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Abstract

We develop a simple agent-based financial market model in which speculators’ market

entry decisions are subject to herding behavior and market risk. Moreover, specu-

lators’ orders depend on price trends, market misalignments and fundamental news.

Using a mix of analytical and numerical tools, we show that a herding-induced mar-

ket entry wave may amplify excess demand, triggering lasting volatility outbursts.

Eventually, however, higher stock market risk reduces stock market participation and

volatility decreases again. Simulations furthermore reveal that our approach is also

able to produce bubbles and crashes, excess volatility, fat-tailed return distributions

and serially uncorrelated price changes.

Keywords: Stock markets, heterogeneous speculators, exponential replicator

dynamics, herding behavior, stylized facts.

JEL classification: C63, D84, G15.

1. Introduction

The goal of our paper is to develop a simple agent-based financial market model

to explain a number of important stylized facts of stock markets. In particular, we

analytically and numerically demonstrate that speculators’ market entry and exit be-

havior may give rise to volatility clustering. Our model’s key features and its main
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implications may be summarized as follows. We assume that there is a market maker

who adjusts stock prices with respect to speculators’ orders, which, in turn, use tech-

nical and fundamental trading rules to determine their trading behavior. Speculators’

market entry decisions depend on two socio-economic principles. First, speculators

are subject to herding behavior and increasingly enter the stock market as the number

of active speculators increases. Second, speculators react to stock market risk. The

higher the past volatility of the stock market, the lower the probability that a specu-

lator will enter the stock market. As it turns out, the stock market is relatively stable

if the number of active speculators is low. Since stock market risk is then perceived as

negligible, more and more speculators become active. Consequently, excess demand

increases, the market maker adjusts stock prices more strongly and volatility picks

up. Due to the increase in stock market risk, stock market participation eventually

decreases again. Confronted with a lower excess demand, the market maker needs to

adjust stock prices less strongly. We show that the repeated inflow and outflow of

speculators along with their heterogeneous trading behavior may also produce bub-

bles and crashes, excess volatility, serially uncorrelated returns and a fat-tailed return

distribution.

Our paper adds to the burgeoning stream of literature on agent-based financial

market models (see Chiarella et al. 2009a, Hommes and Wagener 2009 and Lux

2009 for surveys). Within these models, speculators apply technical and fundamen-

tal trading rules to determine their orders. Technical trading rules (Murphy 1999)

are usually based on trend extrapolation and tend to destabilize the dynamics of

financial markets. In contrast, fundamental trading rules (Graham and Dodd 1951)

bet on mean reversion, exercising a stabilizing impact on the dynamics of financial

markets. Models by Day and Huang (1990), de Grauwe et al. (1993), Brock and

Hommes (1998), LeBaron et al. (1999), Farmer and Joshi (2002), Chiarella et al.

(2007), Franke and Westerhoff (2012) and Leal and Napoletano (2017), for exam-

ple, show that (non-linear) interactions between speculators relying on technical and

fundamental trading rules can produce dynamics which resembles the dynamics of

actual financial markets quite closely. Without question, this line of research helps us
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to improve our understanding of the functioning of financial markets. For instance,

agent-based financial market models reveal that a bubble may emerge if speculators

forcefully rely on technical analysis while a crash can be set in motion if speculators

put more weight on fundamental analysis. Such a time-varying impact of technical

and fundamental trading rules can also produce volatility clustering. Financial mar-

kets tend to be relatively stable when speculators prefer fundamental analysis but

turn wilder when speculators opt for technical analysis.

Herding behavior plays a prominent role in a number of agent-based financial

market models. In Kirman (1993), Lux and Marchesi (1999) and Alfarano and Lux

(2007), speculators’ herding behavior influences whether they choose technical or

fundamental trading rules to determine their orders. Cont and Bouchaud (2000) and

Stauffer et al. (1999) assume that speculators’ herding behavior influences whether

they are optimistic or pessimistic. Bischi et al. (2006) show that complex asset

price dynamics may emerge if speculators mimic the buying and selling behavior of

other speculators. LeBaron and Yamamoto (2008) study imitation behavior which

results from social learning and show that it may be responsible for long memory

effects in trading volume and volatility. Tedeschi et al. (2012) develop a model in

which speculators imitate the behavior of more successful speculators. In Schmitt

and Westerhoff (2017), speculators’ herding behavior may lead to changes in the

heterogeneity of trading rules applied. Compared to these models, we assume in our

paper that speculators’ herding behavior affects their stock market participation.

In fact, empirical evidence suggests that stock market participation changes over

time and is influenced by social interactions. Most importantly for our approach,

Hong et al. (2004, 2005), Brown et al. (2008) and Shiller (2015) report that house-

holds and professional investors regard a stock market as increasingly attractive the

more of their peers participate in it. Surprisingly, there are only a few agent-based

models which explicitly study speculators’ market entry and exit behavior. Alfi et al.

(2009a, 2009b, 2009c) show that agent-based models with a fixed number of specula-

tors may lose their ability to produce realistic dynamics if the number of speculators

is set either too high or too low. Against this background, they endogenize the
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number of speculators and explore under which conditions the model dynamics may

self-organize such that the number of active speculators approaches a level which

generates realistic dynamics. Iori (1999, 2000) develops a more involved agent-based

simulation framework with heterogeneous interacting agents. Due to trade frictions,

such as trading costs or information processing constraints, speculators may become

inactive. However, communication and imitation among speculators may lead to a

spontaneous spark in stock market participation and elevate price fluctuations. To

study the effects of transaction taxes, Westerhoff and Dieci (2006) develop a model

in which speculators have the choice between technical trading, fundamental trading

and being inactive. Speculators’ choices depend on the past profitability of these

alternatives. Schmitt and Westerhoff (2016) show that although speculators’ inflow

and outflow may create bubbles and crashes, their market entry and exit behavior is

not subject to herding effects.

