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Abstract

We provide a full analytical treatment of a multi-asset market model in which

speculators have the choice between two risky and one safe asset. As it turns out,

the dynamics of our model is driven by a four-dimensional nonlinear map and

may undergo a transcritical, flip or Neimark-Sacker bifurcation. While the first

bifurcation is associated with an undervaluation of the risky assets, the latter

two may trigger (complex) endogenous dynamics. To facilitate our analysis, we

first study a simpler two-dimensional setup of our model in which speculators

can only switch between one risky and one safe asset.

Keywords: Multi-asset markets, replicator dynamics, nonlinear maps, stability

and bifurcation analysis

JEL classification: D84; G12; G41

1. Introduction

We first explore a multi-asset market model in which speculators can either in-

vest their money in a risky or safe asset. Speculators repeat their investment

decisions every period depending on the attractiveness of the risky asset relative

to the safe asset. In particular, the attractiveness of the risky asset depends on

its momentum and mispricing. Another important feature of our model is that
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comments and suggestions.
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the price of the risky asset increases with the number of speculators who invest

in it. The model, represented by a two-dimensional nonlinear map, admits two

steady states: a fundamental steady state (FSS) in which the price of the risky

asset mirrors its fundamental value and a nonfundamental steady state (NFSS)

in which the price of the risky asset is either overvalued or undervalued. We

show analytically that a transcritical bifurcation may cause a stability exchange

between the FSS and the NFSS. Such a bifurcation may occur if the total num-

ber of speculators falls below a critical threshold. Since the trading strength of

speculators is then limited, the price of the risky asset remains below its funda-

mental value – a scenario reminiscent of the famous limits of arbitrage argument

by Shleifer and Vishny (1997). Moreover, the FSS may also become unstable

due to a flip or Neimark-Sacker bifurcation. These bifurcation scenarios may

occur if speculators’ participation in the risky asset market depends strongly on

the mispricing or price trend of the risky asset. Numerical evidence indicates

that the risky asset market is then subject to (complex) endogenous dynamics.

After having established these results for a rather simple setup, we add an

additional risky asset to our framework. Despite the increased dimension of our

new model – its dynamics is now driven by a four-dimensional nonlinear map –

we are still able to show that the model’s FSS may exchange its stability with a

NFSS via a transcritical bifurcation. However, our analysis also reveals that the

NFSS may lose its stability via a flip or Neimark-Sacker bifurcation (which is

not possible in the case of one risky asset). In particular, simulations reveal that

the Neimark-Sacker bifurcation of the NFSS is associated with the emergence

of endogenous dynamics occurring below the risky assets’ fundamental values.

Put differently, limits of arbitrage prevent prices of risky assets from reaching

their fundamental values, either in a steady-state environment or a dynamic

context. Moreover, the FSS may also lose its stability via a flip or Neimark-

Sacker bifurcation. For some parameter combinations, we observe quite complex

asset price dynamics.

Note that our paper extends our previous work. Our two-dimensional multi-

asset market model may be regarded as a generalization of the asset-pricing
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model by Schmitt and Westerhoff (2016). In particular, Schmitt and West-

erhoff (2016) use simple linear functions to describe the attractiveness of the

risky asset relative to the safe asset while we use a fairly general nonlinear

specification. In addition, they explicitly focus on the implications of flip and

Neimark-Sacker bifurcations and disregard the transcritical bifurcation and the

relationship between the FSS and the NFSS. Our four-dimensional multi-asset

market model represents a generalization of the asset-pricing model by Dieci et

al. (2018). Again, our setup is more general since it explicitly recognizes the

effects of total market participation. Moreover, we are now able to provide a

complete analytical treatment of the transcritical bifurcation for the underlying

four-dimensional map. As we will see, this novel proof has a number of inter-

esting economic implications. Finally, the current paper also provides a natural

bridge between the one-risky-asset model and the two-risky-asset model, thereby

fostering our understanding of multi-asset market dynamics.

Our paper is also part of a larger stream of literature seeking to explain the

dynamics of financial markets via the interplay of heterogeneous and boundedly

rational speculators. In most of these models, speculators only have access

to one risky asset. Interesting dynamics may arise in them nevertheless since

speculators switch between competing trading rules. Pioneering contributions

in this direction include Day and Huang (1990), Chiarella (1992), Lux (1995)

and Brock and Hommes (1998). So far, relatively few models have considered

the fact that speculators are usually active in more than one risky asset market.

For examples in this direction, see Chiarella et al. (2005, 2007), Westerhoff

and Dieci (2006) and Schmitt and Westerhoff (2014). Our multi-asset market

models differ quite substantially from these contributions. While almost all

other models assume that speculators have sufficient funds to push asset prices

towards their fundamental values, we assume that their financial means are

restricted. Limits of arbitrage may thus result in a permanent undervaluation

of risky assets.

The remainder of our paper is organized as follows. In Section 2, we explore

some properties of our two-dimensional multi-asset market model. Equipped
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with these insights, we then proceed to investigate our four-dimensional multi-

asset market model in Section 3. Finally, we conclude our paper and point out

some avenues for future research.

2. A financial market model with one risky asset

2.1. Model setup

Our analysis in this section is based on a generalized version of the asset-

pricing model by Schmitt and Westerhoff (2016) in which speculators can choose

whether to enter a market for a risky asset. Their market entry decisions are

repeated at the beginning of each period and depend on observed price trends

and fundamental conditions. Alternatively, speculators can invest their money

in a safe asset. Since the price of the risky asset adjusts such that the market

clears in every period, we have Qt = St, where Qt and St denote total demand

and supply of the risky asset in the market at time step t, respectively. For

simplicity, the total supply of the risky asset is assumed to be fixed over time,

i.e. St = X with X > 0. Moreover, we assume that speculators are willing to

invest a fixed amount of money in the risky asset market. Let I > 0 represent

their monetary engagements and Pt the unit price of the risky asset at time

step t. Speculators’ individual demands can then be expressed by the isoelastic

demand function qt = I/Pt. Thus, the total demand for the risky asset amounts

to Qt = qtnt, where nt represents the number of speculators who are active in

the risky asset market. Note that combining the above assumptions yields

Pt = αnt. (1)

Since α = I
X > 0, the price of the risky asset depends positively on market

participation and investors’ financial commitment.

