κ

κ
(109)

∆9 = −β((α− 1)βΓ5θ
2 + Γ7κ+ 2(α− 1)Γ4θ

2(1 + β + κσ))

κ
(110)

∆10 = −2(α− 1)2β3θ4Γ4

κ
. (111)
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Solving (101) for πt and setting it equal to the NK Phillips curve yields

yt =− 1

∆5 + ∆1κ
(∆6yt+1 + ∆7yt+2 + (∆2 + αβ∆1)πt+1 + ∆3πt+2 + (∆4 + (1− α)βθ2∆1)πt−1

+ ∆8c
R
t + ∆9c

R
t+1 + ∆10c

R
t+2 + ∆1et). (112)

Setting (112) equal to the New IS curve, substituting cRt for consumption demand and solving for it gives

the reaction function under the assumption that the central bank takes rational expectations as given

it =Ω∗1yt−1 + Ω∗2Etyt+1 + Ω∗3Etyt+2 + Ω∗4πt−1 + Ω∗5Etπt+1 + Ω∗6Etπt+2

+ Ω∗7Etc
R
t+1 + Ω∗8Etc

R
t+2 + Ω∗9et (113)

with

Ω∗1 =
(1− α)θ2(∆5 + ∆1κ)

σ(∆5 + ∆8 + ∆1κ)
(114)

Ω∗2 =
∆6 + ∆8 + α(∆5 + ∆1κ)

σ(∆5 + ∆8 + ∆1κ)
(115)

Ω∗3 =
∆7

σ(∆5 + ∆8 + ∆1κ)
(116)

Ω∗4 =
∆4 + (1− α)θ2(β∆1 + σ(∆5 + ∆1κ))

σ(∆5 + ∆8 + ∆1κ)
(117)

Ω∗5 =
αβ∆1 + ∆2 + σ∆8 + ασ(∆5 + ∆1κ)

σ(∆5 + ∆8 + ∆1κ)
(118)

Ω∗6 =
∆3

σ(∆5 + ∆8 + ∆1κ)
(119)

Ω∗7 =
∆9

σ(∆5 + ∆8 + ∆1κ)
(120)

Ω∗8 =
∆10

σ(∆5 + ∆8 + ∆1κ)
(121)

Ω∗9 =
∆1

σ(∆5 + ∆8 + ∆1κ)
. (122)

The Ω-coefficients are expressed in terms of the targeting rule coefficients for simplicity. Writing them

in terms of the deep model parameters would yield in part far to big expression.

B.4 Tables

Table 5 shows the reaction coefficients in interest rate rule (28) computed under baseline calibration

but with varying α. It can be seen that the central bank puts relatively high weights on inflation

(expectations) and the shock. In general, the weights that are placed on lagged inflation increase in

32



absolute value when the fraction of rational forecasters, α, decreases as the central bank puts a higher

weight on backward-looking expectations. The opposite holds true for the one-period ahead rational

expectations. For the homogeneous rational expectations case, α = 1, all reaction coefficients associated

with heterogeneous expectations vanish.

Ωx α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9 α = 1 (RE)

yt−2 0.001 0.004 0.01 0.018 0.029 0
yt−1 0.115 0.052 -0.016 -0.085 -0.153 -0.139
Etyt+1 -0.08 -0.02 0.045 0.111 0.175 0.160
Etyt+2 -0.005 -0.008 -0.009 -0.007 -0.003 0
πt−3 0.012 0.028 0.034 0.029 0.013 0
πt−2 -0.609 -0.502 -0.38 -0.241 -0.085 0
πt−1 2.747 2.082 1.420 0.792 0.238 0
Etπt+1 -0.482 0.115 0.697 1.229 1.639 1.851
Etπt+2 0.103 0.064 0.033 0.012 0.001 0
Etc