Our approach differs to these contributions in several dimensions. One advan-

tage of our model is that its deterministic skeleton allows us to derive a number of

analytical insights which make the model’s functioning and the origin of volatility

clustering rather transparent. For instance, our model possesses a steady state in

which prices reflect their fundamental values and in which all speculators are active.

We analytically show that this steady state becomes unstable (via a Neimark-Sacker

bifurcation) if speculators strongly extrapolate past price trends. Simulations reveal

that the dynamics we then observe are characterized by alternating periods of high

volatility, pushing destabilizing speculators out of the stock market, and periods of

low volatility, attracting destabilizing speculators to the stock market. The same

forces are at work in a stochastic version of our model which is able to mimic a

number of important time series properties of stock markets.

The rest of our paper is organized as follows. In Section 2, we present our simple

agent-based financial market model. In Section 3, we study the properties of the

model’s deterministic skeleton. In Section 4, we illustrate that the model’s stochastic

version is able to replicate a number of important stylized facts of stock markets. In

Section 5, we conclude our paper and point out some avenues for future research.
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2. A simple agent-based financial market model

The key elements of our agent-based financial market model may be summarized as

follows. We consider a stock market which is populated by a single market maker

and a time-varying number of heterogeneous speculators. A market maker adjusts

the stock price with respect to speculators’ orders which, in turn, depend on the

stock market’s price trend, its misalignment and current fundamental news. The

probabilistic market entry decision of a speculator is repeated at the beginning of

each trading period. We assume that the probability that a given speculator will

enter the market increases with current stock market participation and decreases with

current stock market risk. Since the total number of speculators is fixed, the number

of active speculators follows a binomial distribution. As we will see, a gradual inflow

and outflow of speculators may lead to alternating periods of high and low volatility.

Let us turn to the details of our model. We assume that the stock market’s log

fundamental value follows a random walk. To be precise, the stock market’s log

fundamental value in period t+ 1 is given by

Ft+1 = Ft + nt+1. (1)

Fundamental shocks nt are normally distributed with mean zero and constant stan-

dard deviation σn. Note that fundamental shocks represent the only extrinsic force

in our model.

Following Day and Huang (1990), a market maker adjusts the stock price using a

log-linear price-adjustment rule, i.e.

Pt+1 = Pt + a

Nt∑
i=1

Dt,i, (2)

where Pt stands for the log of the stock price at time t, a is a positive price adjustment

parameter, Nt represents the number of active speculators, and Dt,i denotes the order

placed by an active speculator.1 Accordingly, the market maker increases the stock

price if buying exceeds selling, and vice versa.

1For notational convenience, we use the index i = 1, 2, . . . , Nt to refer to active speculators in

trading period t. Clearly, index i does not stand for a specific speculator.
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As in Chiarella and Iori (2002), Chiarella et al. (2009b) and Pellizzari and West-

erhoff (2009), the order placed by an active speculator i depends on a linear blend of

technical and fundamental trading signals. In addition, speculator i’s trading behav-

ior is influenced by the arrival of new information. The order placed by speculator i

is formalized as

Dt,i = bt,i(Pt − Pt−1) + ct,i(Ft − Pt) + dt,i(Ft − Ft−1). (3)

The first component of (3) reflects speculator i’s technical trading (Murphy 1990).

Speculator i receives a buying (selling) signal if prices increase (decrease). Parameter

bt,i > 0 defines how strongly speculator i reacts to the price signal. The second

component of (3) formalizes speculator i’s fundamental trading (Graham and Dodd

1951). Since ct,i is a positive reaction parameter, speculator i obtains a buying

signal when the market is undervalued and a selling signal when it is overvalued.

The third component of (3) indicates that speculator i also reacts to the arrival of

new information (Pearce and Roley 1985). Positive news stimulates buying orders

while negative news triggers selling orders. Of course, reaction parameter dt,i is

also positive. In the following, we assume that reaction parameters bt,i, ct,i and

dt,i are uniformly distributed, i.e. bt,i ∼ U(b − β, b + β), ct,i ∼ U(c − γ, c + γ) and

dt,i ∼ U(d−δ, d+δ), with b > β ≥ 0, c > γ ≥ 0 and d > δ ≥ 0. Hence, all speculators

follow their own time-varying trading strategy.

Before we continue with the description of our approach, let us derive a convenient

model property. First, inserting (3) in (2) reveals that

Pt+1 = Pt + a

Nt∑
i=1

(bt,i (Pt − Pt−1) + ct,i (Ft − Pt) + dt,i (Ft − Ft−1))

= Pt + a (Pt − Pt−1)

Nt∑
i=1

bt,i + a (Ft − Pt)
Nt∑
i=1

ct,i + a (Ft − Ft−1)

Nt∑
i=1

dt,i.