Following Shiller (2015), speculators’ decisions whether to enter the risky

asset market depends on its momentum and mispricing. Accordingly, we model

the relative attractiveness of the risky asset market by

At = f(ρt) + g(δt). (2)
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Note that f and g are strictly increasing functions with f(0) = g(0) = 0 and

f ′ > 0, g′ > 0. While ρt = Pt−Pt−1

Pt−1
represents the relative price change of

the risky asset, δt = D
Pt
− r captures the dividend-price ratio of the risky asset

relative to an investment in a safe asset, where D and r denote constant dividend

payments and the return of a safe asset, respectively. Hence, the first term of

(2) indicates that the stronger the current price of the risky asset increases

(decreases), the more (less) attractive the risky asset market. However, the

second term suggests that increasing (decreasing) risky asset prices decrease

(increase) the relative fundamental gain potential of the risky asset market,

which makes it less (more) attractive. Speculators who are not active in the

risky asset market invest their money at the constant rate r, and we assume

that the attractiveness of this alternative is 0.

To describe the number of active speculators in the risky asset market, we

follow Hofbauer and Sigmund (1988) and use exponential replicator dynamics,

i.e.

nt+1 = N
nt

nt + (N − nt) exp[−λAt]
, (3)

where N > 0 stands for the total number of speculators and λ > 0 represents

speculators’ intensity of choice. Accordingly, an increase in the relative attrac-

tiveness of the market leads to an increase in market participation; and the

increase in market participation is stronger as speculators’ intensity of choice

increases. In particular, if λ goes to plus infinity, either none or all investors will

enter the risky asset market, depending on whether its attractiveness is below

or above the attractiveness of the safe asset. In contrast, if λ approaches zero,

half of the investors will enter the risky asset market and the other half will

choose the safe asset market, independently of their relative fitness.1

1As we will see in the sequel, one attractive feature of exponential replicator dynamics is

that it ensures a steady state in which the price of the risky asset mirrors its fundamental

value, provided that investors have sufficient funds. See Dindo and Tuinstra (2011) for an

insightful discussion of exponential replicator dynamics and Bischi et al. (2015) and Schmitt et

al. (2017) for recent applications. However, Agliari et al. (2018) study a related stock market
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2.2. Dynamical system and steady states

Due to (1), (2) and the above definitions of ρt and δt, it turns out that attrac-

tiveness At depends on nt and nt−1. By setting xt := nt/N , zt := nt−1/N , the

recurrence relation (3) can be rewritten as a two-dimensional (2D) dynamical

system in investors’ proportions xt and zt:

xt+1 = F (xt, zt) :=
xt

xt + (1− xt) exp(−λA(xt, zt))
, zt+1 = xt, (4)

where

A(xt, zt) := f

(
xt
zt
− 1

)
+ g

(
D

αNxt
− r
)
.

As shown in the Appendix, the model admits two steady states:

(i) A fundamental steady state (FSS), where the attractiveness of the risky

asset market is zero, while asset market participation and the price of the risky

asset are given as

x∗ = z∗ =
D

αNr
, n∗ = Nx∗ =

D

αr
, P ∗ = αn∗ =

D

r
, (5)

provided that x∗ < 1, i.e.

r >
D

αN
:= rl. (6)

At the FSS, the price of the risky asset reflects the present value of the dividend

stream or, put differently, its dividend-price ratio is equal to r. However, the FSS

is (economically) feasible only for a sufficiently high interest rate (i.e. r > rl)

or - given r and D - if total market participation N and trading strength α are

sufficiently large.

(ii) A nonfundamental steady state (NFSS), where x̂ = ẑ = 1, n̂ = N and

P̂ = αN , implying that the dividend-price ratio at the NFSS is equal to rl.

Unlike the FSS, this boundary steady state always exists. If the FSS is feasible,

then P̂ > D/r := P ∗, that is, the NFSS entails a kind of price bubble in this

participation model on the basis of the discrete choice approach by Brock and Hommes (1998).

To improve our understanding of multi-asset market dynamics, future work may also consider

the transition probability approach by Lux (1995).

6



case. However, the attractiveness at the NFSS is given by Â = g(rl − r) (where

Â 6= 0, unless r = rl). Therefore, while Â is positive if the FSS is unfeasible, it

is negative whenever an interior FSS exists.

2.3. Steady-state stability and bifurcations with one risky asset

The Appendix presents the analytical derivation of the stability conditions and

local bifurcations of the FSS and NFSS. The main results are summarized by

the following propositions, each followed by a brief discussion. Note that pa-

rameters β := f ′(0) and γ := g′(0) denote sensitivity to observed price trends

and mispricing at the FSS, respectively.

Proposition 1 The FSS is locally asymptotically stable (LAS) in the region

of the parameter space given as:

β
(I)
l :=

r

2
γ − 1

λ

1

1− x∗
< β <

1

λ

1

1− x∗
:= β(I)

u , (7)

where x∗ is defined by (5). In addition, if β = β
(I)
l (β = β(I)

u ) a flip bifurcation

(Neimark-Sacker bifurcation) takes place.

Generally speaking, the flip bifurcation can be observed whenever γ becomes

sufficiently large, which entails a strong reaction to fundamental mispricing.

Numerical evidence indicates that the flip bifurcation is supercritical and that a

stable orbit of period 2 replaces the destabilized steady state, possibly followed

by a route to chaos. The Neimark-Sacker bifurcation takes place whenever (for

not too large γ) aggregate parameter λβ crosses 1/(1−x∗) = αNr/(αNr−D).

Note that, in the case of an interior FSS, αN > D/r := P ∗ and that quantity

1/(1− x∗) decreases from +∞ to 1 when aggregate parameter αN ranges over

(D/r,+∞). Therefore, λβ < 1 is a sufficient condition for stability (although

not necessary). For given r andD, the system can be destabilized via a Neimark-

Sacker bifurcation if λ (switching intensity) or β (sensitivity to observed price

trends) becomes sufficiently large. The same bifurcation can also occur for

increasing α (trading strength) or N (total market participation), provided that

λβ > 1.