R
t−2 0 -0.003 -0.009 -0.017 -0.029 0

Etc
R
t−1 0.004 0.013 0.022 0.031 0.041 0

Etc
R
t+1 -0.004 -0.012 -0.021 -0.031 -0.040 0

Etc
R
t+2 0.003 0.007 0.008 0.007 0.003 0
et 1.275 1.227 1.154 1.056 0.932 0.859

Table 5: Values of reaction coefficients Ωx in the interest rate rule (28) for different values of the share
of rational forecasters α.
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C Implementation with model-consistent individual consumption ex-

pectations

The policy problem under commitment and the conventional Euler equation with model-consistent indi-

vidual consumption expectations takes the following form:

L = Et

∞∑
s=0

βs

[
Γ1y

2
t+s + Γ2π

2
t+s + Γ3π

2
t+s−1 + Γ4(cRt+s)

2

+Γ5yt+sc
R
t+s + Γ6πt+sc

R
t+s + Γ7πt+s−1c

R
t+s + Γ8πt+sπt+s−1 + Γ9πt+syt+s + Γ10πt+s−1yt+s

+ λ1,t+s[yt+s − αEtyt+s+1 − (1− α)θ2yt+s−1 + σ[it+s − αEtπt+s+1 − (1− α)θ2πt+s−1]]

+ λ2,t+s[πt+s − αβEtπt+s+1 − (1− α)βθ2πt+s−1 − κyt+s − et+s]

+λ3,t+s[c
R
t+s − EtcRt+s+1 + σ(it+s − Etπt+s+1)]

]
. (123)

The first order conditions are

∂L
∂yt+s

: Et

{
βs[2Γ1yt+s + Γ5c

R
t+s + Γ9πt+s + Γ10πt+s−1 + λ1,t+s − κλ2,t+s] (124)

− βs+1(1− α)θ2λ1,t+s+1 − βs−1αλ1,t+s−1

}
!

= 0

∂L
∂πt+s

: Et

{
βs[2Γ2πt+s + Γ6c

R
t+s + Γ8πt+s−1 + Γ9yt+s + λ2,t+s]

+ βs+1[2Γ3πt+s + Γ7ct+s+1 + Γ8πt+s+1 + Γ10yt+s+1 − (1− α)θ2σλ1,t+s+1 (125)

− (1− α)βθ2λ2,t+s+1]− βs−1[ασλ1,t+s−1 + αβλ2,t+s−1 + σ λ3,t+s−1]

}
!

= 0

∂L
∂cRt+s

: Et

{
βs[2Γ4c

R
t+s + Γ5yt+s + Γ6πt+s + Γ7πt+s−1 (126)

+ λ3,t+s]− βs−1λ3,t+s−1

}
!

= 0

∂L
∂it+s

: Et

{
βsσλ1,t+s + βsσλ3,t+s

}
!

= 0. (127)
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Again, the index s can be dropped assuming commitment from a timeless perspective. Using λ3,t = −λ1,t

the FOCs can equivalently be written as

2Γ1yt + Γ5c
R
t + Γ9πt + Γ10πt−1 + λ1,t − κλ2,t − (1− α)βθ2λ1,t+1−

β−1αλ1,t−1
!

= 0 (128)

2Γ2πt + Γ6c
R
t + Γ8πt−1 + Γ9yt + λ2,t

+ 2Γ3βπt + Γ7βct+1 + Γ8βπt+1 + Γ10βyt+1 − (1− α)βθ2σλ1,t+1 (129)

− (1− α)β2θ2λ2,t+1 + β−1(1− α)σλ1,t−1 − αλ2,t−1
!

= 0

2Γ4c
R
t + Γ5yt + Γ6πt + Γ7πt−1 − λ1,t + β−1λ1,t−1

!
= 0.. (130)

(130) can be used to replace λ1,t−1 and λ1,t+1 with λ1,t in (128). Then, solving (128) for λ1,t and inserting

in (129) yields a second-order difference equation in λ2,t. A solution to this equation can in principle be

substituted back into the difference equation, which would give a targeting rule. However, this solution

is fairly complicated in which some parameter terms exponentially depend on time. The solution is

available upon request. The resulting targeting rule and, hence, a reaction function would also be of such

a complicated form where parameters exponentially depend on time. Consequently, no interpretable

interest rate rule under commitment can be derived in this case.
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