(4)

Recall next that the sum of independently uniformly distributed random variables

follows a uniform sum distribution.2 Defining
∑Nt

i=1 bt,i = Bt,
∑Nt

i=1 ct,i = Ct and

2A uniform sum distribution, also called an Irwin-Hall distribution, approaches a normal distri-

bution as the number of added random variables increases.
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∑Nt

i=1 dt,i = Dt yields Bt ∼ USD (Nt, {b− β, b+ β}), Ct ∼ USD (Nt, {c− γ, c+ γ})

and Dt ∼ USD (Nt, {d− δ, d+ δ}), respectively, and we can rewrite (4) as

Pt+1 = Pt + a (Bt (Pt − Pt−1) + Ct (Ft − Pt) +Dt (Ft − Ft−1)) . (5)

Apparently, our setup has the convenient property that it is not necessary to evaluate

the trading rules of all Nt active speculators, each consisting of three different com-

ponents, to simulate its dynamics. We simply need to generate three uniform sum

distributed random variables. Moreover, the means and variances of the three uni-

form sum distributed random variables are given by µB = bNt, µC = cNt, µD = dNt,

σ2
B = Nt

3 β, σ2
C = Nt

3 γ and σ2
D = Nt

3 δ, respectively. In particular, note that the means

of the uniform sum distributed random variables increase with the number of active

speculators, i.e. if there is an inflow of speculators, there is, on average, stronger trend

extrapolation trading, a stronger mean reversion behavior and a stronger reaction to

new information. It is easily imaginable that this will have a destabilizing impact on

the model dynamics, at least for some parameter constellations. We also remark that

the variances of the three uniform sum distributed random variables vanish if β, γ

and δ approach zero.

Let us now return to our model. At the beginning of each trading period, specu-

lators decide whether to enter the stock market. We assume that speculators’ proba-

bilistic market entry decisions are influenced by two socio-economic principles. In line

with empirical evidence reported by Hong et al. (2004, 2005), Brown et al. (2008)

and Shiller (2015), speculators regard a stock market as increasingly attractive when

more speculators are already active. A similar herding perspective is taken in Iori

(1999, 2000). Moreover, speculators’ market entry decisions also depend on market

circumstances: the higher the stock market risk, the less attractive the stock market

appears to be. As in Alfi et al. (2009a, 2009b, 2009c), stock market risk is represented

by the stock market’s volatility

Vt = mVt−1 + (1−m)(Pt − Pt−1)2, (6)

where 0 ≤ m < 1 is a memory parameter controlling how strongly current and past

price changes affect volatility. We summarize both socio-economic principles by the

7



following relative fitness function

At = hNt−1 − vVt, (7)

where h and v are positive parameters. Accordingly, market participation is regarded

as increasingly attractive the more speculators are active in the market and less

attractive the higher the stock market’s past volatility.

We use exponential replicator dynamics (Hofbauer and Sigmund 1988, Hofbauer

and Weibull 1996) to model speculators’ probabilities of entering the market. The

probability that a speculator will enter the stock market can thus be written as

Wt =
Wt−1

Wt−1 + (1−Wt−1) exp[−λAt]
, (8)

where parameter λ > 0 denotes speculators’ intensity of choice. Note that the expo-

nential replicator dynamics term has three important properties. First, speculators’

probabilities of entering the market depend positively on the stock market’s relative

fitness. The higher the stock market’s relative fitness, the more probable it is that

speculators will enter the market. Second, an increase in λ implies that speculators

react more sensitively to the stock market’s relative fitness. If speculators’ intensity

of choice approaches zero, they have a 50 percent probability of entering the market.

If speculators’ intensity of choice goes to plus infinity, the probability that they will

enter the market is either 100 percent if the herding component dominates the risk

component or zero percent otherwise. Third, market entry probabilities display a

mild form of inertia. If Wt−1 is either close to zero or close to one, market entry

probabilities depend less strongly on the stock market’s relative fitness.3

Obviously, the number of active speculators is binomially distributed, i.e.

Nt ∼ B(N,Wt), (9)

where N > 0 denotes the total number of speculators. As is well known, the mean and

3Dindo and Tuinstra (2011) provide a deeper discussion of exponential replicator dynamics. Fur-

ther economic examples in this direction include Bischi et al. (2015), Kopel et al. (2014) and Schmitt

et al. (2017).
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variance of the number of active speculators are given by NWt and NWt (1−Wt),

respectively.

3. Analysis of the model’s determinictic skeleton

In this section, we explore the model’s deterministic skeleton. In Section 3.1, we

derive the model’s dynamical system and analyze under which conditions the model’s

steady states are locally asymptotically stable. In Section 3.2, we introduce a base

parameter setting to explain the functioning of our deterministic model. In Section

3.3, we study how the model’s parameters affect its global dynamics. In Section

3.4, we show that the model may also give rise to coexisting attractors and produce

bubbles and crashes. In Section 3.5, we briefly discuss the dynamics of our model for

an alternative parameter setting.

3.1. Dynamical system, steady states and local stability

By setting β = γ = δ = σn = 0 and introducing the auxiliary variable P̃t = Pt−1, we

can summarize our model by the four-dimensional nonlinear map

X :



Pt+1 = Pt + aNt{b(Pt − P̃t) + c(F − Pt)}

P̃t+1 = Pt

Vt+1 = mVt + (1−m)(Pt+1 − Pt)2

Nt+1 = N Nt

Nt+(N−Nt) exp[−λ(hNt−vVt+1)]

. (10)

Since we set the scaling parameters a and λ to 1, the dynamics depends solely on

seven parameters: b, c, N , h, v, F and m.4

4Note that Nt is given by NWt, i.e. we focus in this section on the mean dynamics of the

active number of speculators. Such a procedure is common in this line of research, see, for instance,