7



Proposition 2 The NFSS is LAS in the region defined by r < D
αN = rl. In

addition, a transcritical bifurcation occurs for r = rl.

The transcritical bifurcation of the NFSS is characterized by a ‘stability

exchange’ between the NFSS and the FSS. The NFSS is stable for r < rl, or

αN < D/r (weak total market participation or low individual investment). It

becomes unstable as soon as r = rl when, at the same time, it collides with the

(unstable) FSS, previously located in the ‘economically unfeasible’ portion of

the phase space. Note that, immediately after the bifurcation, quantity (1−x∗)

is strictly positive, yet very close to zero. Therefore, based on Proposition 1, the

newborn FSS is necessarily stable, no matter how large the values of behavioral

parameters λ, β and γ are.

2.4. Numerical illustration

In this section, we briefly illustrate our main analytical results and explore

some further global properties of our 2D model. To be able to simulate our 2D

model, we specify functions f and g by f(ρt) = µ arctan(βµρt) with µ := 2κ
π and

g(δt) = γδt, where β, γ, κ > 0. Note that function f is S-shaped and bounded

between −κ and κ while function g is linear. Their derivatives (at any steady

state) are given by β and γ, respectively. Figure 1 presents bifurcation diagrams

for parameters N and β. On the left-hand side, we show the effect on the market

share of speculators active in the risky asset market, while the right-hand side

depicts the effect on the price of the risky asset. All simulations are based on

D = 1, r = 0.01, α = 1 and λ = 1, implying that x̂ = 1, P̂ = N , x∗ = 100/N ,

1/(1 − x∗) = N/(N − 100) and P ∗ = 100. In the first line of Figure 1, we

vary the total market participation between 1 and 300 units. The remaining

parameters are set to β = 2, γ = 5 and κ = 0.5. The bifurcation diagrams

confirm our analytical results. For 1 < N < 100, the dynamics converges

towards the NFSS. At N = 100, a transcritical bifurcation takes place, i.e. the

NFSS exchanges its stability with the FSS. Between 100 < N < 200, the FSS

is locally stable. At N = 200, a Neimark-Sacker bifurcation occurs, triggering

quasiperiodic motion. Interestingly, there seems to be a desirable range for
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parameter N . If the total number of speculators is too low, the price of the

risky asset remains below its fundamental value (investors’ lack of financial

means cause a limits of arbitrage problem). If the total number of speculators

is too high, the price of the risky asset displays endogenous boom-bust dynamics

(investors’ excessive use of financial means cause endogenous dynamics).

The bifurcation diagrams depicted in the second line of Figure 1 are based

on β = 1, γ = 600 and κ = 1.5. Again, the FSS is locally stable for intermediate

values of N , namely for 100 < N < 200. At N = 100, the FSS loses its stability

due to a transcritical bifurcation while at N = 200, the FSS’s stability loss is

caused by a flip bifurcation. Note that a further increase in the total number

of speculators is associated with a cascade of period-two cycles and the onset of

complex dynamics. The bifurcation diagrams depicted in the third line of Figure

1 only differ from those depicted in the second line with respect to κ, which is

now reduced to κ = 0.05. Since the stability condition of the FSS is independent

of κ, the FSS remains locally stable between 100 < N < 200. However, it is

clear from the panels in the third line of Figure 1 that long-run fluctuations exist

already for N < 200, which implies that the 2D model possesses coexisting

attractors. Depending on the initial conditions, the dynamics may converge

towards the FSS or be subject to endogenous fluctuations.

The bottom line of Figure 1 shows bifurcation diagrams for increasing values

of parameter β, assuming that N = 150, γ = 1000 and κ = 1.54. In line with

our analytical results, the FSS is locally stable for 2 < β < 3. If β falls below

2, a flip bifurcation occurs. As β decreases further, the period-two cycle turns

into a period-four cycle, and increasingly more complex dynamics results. In

fact, numerical tests indicate that the dynamics is chaotic for β = 1. Note that

quasi-periodic motion emerges via a Neimark-Sacker bifurcation as β exceeds

3. Finally, a further global bifurcation occurs at β ≈ 3.39, at which relatively

modest and regular fluctuations turn quite abruptly into much more volatile

and irregular dynamics.

Coexisting attractors constitute one of the most intriguing features of nonlin-

ear dynamical systems and give rise to a number of puzzling economic phenom-
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Figure 1: The dynamics of the 2D model. The first three lines of panels present bifurcation

diagrams for the market share of speculators active in the risky asset market (left) and the

price of the risky asset (right) with respect to parameter N . The bottom line of panels shows

the same, but for parameter β. Parameter settings are provided in Section 2.4.

ena. In Figure 2, we thus briefly sketch two examples for coexisting attractors

produced by our 2D model along with their intricate basins of attraction. In the
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Figure 2: Coexisting attractors and basins of attraction of the 2D model. In the top left

panel, the FSS (black line) coexists with a period 2 cycle (gray line). In the bottom left panel,

a period 7 cycle (black line) coexists with a period 2 cycle (gray line). The panels on the

right display the corresponding basins of attraction, using the same color coding. Parameter

settings are provided in Section 2.4.

top line, we face a scenario in which the FSS (black color) coexists with a period

2 cycle (gray color). The parameter setting is as in the third line of Figure 1,

except that κ = 0.6 and N = 195. In the bottom line, we encounter a constella-

tion in which a period 7 cycle (black color) coexists with a period 2 cycle (gray

color). Simulations are based on the same parameter setting as before, except

that κ = 0.15, N = 175 and β = 5, implying that a Neimark-Sacker bifurcation

has destabilized the FSS. Note that the corresponding basins of attraction of

these two examples suggest, amongst others, that sporadic exogenous shocks

may entail a complex attractor switching process. In particular, the model dy-
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namics may then be characterized by a rather low volatility regime that may, out

of the blue, turn into a high volatility regime (and vice versa). For more back-

ground on the economic implications of coexisting attractors, how to manage

the underlying dynamics and their basins of attraction and tools to characterize

them, we refer the interested reader to Schmitt et al. (2017), Schmitt and West-

erhoff (2015), Agliari et al. (2006) and Agliari and Dieci (2006), respectively.