Sandholm (2015). In fact, numerical experiments confirm that our analytical results predict the

properties of the non-mean dynamics quite well. The same is true for the simulation results presented

in Section 3. For simplicity, we call Nt the active number of speculators.
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Straightforward computations reveal that our dynamical system may give rise to

two steady states, namely

X∗1 = (P ∗, P̃ ∗, V ∗, N∗) = (F, F, 0, N) (11)

and

X∗2 = (P ∗, P̃ ∗, V ∗, N∗) = (P ∗, P̃ ∗, 0, 0). (12)

As can be seen, the steady-state price is given by the fundamental value, the stock

market’s volatility is zero and all speculators are active at X∗1 , while X∗2 has zero

active speculators, an indeterminate price and also a volatility of zero. Since the

second steady state is economically uninteresting, we will focus now on X∗1 , which we

also call the fundamental steady state of our model.

To determine the stability of X∗1 , we derive the characteristic polynomial from

the Jacobian matrix of (10), i.e.

J(X∗1 ) =


1 + bN − cN −bN 0 0

1 0 0 0

0 0 m 0

0 0 0 e−hN

 , (13)

and obtain

(e−hN − z)(m− z)(z2 + z(cN − bN − 1) + bN) = 0. (14)

The steady state is locally asymptotically stable if the eigenvalues of the polynomial

are less than one in modulus (see, e.g. Gandolfo 2009 or Medio and Lines 2001). It

is easy to see from (14) that the first two eigenvalues are given by z1 = e−hN and

z2 = m. Since we assume that h > 0, N > 0 and 0 ≤ m < 1, we have |z1,2| < 1.

However, the eigenvalues of z2 + z(cN − bN − 1) + bN are less than one in modulus

if and only if

c > 0, (15)

c < cc =
2

N
+ 2b (16)
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and

b < bc =
1

N
(17)

simultaneously apply. Recall that c is a positive reaction parameter, which is why

condition (15) is always fulfilled. According to (16), the fundamental steady state

becomes unstable if c crosses cc, a situation which leads to a flip bifurcation and the

onset of a period-two cycle. If b exceeds its critical value bc, condition (17) is violated,

which is associated with a Neimark-Sacker bifurcation, i.e. the emergence of a cyclical

motion. In economic terms, these two conditions imply that the steady state becomes

unstable if speculators react to market misalignments or to price trends too strongly.

Note that (16) and (17) also depend on the total number of speculators. Hence, the

stock market also becomes unstable if N increases.

To visualize our analytical results, we depict in Figure 1 combinations of b and c for

which the model’s fundamental steady state is locally asymptotically stable. Since the

two black lines represent stability conditions (16) and (17), the model’s fundamental

steady state is always locally asymptotically stable for parameter combinations within

these two lines. As indicated by the arrows, an increase in parameter b may cause

a loss of stability via a Neimark-Sacker bifurcation while an increase in parameter c

may cause a loss of stability via a flip bifurcation. Moreover, the gray shaded area

indicates the parameter space for which the steady state becomes unstable if the

number of speculators increases from N to N ′.

For the sake of completeness, note that the Jacobian matrix of (10) at the second

steady state is given by

J(X∗2 ) =


1 0 0 c(F − P ∗)

1 0 0 0

0 0 m 0

0 0 0 1

 , (18)

from which the characteristic polynomial

−z(m− z)(1− z)2 = 0 (19)

can be derived. Therefore, we obtain z1 = 0, z2 = m and z3,4 = 1, which implies that

the second steady state is always unstable.
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Figure 1: Combinations of b and c for which the fundamental steady state is locally asymtotically

stable. The two black lines represent stability conditions (16) and (17), i.e. c = 2
N

+ 2b and b = 1
N

,

respectively.

3.2. Base parameter setting and functioning of the model

To be able to explain the functioning of our deterministic model, represented by

the four-dimensional nonlinear map (10), we make use of the following parameter

setting: b = 0.011, c = 0.001, N = 100, h = 0.001, v = 2000, m = 0.25 and F = 0.

Recall that the scaling parameters a and λ are set equal to 1. Accordingly, we have

b > 1/N , which implies that our fundamental steady state, i.e. X∗1 = (F, F, 0, N),

is unstable and that its instability is due to a Neimark-Sacker bifurcation. Figure

2 shows a representative simulation run for 800 periods (after omitting a longer

transient period). The first three panels depict the evolution of the log price, the

number of active speculators and the stock market’s volatility, respectively, while the

fourth panel presents the number of active speculators versus the log price.

Obviously, our model is able to produce intricate dynamics, in particular, al-

ternating periods with low and high volatility. In a nutshell, the working of our

deterministic model may be summarized as follows. Note first that the gray line

in the top right panel of Figure 2 indicates the threshold for the number of active

speculators for which the dynamics of our deterministic model becomes unstable, i.e.