3. A financial market model with two risky assets

3.1. Model setup

In this section, we extend our model by considering two risky asset markets,

indexed by i = 1, 2. Therefore, speculators can choose between entering one

of the two risky asset markets and investing in a risk-free asset. The market

clearing conditions are now expressed as Qi,t = Si,t, where Si,t = Xi and

Qi,t = qi,tni,t describe the total supply and demand in the risky asset market i in

period t, respectively. While supplies Xi > 0 are fixed, the total demand results

from speculators’ individual demands multiplied by the number of speculators

active in asset market i. Speculators’ individual demands are determined by

the isoelastic demand functions qi,t = Ii/Pi,t, where Ii > 0 represents a fixed

amount of money that speculators are willing to invest in market i and Pi,t

denotes the price of the risky asset i in period t. By defining αi = Ii
Xi

, we

obtain

Pi,t = αini,t. (8)

Accordingly, the price of the risky assets increases with the number of specula-

tors active in the respective market and their financial means.

Speculators’ investment decisions are repeated at the beginning of each pe-

riod and depend on the attractiveness of the risky assets relative to the safe

asset. The attractiveness of the risky asset market i in period t is defined by

Ai,t = f(ρi,t) + g(δi,t), (9)
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where f ′, g′ > 0, f(0) = g(0) = 0. Moreover, ρi,t =
Pi,t−Pi,t−1

Pi,t−1
is the observed

price trend and δi,t = Di

Pi,t
−r is the current deviation of the dividend-price ratio

from the interest rate. Note that Di represents constant dividends of asset i.

Hence, speculators tend to enter asset market i when asset price i increases, but

also tend to exit asset market i in periods of overvaluation.

The number of speculators active in the two risky asset markets evolve again

via the exponential replicator dynamics. For i = 1, 2, we thus obtain

ni,t+1 = N
ni,t exp(λAi,t)

n1,t exp(λA1,t) + n2,t exp(λA2,t) + (N − n1,t − n2,t)
, i = 1, 2,

(10)

which is interpreted similarly to equation (3). Of course, the number of spec-

ulators who are not active in one of the two risky asset markets is given by

N − n1,t − n2,t.

3.2. Dynamical system and steady states

Since attractiveness Ai,t in equation (9) depends on ni,t and ni,t−1 , the re-

currence relations (10) can be rewritten as a four-dimensional (4D) dynamical

system in variables xi,t := ni,t/N , zi,t := ni,t−1/N , i = 1, 2. More precisely, for

i = 1, 2, we have

xi,t+1 = Fi(x1,t, x2,t, z1,t, z2,t) :=
1

Ut
xi,t exp(λAi(xi,t, zi,t)), zi,t+1 = xi,t,

(11)

where

Ai(xi,t, zi,t)) := f

(
xi,t
zi,t
− 1

)
+ g

(
Di

αiNxi,t
− r
)

(12)

and

Ut = x1,t exp(λA1(x1,t, z1,t)) + x2,t exp(λA2(x2,t, z2,t)) + (1− x1,t − x2,t).

Similar to the baseline case, the 4D model admits two steady states (see Ap-

pendix for details):

(i) A FSS, characterized by the condition Ai = 0, i = 1, 2, which yields

x∗i = z∗i =
Di

αiNr
, n∗i = Nx∗i =

Di

αir
, P ∗i = αin

∗
i =

Di

r
, (13)
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provided that x∗1 + x∗2 < 1, that is

r >
1

N

(
D1

α1
+
D2

α2

)
:= rl. (14)

Similar comments as for the baseline case apply. In particular, the FSS is only

feasible for sufficiently large r, N and αi.
2

(ii) A NFSS, implying

x̂1 =
α2D1

α1D2 + α2D1
, x̂2 =

α1D2

α1D2 + α2D1
, (15)

and where n̂i and P̂i are defined accordingly, based on P̂i = αin̂i = αiNx̂i,

i = 1, 2. One can check that quantity rl defined in equation (14) represents

the dividend-price ratio at the NFSS (identical for both risky assets), i.e. rl =

Di/P̂i, i = 1, 2. Other steady-state properties are similar to the baseline case.

In particular, if the FSS is feasible (r > rl), then P̂i > Di/r := P ∗i , i =

1, 2. Moreover, the (common) attractiveness of both risky assets at the NFSS,

Âi = g(rl − r), i = 1, 2, is negative (positive) if and only if the FSS is feasible

(unfeasible).

3.3. Steady-state stability and bifurcations with two risky assets

The main results about the stability and local bifurcations of the FSS and NFSS

are summarized by the following propositions. The related discussions highlight

how this situation resembles or differs from the case with one risky asset. The

analytical proofs are provided in the Appendix.

Proposition 3 The parameter domain in which the FSS is LAS is identified

by the following double inequality:

β
(II)
l :=

r

2
γ − 1

λ
< β <

1

λ
:= β(II)

u . (16)

2 With an abuse of notation, rl denotes the ‘feasibility threshold’ for both the 2D and

4D model. A comparison of rl = D
αN

(2D model) and rl = D1
α1N

+ D2
α2N

(4D model) reveals,

amongst others, that for D = D1 = D2 and α = α1 = α2 (symmetric markets) twice as many

investors are needed to make the FSS feasible.
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In addition, if β = β
(II)
l (β = β(II)

u ) a flip bifurcation (Neimark-Sacker bifurca-

tion) takes place.

Again, a strong reaction to fundamental conditions (large γ) may bring about

a flip bifurcation of the FSS. The Neimark-Sacker bifurcation of the FSS occurs

whenever (for not too large γ) λβ increases above 1, that is, if sensitivity to

observed trends or the switching intensity become sufficiently large. Note that

the stability condition (16) of the 4D model is tighter than the corresponding

condition (7) of the 2D model.3 In particular, total market participation N has

no effect on the stability of the FSS. However, N continues to play a role as a

key bifurcation parameter in the stability exchange between the FSS and the

NFSS, as shown below.

Proposition 4 The NFSS is LAS in the region defined by r < rl and

rl
2
γ̂ − 1

λ
< β <

1

λ
, (17)

where γ̂ := g′(rl − r). If r < rl, violation of the inequality on the right (on the

left) in (17) leads to a Neimark-Sacker bifurcation (flip bifurcation). In addition,

if (17) holds but r crosses rl, a transcritical bifurcation occurs.