Nc = 1
b ≈ 90.91. If the number of active speculators is below Nc, the market is

12
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Figure 2: Dynamics of the deterministic model for our base parameter setting. The panels show the

evolution of the log price, the number of active speculators, the stock market’s volatility and the

number of active speculators versus the log price, respectively. The underlying parameter setting is

given in Section 3.2.

stable and prices converge slowly towards their fundamental value. Since volatility

is relatively low during these periods, speculators’ herding behavior dominates their

risk aversion and more and more speculators enter the stock market. However, the

picture changes if the number of active speculators exceeds Nc. Once Nt > Nc, the

model dynamics becomes unstable, i.e. price fluctuations are characterized by oscil-

lations with an increasing amplitude. As a result, volatility increases up to the point

where speculators’ risk aversion offsets their herding behavior. Speculators then start

to exit the market and initiate a new period of relative stability. During the 800 de-

picted time steps, we witness four marked volatility outbursts. The strange attractor,

visible in the bottom right panel, illustrates the complexity of the model dynamics.
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3.3. The impact of the model’s parameters on its global dynamics

To demonstrate how the global dynamics of our deterministic model depends on its

parameters, we present a number of simulations in this section. Figure 3 contains

examples of how parameters b, c and N may influence the model dynamics. The first,

second and third rows depict bifurcation diagrams for 0 < b < 0.020, 0 < c < 0.004

and 80 < N < 120, respectively. While the left side presents their effect on log

prices, the right side shows how they affect the number of active speculators. As

predicted by our analytical results, we have P ∗ = F = 0 and N∗ = N = 100 for

b < bc = 1
N = 0.01. As soon as b exceeds this critical value, the fundamental

steady state loses its stability and endogenous dynamics emerges. While the two

top panels reveal that our model dynamics becomes unstable if technical trading is

too aggressive, the second row shows that a stronger fundamental trading reduces

the amplitude of price fluctuations. The two panels at the bottom also confirm

our previous analytical results. The fundamental steady state loses its stability at

N = Nc = 1
b ≈ 90.91, after which the amplitude of price dynamics and speculators’

market entry and exit behavior increases with N .

In Figure 4, we show bifurcation diagrams for 0 < h < 0.004, 1000 < v <

3000 and 0 < m < 1. The left panels reveal again how log prices react to an

increase in parameters h, v and m and the right panels illustrate how this affects the

number of active speculators. It can be seen from the two top panels that a stronger

herding behavior increases the amplitude of price fluctuations as well as fluctuations

in the number of active speculators. In contrast, price dynamics is less pronounced if

speculators show a stronger risk-sensitive behavior. However, the amplitude of price

fluctuations also increase with m. Of course, this also causes higher fluctuations in

speculators’ market entry and exit behavior.

3.4. Special features: coexisting attractors and bubbles and crashes

As is well known, nonlinear dynamical systems may give rise to a number of compli-

cated dynamic phenomena. As indicated by the (asymmetric) bifurcation diagram

in the top left panel of Figure 3, our model may also produce coexisting attractors.

The left panels of Figure 5 provide an example of this outcome. The panels show
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Figure 3: The impact of b, c and N . The first, second and third rows show bifurcation diagrams

for parameters b, c and N , respectively. While the left side presents their effect on log prices, the

right side depicts how they affect the number of active speculators. Parameters are as in our base

parameter setting.

from top to bottom the evolution of the log price, the number of active speculators

and the number of active speculators versus the log price, respectively. We use the

base parameter setting, except that we set b = 0.0155 (instead of b = 0.011). More-

over, the dynamics is depicted for two different initial values, represented in black

and red. The top left panel of Figure 5 shows that one set of initial conditions pro-

duces a sequence of bull markets while the other set of initial conditions produces
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Figure 4: The impact of h, v and m. The first, second and third rows show bifurcation diagrams

for parameters h, v and m, respectively. While the left side presents their effect on log prices, the

right side depicts how they affect the number of active speculators. Parameters are as in our base

parameter setting.

a sequence of bear markets. As it turns out, the evolution of the number of active

speculators is identical for both price trajectories. The bottom left panel of Figure 5

reveals that the bull market dynamics is intricately intertwined with the bear market

dynamics. In the absence of exogenous shocks, the model generates either persistent

bull or persistent bear market dynamics. However, it is clear that the addition of

some exogenous noise may easily push the dynamics from one attractor to the other.
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The overall dynamics is then characterized by erratic switches between bull and bear

market dynamics.

Figure 5: Emergence of bubbles and crashes. The left panels show for two different sets of initial

conditions (black and red) the evolution of log prices, the number of active speculators and the

number of active speculators versus the log price for our base parameter setting, except for b =

0.0155. The right panles show the same for a single initial condition and our base parameter setting,

except for c = 0.00004.

Interestingly, the right panels of Figure 5 demonstrate that our model is able to

generate endogenous boom-bust dynamics. Once more we use the base parameter

setting but assume that c = 0.00004 (instead of c = 0.001). The top right panel
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of Figure 5 demonstrates that a boom period can be followed by another boom

period but also by a severe crash (and since the model is symmetric, the same is

true the other way around). The right panel in the center of Figure 5 indicates that

the dynamics is again driven by speculators’ market entry and exit behavior. Since

speculators’ mean reversion trading is now relatively weak, we do not observe repeated

volatility outbursts but the emergence of pronounced and lasting bull and bear market

dynamics. It is easy to check that the instability of the model’s fundamental steady

state is again caused by a Neimark-Sacker bifurcation. However, the strange attractor

visible in the bottom right panel of Figure 5 reveals that the model dynamics is quite

complicated for the underlying parameter setting.

3.5. Alternative parameter setting

So far, we focused mainly on the Neimark-Sacker bifurcation scenario. We now turn

briefly to the flip bifurcation scenario. Figure 6 is based on an alternative parameter

setting: a = 1, b = 0.005, c = 0.0301, N = 100, h = 0.005, v = 10, m = 0.1,

λ = 1 and F = 0. Hence, the model’s fundamental steady state is unstable due

to a flip bifurcation. Since the flip bifurcation occurs at c = cc = 0.03, the onset

of endogenous dynamics, initially in the form of a period-two cycle and then in the

form of more complicated dynamics, is caused by speculators’ excessively aggressive

fundamental trading. The first three panels of Figure 6 show the evolution of the

log price, the number of active speculators and the stock market’s volatility for 800

periods, respectively. As can be seen, the model is also able to produce volatility clus-

tering for the alternative parameter setting. The reason for this is similar to before.