Note that γ̂ is generally different from γ (unless g is linear). Of course,

at the transcritical bifurcation, γ̂ = γ. Moreover, the stability of the NFSS

requires r < rl, or N < 1
r

(
D1

α1
+ D2

α2

)
, i.e. sufficiently weak market activity and

participation (as well as the absence of a feasible FSS). However, unlike the one-

risky-asset case, the loss of stability of the NFSS is not necessarily associated

with the appearance of the FSS. As a matter of fact, even with r < rl, condition

(17) may cease to hold if one of the behavioral parameters λ, β or γ becomes

sufficiently large, similar to condition (16) for the FSS. Interestingly, numerical

investigations show that the fluctuations of investor shares generated by this

loss of stability remain confined to the subset defined by x1,t + x2,t = 1. While

investors start to switch across risky asset markets, no one invests in the safe

3We have also observed numerically the same Neimark-Sacker bifurcation value β
(II)
u with

a three-risky-asset extension of the present model.
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asset. In addition, and similar to the case with one risky asset, the NFSS may

become unstable as soon as the FSS appears in the feasible region, i.e. for r > rl.

Again, the transcritical bifurcation of the NFSS leads to a stability exchange

between the two steady states. Note that a transcritical bifurcation actually

occurs (at r = rl) only if (17) holds, i.e. if behavioral parameters λ, β and γ are

not too large.4 Accordingly, immediately after the bifurcation, condition (16)

is also satisfied and therefore the FSS is LAS.

3.4. Numerical illustration

Let us finally illustrate the main stability and bifurcation properties of our 4D

model. The left panels of Figure 3 show a bifurcation diagram for β versus

market shares x1, x2 and 1− x1 − x2, a bifurcation diagram for β versus risky

asset prices P1 and P2 and the evolution of market shares x1, x2 and 1−x1−x2

in the time domain (blue: risky asset 1, red: risky asset 2, black: safe asset).

Functions f and g are specified as in Section 2.4, while the underlying parameter

setting is given by D1 = 1.25, D2 = 0.75, r = 0.01, N = 400, α1 = α2 = 1, β =

1.25, γ = 220, κ = 0.75 and λ = 1. Straightforward computations reveal that

the FSS, represented by x∗1 = 0.3125, x∗2 = 0.1875, 1− x∗1 − x∗2 = 0.5, P ∗1 = 125

and P ∗2 = 75, is feasible. Moreover, the FSS is locally stable for 0.1 < β < 1. At

β = 0.1, the stability loss of the FSS is caused by a (supercritical) flip bifurcation

while at β = 1, its stability loss is due to a Neimark-Sacker bifurcation, as

confirmed by the bifurcation diagrams. In fact, the market shares oscillate for

β = 1.25 in a countercyclical manner around their steady-state values. The

same is true for the prices of the risky assets (not depicted). Of course, the

NFSS, i.e. x̂1 = 0.625, x̂2 = 0.375, 1− x̂1 − x̂2 = 0, P̂1 = 250 and P̂2 = 150, is

unstable.

4Simulation results reveal that interesting associated phenomena occur also when threshold

rl is crossed with parameters that do not satisfy condition (17). In this case, the motion of

investor shares, previously confined to subset x1,t + x2,t = 1, takes place in the inner part of

the phase space, with investors switching across all assets (including the safe asset) and prices

fluctuating below their NFSS values P̂i = Di/rl, i = 1, 2.
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Figure 3: The dynamics of the 4D model. The left-hand panels visualize the flip and Neimark-

Sacker bifurcation scenario of the FSS (blue: risky asset 1, red: risky asset 2, black: safe asset).

The right-hand panels show the same but for the NFSS. Parameter settings are provided in

Section 3.4.

Note that a stable FSS signals market efficiency, at least in the sense that the

prices of the risky assets correspond to their fundamental values. Whether risky

asset markets can achieve these values depends crucially on the total number of

speculators. Given the above parameter setting, our analytical results indicate

that a transcritical bifurcation appears at N = 200, triggering a stability ex-

change between the FSS and the NFSS. The effects of such a parameter change

are depicted in the right-hand panels of Figure 3. In particular, setting the

total number of speculators to N = 150 implies that the new coordinates of the
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FSS, i.e. x∗1 = 0.833, x∗2 = 0.5, 1 − x∗1 − x∗2 = −0.333, P ∗1 = 125 and P ∗2 = 75,

are unfeasible. Instead, the NFSS is now given by x̂1 = 0.625, x̂2 = 0.375,

1 − x̂1 − x̂2 = 0, P̂1 = 93.75 and P̂2 = 56.25. Apparently, the NFSS implies

that all speculators enter the risky asset markets but also that their buying

pressure is not strong enough to ensure that the prices of the risky assets reach

their fundamental values. In fact, P̂1 < P ∗1 and P̂2 < P ∗2 reveal that limits of

arbitrage destroy market efficiency. In the right-hand panels of Figure 3, we

have additionally adjusted parameter γ, whereas all other parameters remain as

before. Setting γ = 165 implies that the flip bifurcation occurs again at β = 0.1

(since this bifurcation is now subcritical, no attractor is visible for β < 0.1).

Note also that the market shares of speculators active in the risky asset markets

evolve again countercyclically to each other, while the market shares of specula-

tors investing in the safe asset rapidly approach zero. After that has occurred,

the dynamics of the 4D model is effectively driven by a 2D subsystem (in the

invariant set x1,t + x2,t = 1). However, exogenous noise (not considered here)

can revive the full 4D model. Moreover, the prices of the risky assets fluctuate

after the Neimark-Sacker bifurcation below the FSS – another interesting limits

of arbitrage effect.

Since the transcritical bifurcation represents a highlight of our paper and

total market participation plays a crucial role in it, we finally plot in Figure 4

the positions of the FSS and NFSS for 1 < N < 600, assuming the same color

coding and parameter setting as in Figure 3. However, β and γ are set such that

neither the flip nor the Neimark-Sacker bifurcation boundary is violated. Solid

lines represent stable steady states whereas dotted lines denote unstable steady

states. The left-hand panel of Figure 4 reveals the distribution of speculators

across the three asset markets while the right-hand panel of Figure 4 shows the

corresponding reaction of risky asset prices. As mentioned above, the stability

exchange between the FSS and the NFSS takes place at N = 200.

To be able to appreciate the above results, let us put them into perspec-

tive. Recall that the famous noise trader approach, summarized by Shleifer

and Summers (1990), rests on two core assumptions. First, some investors are
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Figure 4: Some steady state implications of the transcritical bifurcation. The panels depict

how the FSS and NFSS change with respect to parameter N . Solid (dotted) lines indicate

stable (unstable) steady states (left: market shares, right: risky asset prices). Color coding

and base parameter setting as in Figure 3, except that β and γ are such that neither the flip

nor the Neimark-Sacker bifurcation boundary is violated.

not fully rational. In particular, their demand for risky assets is affected by

sentiments that are not fully consistent with economic fundamentals (Barberis

et al. 1998). Shleifer and Summers (1990) identify two kinds of sources for

shifts in investor sentiment: the belief in pseudo signals and the use of popular

models. An example for a pseudo signal (Black 1986), also called noise, may

be the advice of a financial guru. The expression popular models (Shiller 1990)

refers to the models that are used by the broad masses of economic actors to

form their decisions, such as the widespread use of technical analysis. Second,

arbitrage – defined as trading by fully rational investors not subject to such

sentiments – is limited in reality because it requires capital (Shleifer and Vishny

1997). Based on this approach, De Long et al. (1990a) demonstrate that if a

market is dominated by investors who follow positive feedback strategies it may

even pay for arbitrageurs to jump on the bandwagon. Moreover, De Long et al.

(1990b) show that noise traders may be willing to take higher risks and, conse-

quently, earn higher profits than rational arbitrageurs. Overall, the noise trader

approach suggests that shifts in investor sentiment are not fully countered by

arbitrageurs and, in particular, that limits of arbitrage may hinder prices to

reach their fundamental values. In contrast to the collection of the above pa-
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pers, our point of reference is that all investors are boundedly rational and have

a limited amount of capital at their disposal. In fact, our understanding of the

empirical literature (Simon 1955, Kahneman and Tversky 1974) on investor be-

havior is that a clear distinction between rational and irrational investors is not

appropriate. Behind this background, we hope that our results provide valuable

additional insights that may help us to better understand the inefficiencies of

financial markets.

4. Conclusions

We explore a number of properties of two multi-asset market models in which

speculators either have the choice between one or two risky assets and one safe

asset. Both model versions admit two steady states, a fundamental steady state

and a nonfundamental steady state. The fundamental steady state may lose its

stability via a transcritical bifurcation, implying that the fundamental steady

state exchanges its stability with the nonfundamental steady state, or via a flip

or Neimark-Sacker bifurcation, giving birth to (complex) endogenous asset price

dynamics. In the framework with two risky assets, however, the NFSS may also

lose stability due to a flip or Neimark-Sacker bifurcation. Our paper makes clear

that we can obtain valuable insights into the functioning of financial markets

from a thorough stability and bifurcation analysis.

Of course, our multi-asset market framework may be extended in various

directions. First of all, further risky assets may be added to the model. Prelim-

inary investigations reveal that some markets may then be characterized by syn-

chronous price movements while others display asynchronous price movements.

Moreover, it could realistically be assumed that both total market participation

and speculators’ financial commitments are not constant, but endogenously af-

fected by credit conditions and their borrowing capacity (particularly for very

low interest rates r). In such a context, boom-and-bust periods may become

amplified. Moreover, such new endogenous forces could partly relax the limits

of arbitrage arising in the present model. Finally, attempts may be made to
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calibrate our model such that it replicates some statistical properties of actual

financial markets in finer detail. To conclude, we hope that our paper results

in further research that enables us to develop a better understanding of the

intricate behavior of interacting financial markets.

Appendix. Steady-states, stability and bifurcations

This appendix provides key details about the steady states, their local stability

and possible bifurcations. We mainly focus on the 4D model, since parallel

results for the 2D model can be derived along the same lines in a much easier

manner. In any case, the 2D model is briefly illustrated at the end of each of

the two subsections of this Appendix.

A1. Steady states. Let us start with the case of two risky assets. Denote

generic steady state quantities with an overbar and note first that x̄i = z̄i,

i = 1, 2, at any steady state. We neglect cases x̄i = z̄i = 0, i = 1, 2, in

which the attractiveness (12) is not defined. From (11), we obtain the following

steady-state conditions:

x̄i =
x̄i exp(λĀi)

x̄1 exp(λĀ1) + x̄2 exp(λĀ2) + 1− x̄1 − x̄2
, i = 1, 2 (18)

where Āi := A(x̄i, x̄i) = g
(

Di

αiNx̄i
− r
)

. This yields

exp(λĀ1) = exp(λĀ2) = x̄1 exp(λĀ1) + x̄2 exp(λĀ2) + 1− x̄1 − x̄2,

implying that the two risky asset markets must have the same attractiveness,

or equivalently the same dividend-price ratio, in steady-state conditions, Ā1 =

Ā2 := Ā, D1

α1Nx̄1
= D2

α2Nx̄2
. Moreover, by summing equation (18) over the two

risky assets, one obtains

ȳ =
ȳ

x̄1 exp(λĀ1) + x̄2 exp(λĀ2) + ȳ
, (19)

where ȳ := 1− x̄1 − x̄2. Clearly, there exists one steady state characterized by

ȳ = 0, i.e. x̄1 + x̄2 = 1, which is considered below. Assuming ȳ > 0 instead,

condition (19) can be rewritten as

x̄1 exp(λĀ1) + x̄2 exp(λĀ2) = x̄1 + x̄2,
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which, along with condition Ā1 = Ā2, leads to Āi = 0, i = 1, 2. The latter

implies
Di

αiNx̄i
= r, i = 1, 2,

and defines the fundamental steady state (FSS), where, for i = 1, 2:

x∗i = z∗i =
Di

αiNr
.

Accordingly, n∗i = Nx∗i = Di

αir
and P ∗i = αin

∗
i = Di

r , implying that the

dividend-price ratios at the FSS are equal to r.