If the number of active speculators is low, the market is stable. Since speculators’

herding behavior outweighs their risk aversion, they quickly enter the stock market.

This process renders the dynamics unstable and we observe increasing (improper)

oscillations. Eventually, the associated increase in stock market risk makes the stock

market become unattractive. Speculators exit the stock market and there is a brief

period of market stability in which the price approaches its fundamental value. Then,

the process repeats itself, albeit in an intricate manner. This is also confirmed by the

right panel in the center of Figure 6, which presents the corresponding dynamics in

18



(Nt, Pt) space.

Figure 6: Dynamics of the deterministic model for an alternative parameter setting. The panels

show the evolution of the log price; the number of active speculators; the stock market’s volatility;

and the number of active speculators versus the log price. The last two panels show bifurcation

diagrams for the log price and the number of active speculators with respect to parameter c. The

underlying parameter setting is given in Section 3.5.

The bottom two panels of Figure 6 show bifurcation diagrams for parameter c.

The left panel reveals how the log price reacts to increasingly aggressive fundamental

trading, while the right panel shows how this affects the number of active speculators.

As predicted by our analytical results, the model dynamics approaches the fundamen-
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tal steady state for c < 0.03. However, a flip bifurcation occurs at c = cc = 0.03.

Within a small parameter range, the dynamics is then characterized by a period-two

cycle. Afterwards, we observe the start of more complex dynamics, as already de-

picted in the first four panels of Figure 6. Note furthermore that the amplitude of

the price dynamics increases with parameter c. Here we have an example where ex-

cessively aggressive mean reversion trading by speculators leads to a destabilization

of the stock market. As price fluctuations increase, the number of active speculators

also displays more pronounced fluctuations.

4. Stochastic dynamics

In Section 3, we show that the deterministic version of our simple agent-based fi-

nancial market model is – at least in a qualitative sense – able to produce bubbles

and crashes, excess volatility, extreme price changes, complex price dynamics and

volatility clustering. In this section, we go one step further and demonstrate that

the stochastic version of our model may also replicate a number of key statistical

properties of actual stock markets in finer detail. In Section 4.1, we first review the

stylized facts of stock markets. In Section 4.2, we then explore the dynamics of our

stochastic model and explain its functioning.

4.1. Stylized facts of stock markets

As is well known, the dynamics of stock markets is characterized by bubbles and

crashes, excess volatility, fat-tailed return distributions, serially uncorrelated returns

and volatility outbursts. The boom-and-bust behavior of stock markets and their

volatile nature is discussed thoroughly in Shiller (2015). Moreover, Mantegna and

Stanley (2000), Cont (2001) and Lux and Ausloos (2002) provide excellent surveys

about the statistical properties of financial markets. For illustrative reasons, we

focus below on the behavior of the Dow Jones Industrial Average between 1981 and

2016, as depicted in Figure 7. The underlying data set comes from Thomson Reuters

Datastream and contains about 9, 000 daily observations. The top left panel of Figure

7 shows the development of the Dow Jones Index. Despite its long-run upwards
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movement, a number of severe crashes can be spotted. For instance, the Dow Jones

Index witnessed dramatic depreciations around 2001 and 2007. The top right panel of

Figure 7 presents the corresponding return time series. Overall, the Dow Jones Index

may be regarded as quite volatile. Just to give one example, the standard deviation

of the return time series is about 0.011. Furthermore, there are several larger returns

visible and calm periods obviously alternate with turbulent periods.

Figure 7: Properties of the Dow Jones Industrial Average. The panels show the evolution of the

Dow Jones Index between 1981 and 2016, the corresponding returns, the log probability density

function of normalized empirical returns (black) and standard normally distributed returns (gray)

and the autocorrelation function of raw returns (gray) together with the autocorrelation function of

absolute returns (black).

The bottom right panel of Figure 7 compares the log probability density func-

tion of normalized Dow Jones Index returns (black dots) with standard normally

distributed returns (gray line). Apparently, the distribution of the returns of the

Dow Jones Index contains more probability mass in the center, less probability mass

in the shoulders, and again more probability mass in the tails than warranted by a

normal distribution with identical mean and standard deviation. Since the kurtosis
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of empirical returns is 42.66 and thus much larger than the kurtosis of a normal dis-

tribution, namely 3, there is clear evidence of excess kurtosis. However, the tail index

provides a more reliable measure to quantify the fat-tail property of the distribution

of returns (Lux 1996, Gopikrishnan et al. 1999, Lux and Alfarano 2016). Using the

largest 5 percent of the observations, the Hill tail index estimator indicates a typical

tail index of about 3.02 for this time series, suggesting that the fourth moment of the

distribution of the returns does not exist. The bottom right panel of Figure 7 shows

the autocorrelation coefficients of absolute returns (black dots) and raw returns (gray

dots) for the first 100 lags, together with their 95 percent confidence bands (thin gray

lines). The absence of autocorrelation of raw returns demonstrates that the evolution

of the Dow Jones Index is hardly possible to predict, i.e. that its path is close to

a random walk. In contrast, the autocorrelation coefficients of absolute returns are

highly significant, implying a temporal persistence of volatility for more than 100

days.