As regards the boundary or nonfundamental steady state (NFSS), from con-

dition D1

α1Nx̄1
= D2

α2Nx̄2
, along with x̄1 + x̄2 = 1, it follows that

x̂1 =
α2D1

α1D2 + α2D1
, x̂2 =

α1D2

α1D2 + α2D1
,

P̂1 = α1Nx̂1 = ND1
α1α2

α1D2 + α2D1
, P̂2 = α2Nx̂2 = ND2

α1α2

α1D2 + α2D1
,

where the common value of the dividend-price ratio is given by

D1

P̂1

=
D2

P̂2

=
1

N

(
D1

α1
+
D2

α2

)
:= rl.

The case of one risky asset can be easily worked out along similar lines,

starting from equation (4). In steady-state conditions, share x̄ of investors

active in the asset market needs to satisfy the equation x̄+(1−x̄) exp(−λĀ) = 1,

where Ā := A(x̄, x̄) = g
(

D
αNx̄ − r

)
. This condition is satisfied for x̄ = 1 (NFSS)

whereas, for x̄ 6= 1, when Ā = 0 (FSS), as summarized in Section 2.2.

A2. Stability analysis and bifurcations. For the case of two risky assets, it

is convenient to regard functions Fi, i = 1, 2, governing the exponential replica-

tor dynamics in (11) as functions of x1, x2, w1, w2, where wi = wi(xi, zi) :=

exp(λAi(xi, zi)) and Ai(xi, zi) is the attractiveness defined by (12). More pre-

cisely, for i = 1, 2:

Fi(x1, x2, z1, z2) = F̃i(x1, x2, w1, w2) =
xiwi

U(x1, x2, w1, w2)
,
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where U = U(x1, x2, w1, w2) := x1w1 + x2w2 + 1− x1 − x2. By the chain rule,

the derivatives of Fi have the following structure for i, j = 1, 2, i 6= j:

∂Fi
∂xi

=
∂F̃i
∂xi

+
∂F̃i
∂wi

∂wi
∂xi

,
∂Fi
∂zi

=
∂F̃i
∂wi

∂wi
∂zi

, (20)

∂Fi
∂xj

=
∂F̃i
∂xj

+
∂F̃i
∂wj

∂wj
∂xj

,
∂Fi
∂zj

=
∂F̃i
∂wj

∂wj
∂zj

, (21)

where

∂F̃i
∂xi

=
wiU − xiwi(wi − 1)

U2
,
∂F̃i
∂wi

=
xiU − x2

iwi
U2

,

∂F̃i
∂xj

= −xiwi(wj − 1)

U2
,

∂F̃i
∂wj

= −xixjwi
U2

,

and

∂Ai
∂xi

=
1

zi
f ′
(
xi
zi
− 1

)
− Di

αiNx2
i

g′
(

Di

αiNxi
− r
)
,
∂Ai
∂zi

= −xi
z2
i

f ′
(
xi
zi
− 1

)
,

∂wi
∂xi

= λwi
∂Ai
∂xi

,
∂wi
∂zi

= λwi
∂Ai
∂zi

.

At the FSS s∗ := (x∗1, x
∗
2, x
∗
1, x
∗
2), where x∗i = Di

αiNr
, we also have Di

αiNx∗
i

=

Di

P∗
i

= r, A∗i := Ai(x
∗
i , x
∗
i ) = 0, w∗i := wi(x

∗
i , x
∗
i ) = 1, U∗ := U(x∗1, x

∗
2, w

∗
1 , w

∗
2) =

1, i = 1, 2. By setting β := f ′ (0), γ := g′(0) and by defining the aggregate

parameters η := λβ and σ := λ(β − rγ), the above derivatives result in the fol-

lowing Jacobian matrix at the FSS (the order of rows and columns corresponds

to variables x1, x2, z1 and z2, respectively):

J(s∗) =


1 + σ(1− x∗1) −σx∗1 −η(1− x∗1) ηx∗1

−σx∗2 1 + σ(1− x∗2) ηx∗2 −η(1− x∗2)

1 0 0 0

0 1 0 0

 (22)

Tedious computations5 show that the characteristic polynomial of J(s∗), which

we denote by P(v) := Det (J(s∗)− vI4), can be factorized as the product of two

5Elementary row and column operations performed on matrix J(s∗) − vI4 lead to a sim-

plified matrix Q = Q(ν) with additional zero entries. Then, Det(Q) = Det (J(s∗) − vI4) can

easily be computed by co-factor expansion, yielding a tractable expression for the character-

istic polynomial (23).
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second-degree polynomials, namely

P(v) = Pa(v)Pb(v) =
[
v2 − (1 + σ) v + η

] [
v2 − (1 + σy∗) v + ηy∗

]
, (23)

where y∗ := 1 − x∗1 − x∗2. This property enables us to investigate the local

stability conditions and possible bifurcations of the FSS by relying on standard

techniques for two-dimensional systems. In particular (see, e.g. Medio and Lines

2001), the four characteristic roots of (22) are jointly less than one in modulus

if and only if:

Pa(1) > 0, Pa(−1) > 0, 1− Pa(0) > 0, (24)

Pb(1) > 0, Pb(−1) > 0, 1− Pb(0) > 0, (25)

where conditions (24) (or (25)) are necessary and sufficient for the roots v1 and

v2 of Pa(v) (or v3 and v4 of Pb(v)) to have modulus smaller than unity. The

above conditions jointly result in
η − σ > 0

2 + η + σ > 0

η < 1

and


(η − σ)y∗ > 0

2 + (η + σ)y∗ > 0

ηy∗ < 1

. (26)

The set of conditions on the left (right) correspond to polynomial Pa (Pb).

Note that, for an interior FSS, 0 < y∗ < 1. Since η − σ = λrγ > 0, the first

condition is always true for both sets. Let us now turn to the second condition.

If η + σ = λ(2β − rγ) ≥ 0, the second condition is satisfied for both sets. If, on

the contrary, η + σ < 0, i.e. γ > 2β/r, the second condition on the left turns

out to be more restrictive than its counterpart on the right. Finally, the third

condition on the left is more restrictive than the corresponding condition on the

right. To summarize, the stability domain of the FSS is determined, in terms

of the original parameters, by the following double inequality:

r

2
λγ − 1 < λβ < 1, (27)

where violation of inequality on the left leads to a period-doubling bifurcation

(since it entails Pa(−1) ≤ 0), whereas violation of inequality on the right results

in a Neimark-Sacker bifurcation (since it leads to Pa(0) ≥ 1).
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At the NFSS ŝ := (x̂1, x̂2, x̂1, x̂2), steady-state proportions x̂1 and x̂2 are

determined according to (15), with x̂1 + x̂2 = 1. Moreover, for i = 1, 2:

Âi := Ai(x̂i, ẑi) = f(0) + g

(
Di

αiNx̂i
− r
)

= g(rl − r),

where rl = 1
N

(
D1

α1
+ D2

α2

)
, as defined by (14). Since Â1 = Â2, we also have, for

i = 1, 2, ŵi := wi(x̂i, x̂i) = ŵ := exp(λg(rl − r)) and

Û := U(x̂1, x̂2, ŵ1, ŵ2) = x̂1ŵ1+x̂2ŵ2+1−x̂1−x̂2 = (x̂1+x̂2)ŵ = ŵ = exp(λg(rl−r)).

By defining γ̂ := g′(rl − r), σ̂ := λ(β − rlγ̂) and, again, η := λβ, and by re-

evaluating the general derivatives (20)-(21), the Jacobian matrix at the NFSS

is determined as follows:

J(̂s) =


1 + τ x̂1 + σ̂x̂2 (τ − σ̂)x̂1 −ηx̂2 ηx̂1

(τ − σ̂)x̂2 1 + τ x̂2 + σ̂x̂1 ηx̂2 −ηx̂1

1 0 0 0

0 1 0 0

 , (28)

where τ := (1− ŵ)/ŵ = exp(−λg(rl− r))− 1. The characteristic polynomial of

J(̂s), which we denote by Q(m) := Det (J(̂s)−mI4), can be factorized as

Q(m) = −m(1 + τ −m)Pc(m) = −m(1 + τ −m)
[
m2 − (1 + σ̂)m+ η

]
.

Therefore, two eigenvalues of (28) are equal to m1 = 0 and m2 = 1+τ = 1/ŵ =

exp(−λg(rl − r)). The remaining eigenvalues, m3 and m4, are the roots of the

second-degree polynomial Pc(m) = m2 − (1 + σ̂)m + η. These are jointly less

than one in modulus if and only if Pc(1) > 0, Pc(−1) > 0, 1−Pc(0) > 0, which

results in

λrlγ̂ > 0, 2 + 2λβ − λrlγ̂ > 0, λβ < 1, (29)

formally similar to the stability conditions (27) of the FSS. As regards the

eigenvalue m2, since g is strictly increasing with g(0) = 0, one has that 0 <

m2 < 1 if and only if:

exp(−λg(rl − r)) < 1 ⇐⇒ r < rl =
1

N

(
D1

α1
+
D2

α2

)
. (30)
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Assume first that r and rl are fixed, with r < rl, which implies that the NFSS

ŝ is the unique feasible steady state. It follows from (29) that ŝ is locally stable

provided that
rl
2
λγ̂ − 1 < λβ < 1, (31)

whereas violation of the left (right) inequality results in a flip (Neimark-Sacker

bifurcation). However, numerical simulations reveal that the bifurcated orbits

do not leave the subset of the state space of equation x1 + x2 = 1.6 Now

assume that (31) is satisfied and that one of the parameters appearing in (30)

- in particular, parameter N - changes such that r becomes larger than rl,

which determines the birth of the FSS s∗ and the coexistence of two steady

states. Based on our local stability results, this phenomenon corresponds to

a transcritical bifurcation of the NFSS, namely, the NFSS collides with the

(unstable) FSS previously existing in the ‘economically unfeasible’ portion of

the phase space (characterized by x1 + x2 > 1). While the NFSS loses its

stability, the newborn FSS is LAS.7 Of course, a collision between the two

steady states when r crosses threshold rl may also occur in a situation where

condition (27) does not hold. In this case, while the number of steady states

changes, this change is not characterized - strictly speaking - by a loss of stability

of the NFSS. However, numerical simulations reveal that the orbits bifurcated

from the NFSS, previously confined to the subset of equation x1 + x2 = 1, now

tend to spill over to the full 4D state space.

As regards the one-risky-asset model, the derivatives of function F in equa-

6Note that the lower-dimensional set defined by x1 + x2 = 1 is invariant for the map that

governs the dynamical system. In fact, from x2,t = 1− x1,t we obtain x2,t+1 = 1− x1,t+1, as

can be checked directly from equations (11).
7At the transcritical bifurcation value, where r = rl, stability condition (31) becomes

identical to the stability condition (27) of the FSS.

26



tion (4) can be worked out along similar lines, yielding the Jacobian matrices

J(s∗) =

 1 + σ(1− x∗) −η(1− x∗)

1 0

 , J(̂s) =

 1/ŵ 0

1 0

 , (32)

at the FSS s∗ := (x∗, x∗) and the NFSS ŝ := (x̂, x̂), respectively, where x∗ =

D
αNr and x̂ = 1. In (32), aggregate parameters σ and η are defined as in matrix

(22), whereas ŵ := exp(λg(rl − r)), where rl is given by (6).

The characteristic roots of J(s∗) are jointly smaller than one in modulus if

and only if

λrγ(1− x∗) > 0, 2 + λ(2β − rγ)(1− x∗) > 0, λβ(1− x∗) < 1,

resulting in condition (7).

As for matrix J(̂s), from its lower triangular structure it can be immediately

concluded that one eigenvalue is equal to zero, while the second eigenvalue is

equal to 1/ŵ = exp
[
−λg

(
D
αN − r

)]
> 0. It follows that the only way the NFSS

can lose its stability is when quantity exp
[
−λg

(
D
αN − r

)]
becomes larger than

1, as stated in Proposition 2. Since g is strictly increasing with g(0) = 0, this

occurs for r > rl, which is the same condition (6) for the existence of a (feasible

and) interior FSS.
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