4.2. Properties and functioning of the stochastic model

In the last couple of years, considerable progress has been made in estimating agent-

based financial market models, see, e.g. Alfarano et al. (2005), Boswijk et al. (2007),

Amilon (2008), Chiarella et al. (2014) and Hommes and in ’t Veld (2017). One

powerful method to estimate such models is given by the method of simulated mo-

ments, which seeks to align a selection of empirical moments, i.e. certain summary

statistics which quantify the stylized facts of financial markets, with model generated

moments. Contributions in this direction include Gilli and Winker (2003), Winker

et al. (2007), Franke (2009) and Franke and Westerhoff (2012). Unfortunately, the

large number of parameters of our model prevents us from using this method (which

requires a multi-dimensional grid search in parameter space). Instead, we rely on a

more informal calibration approach. After a tedious and time-consuming trial-and-

error exercise, we can at least show that our model has some ability to match the

stylized facts of stock markets.

To be precise, we use the following parameter setting to discuss the dynamics of

our stochastic model: a = 1, b = β = 0.0001, c = γ = 0.000005, d = δ = 0.01,
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h = 0.00008, v = 130, m = 0.99, λ = 1, σn = 0.005 and N = 500. Figure 8

depicts the outcome of a typical simulation run with 9, 000 observations. The top

left panel of Figure 8 displays the evolution of the stock price. While the stock price

fluctuates quite erratically, there are a number of stronger price appreciations and

depreciations, resembling the boom-and-bust behavior of the Dow Jones Index (since

the fundamental value follows a random walk in our model, there is no long-run

upwards trend in the simulated stock price dynamics). The top right panel of Figure

8 depicts the corresponding return time series. The standard deviation of simulated

returns is given by 0.011, i.e. our model matches the average volatility of the Dow

Jones Index quite well. Moreover, the standard deviation of the fundamental value

only amounts to 0.005. Hence, returns are roughly twice as volatile as justified by

changes in the fundamental value. This panel also reveals that there are a number of

larger returns as well as occasional volatility outbursts.

The bottom left panel of Figure 8 relates the log probability density function of

normalized returns (black dots) with the log probability density function of standard

normally distributed returns (gray line). As can be seen, the distribution of simulated

returns possesses more probability mass in the center, less probability mass in the

shoulders, and again more probability mass in the tails than warranted by a normal

distribution with identical mean and standard deviation. The fat-tail property is also

confirmed by estimates of the kurtosis for which we obtain a value of 4.62. While

this value indicates excess kurtosis, it should be noted that it is much lower than

the value we observe for the Dow Jones Index. Estimates of the tail index point

in the same direction. For the simulated time series, the Hill tail index estimator

produces a value of 4.56, implying that the fourth moment of the distribution of

returns exists. Clearly, simulated returns have more probability mass in the tails of

their distribution than normally distributed returns but less than actual returns.5 The

5Although our model does a fairly good job of matching the stylized facts of stock markets, it

produces too few extreme returns. Further experiments (available upon request) reveal that simple

model extensions can alleviate this issue. In particular, our model may produce quite realistic tail

indices if certain model parameters, such as speculators’ reaction to fundamental shocks, are allowed
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Figure 8: Properties of the stochastic model. The panels show the evolution of the stock price for 9000

observations, the corresponding returns, the log probability density function of normalized model

returns (black) and standard normally distributed returns (gray) and the autocorrelation function

of raw returns (gray) together with the autocorrelation function of absolute returns (black). The

underlying parameter setting is given in Section 4.2.

bottom right panel of Figure 8 presents the autocorrelation coefficients of absolute

returns (black dots) and raw returns (gray dots) for the first 100 lags. Raw returns

are serially uncorrelated, i.e. also simulated prices are hardly possible to predict. The

autocorrelation coefficients of absolute returns are highly significant, revealing strong

evidence of volatility clustering.

Overall, we may thus conclude that the stochastic version of our simple agent-

based financial market model is able to replicate key empirical regularities of actual

stock markets. To explain its functioning in more detail, we continue with the pre-

to vary over time – without destroying its ability to match the other stylized facts. Since our main

focus is on explaining volatility outbursts in stock markets, we abstain, for simplicity, from such

model extensions.
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vious simulation run but focus our attention on a shorter time window. The four

panels of Figure 9 show from top left to bottom right the evolution of stock prices

(black line) and fundamental values (gray line), the corresponding returns, the stock

market’s volatility and the number of active speculators between periods 6150 and

7650. During this time period, there are three pronounced volatility outbursts. Note

also that volatility tends to increase with the number of active speculators. Accord-

ingly, the functioning of our stochastic model may be understood as follows. Suppose

that stock market volatility is low. In such a situation, speculators’ herding behavior

dominates their risk aversion. Consequently, more and more speculators enter the

stock market and volatility picks up. Eventually, speculators’ risk aversion offsets

their herding behavior. As the number of speculators declines, the stock market be-

comes more stable. However, this leads directly to the next market entry wave and

to another high volatility episode.

Figure 9: Functioning of the stochastic model. The panels highlight the evolution of stock prices

(black) and fundamental values (gray), the returns, the stock market’s volatility and the number of

active speculators between periods 6150 and 7650 of the simulation run depicted in Figure 8.

25



It is interesting to note that the functioning of the stochastic version of our agent-

based model is very similar to the functioning of its deterministic counterpart. In

the deterministic setup, endogenous dynamics and volatility outbursts emerge when

a model parameter crosses the Neimark-Sacker bifurcation boundary, either because

speculators react too strongly to price trends or because there are too many specula-

tors. While the calibrated parameter setting of our stochastic model implies that the

fundamental steady state of the corresponding deterministic model is locally stable,

the model’s cyclical nature prevails. We remark that this phenomenon, i.e. realis-

tic model dynamics for parameter settings in which the fundamental steady state of

the model’s deterministic skeleton is locally stable, is quite common in this line of

research. As it turns out, it is the interplay of nonlinear forces and random elements

that causes realistic dynamics. Nevertheless, the analytical and numerical insights

we gain from studying the deterministic framework prove to be instrumental in our

understanding of the much more complicated stochastic framework.

Random elements in our model stem from speculators’ probabilistic market entry

decisions, from their time-varying trading rules and from changes in the fundamental

value. As can be seen in the top left panel of Figure 9, stock prices and fundamental

values tend to move in the same direction. However, stock prices may substantially

disconnect from fundamental values. This is particularly true if the number of active

speculators is rather high or rather low – the stock market then reacts too strongly or

too weakly to incoming fundamental shocks. Since positive and negative fundamental

shocks are equally likely, stock price changes are basically random. Moreover, in an

environment in which stock prices already fluctuate quite erratically, speculators’

trend extrapolation behavior does not add predictable structure to the return time

series. Whether the technical part of speculators’ trading rules produces a buy or

sell signal is essentially equally likely. Large price changes occur if a large number

of active speculators receive a strong trading signal, either because of significant

price trends, pronounced misalignments or distinct fundamental shocks, or if the

time-varying reaction parameters of their trading rules suggest aggressive trading.

Of course, extreme returns may emerge if these forces act together, i.e. if many
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speculators act aggressively on heavy trading signals.

5. Conclusions

We develop an agent-based financial market model with heterogeneous interacting

speculators to explain a number of important statistical regularities of stock markets.

Speculators base their orders on current price trends, the market’s mispricing and new

information. Speculators are heterogeneous in the sense that each of them follows

his own time-varying trading rule. However, not all speculators are always active

in the stock market. Two socio-economic principles govern speculators’ probabilistic

market entry decisions. First, speculators’ market entry decisions are subject to

herding behavior. The more speculators are active in the stock market, the more

attractive the stock market appears to them. Second, speculators’ market entry

decisions depend on stock market risk. The higher the stock market risk, measured

by the past volatility of the stock market, the less attractive the stock market appears

to them. All orders placed by speculators are matched by a market maker who adjusts

stock prices with respect to excess demand. The only extrinsic forces in our model

are exogenous shocks which drive the random evolution of the fundamental value.

We use a mix of analytical, numerical and empirical tools to investigate our model.

Our main result is that sporadic market entry waves may cause volatility outbursts

in stock markets. To be precise, we show that a herding-induced inflow of speculators

leads to rather unstable market dynamics with high volatility while a consecutive risk-

driven outflow of speculators leads to more stable market dynamics with low volatility.

This kind of volatility clustering is observed in the deterministic skeleton of our model,

for which we provide a full steady-state and stability analysis, and in the stochastic

version of our model, which we calibrate to the stylized facts of stock markets. The

latter exercise demonstrates that our model is able to generate bubbles and crashes,

excess volatility, fat-tailed return distributions, serially uncorrelated returns and, as

already mentioned, volatility clustering. In this sense, our model may be regarded

as validated. Our analytical results prove instrumental in our understanding of the

functioning of our model. In particular, we show that the model’s fundamental steady
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state becomes unstable once too many speculators enter the stock market. Since the

instability of the fundamental steady state is due to a Neimark-Sacker bifurcation,

we observe the onset of (quasiperiodic) endogenous dynamics. In this respect, it is

worth mentioning that our stochastic agent-based model starts from the description of

the trading behavior of a large number of individual speculators but can, after some

straightforward transformations, be expressed as a four-dimensional deterministic

nonlinear map. In this way, it is possible to obtain valuable analytical insights for

a rather complex agent-based model. Moreover, the reduced model version greatly

reduces computational efforts when it comes to a simulation-based model calibration.

We conclude our paper by pointing out a few avenues for future research. First,

speculators follow a linear blend of technical and fundamental trading rules in our

model. One interesting extension of our model could be to let active investors make

a behavioral choice for a specific trading rule. We could then have situations with a

large number of active speculators who prefer fundamental analysis or situations with

a small number of active speculators who favor technical analysis – just to give two

examples. Such a rule selection behavior could be modeled along the lines of Brock

and Hommes (1997), Lux and Marchesi (1999) or Franke and Westerhoff (2012). Sec-

ond, speculators who do not enter the stock market in our model are simply inactive.

Another interesting extension of our model could be to model speculators’ outside

option. For instance, Dieci et al. (2017) develop a model in which speculators can in-

vest their wealth in stock, bond and housing markets. Alternatively, one may assume

that speculators switch between different stock markets. Research in that direction

is surprisingly scant so far. Third, one may also use our model to conduct policy

experiments. Our model implies that (destabilizing) speculators increasingly enter

the stock market if stock market volatility is low. This model feature may prove a

real challenge for regulatory measures which seek to tame stock market fluctuations.

To sum up, we hope that our paper stimulates more research in this direction. The

financial crisis at the end of the noughties has not only made clear that our under-

standing of the dynamics of financial markets is still incomplete – it revealed, once

again, how important it is to make scientific and real progress in this area.
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