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Abstract 

After showing that the distribution of the S&P 500’s distortion, i.e. the log difference between its 

real stock market index and its real fundamental value, is bimodal, we demonstrate that agent-

based financial market models may explain this puzzling observation. Within these models, 

speculators apply technical and fundamental analysis to predict asset prices. Since destabilizing 

technical trading dominates the market near the fundamental value, asset prices tend to be either 

overvalued or undervalued. Interestingly, the bimodality of the distribution of the S&P 500’s 

distortion confirms an implicit prediction of a number of seminal agent-based financial market 

models. 
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1 Introduction 

The goal of our paper is twofold. We first present empirical evidence indicating that the 

distribution of the S&P 500’s distortion, i.e. the log difference between its real stock market 

index and its real fundamental value, is bimodal. While the S&P 500 fluctuates in an intricate 

manner around its fundamental value, we show that it spends relatively more time in bull and 

bear markets than in the vicinity of its fundamental value.1 The distribution of the S&P 500’s 

distortion is thus – contrary to what one would expect – not unimodal but possesses a bimodal 

shape. We then demonstrate that this puzzling observation may be explained by agent-based 

financial market models. Since speculators rely within these models on technical and 

fundamental analysis to predict asset prices, their dynamics depends on two competing forces. As 

we will see, it is the repeated comeback of destabilizing technical forces near fundamental values 

that tends to keep markets distorted. We would like to stress that the bimodality of the 

distribution of the S&P 500’s distortion, as documented in our paper, confirms an implicit 

prediction of a number of seminal agent-based financial market models that, until now, has been 

largely neglected.  

The empirical part of our paper rests on Shiller’s (2015) proposal on how to compute the 

S&P 500’s fundamental value. His unique historical dataset from January 1871 to December 

2015 gives us access to 1,740 monthly observations of the real S&P 500 and its real dividend 

payments. In his Nobel Prize Lecture, Shiller (2015) determines the real fundamental value of the 

S&P 500 by discounting its real dividend payments, assuming a constant real discount rate and a 

constant real growth rate of the last observed real dividend. We define the S&P 500’s distortion 

as the log difference between the real S&P 500 and its real fundamental value. Visual impression 

                                                           
1 We follow Day and Huang (1990) and classify a market as a bull (bear) market when prices are above (below) 
fundamental values. 



3 
 

as well as Silverman’s (1981) statistical mode test indicate that the distribution of the S&P 500’s 

distortion is bimodal, i.e. the S&P 500 spends relatively more time in bull and bear markets than 

in the neighborhood of its fundamental value. In our view, this is very surprising since the 

distribution of the S&P 500’s distortion possesses a local minimum at the very place where one 

would expect to find a global peak.  

As is well known, standard linear time series models do not give rise to such a bimodal 

distribution. However, in order to rule out the S&P 500’s bimodal distributed distortion being due 

to finite sample effects, assuming that the true distribution is unimodal, we conduct a simple 

simulation study in which we hypothetically assume that standard linear time series models 

represent the true data-generating process of the S&P 500’s distortion. We can thus compare the 

magnitude of the dip in the bimodal distribution of the S&P 500’s distortion to those one may 

encounter in simulated distributions derived from such models. Searching within a large class of 

standard linear time series models, common model selection criteria favor an ARMA (2,2) model 

as the true data generating process. Although simulated time series resemble the path of the S&P 

500’s distortion, at least at first sight, our simulation study reveals that the dip we observe 

empirically is very unlikely to occur in an environment in which the true data-generating process 

is given by standard linear time series models such as an ARMA (2,2) model. From this 

perspective, we can furthermore conclude that linear economic dynamic models are unable to 

explain the bimodality of the distribution of the S&P 500’s distortion. Or, in other words, our 

simulation study suggests that the bimodality of the S&P 500’s distribution may be due to 

nonlinear forces. 

Over the last couple of years, agent-based financial market models have improved our 

understanding of the functioning of financial markets. For surveys of this line of research see, for 

instance, LeBaron (2006), Chiarella et al. (2009), Hommes and Wagener (2009) and Lux (2009). 
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Within these models, speculators rely on a nonlinear mix of technical and fundamental analysis to 

determine their trading behavior. While technical analysis (Murphy 1991) seeks to derive trading 

signals out of past asset price movements, fundamental analysis (Graham and Dodd 1951) 

predicts that asset prices revert towards their fundamental values.2 Agent-based financial market 

models demonstrate that endogenous interactions between destabilizing technical trading rules 

and stabilizing fundamental trading rules may give rise to realistic asset price dynamics. Early 

contributions in this direction include Zeeman (1974), Day and Huang (1990), Kirman (1991), 

Chiarella (1992), de Grauwe et al. (1993), Lux (1995), Brock and Hommes (1998), LeBaron et al. 

(1999) and Farmer and Joshi (2002) while more recent approaches include Chiarella et al. (2007), 

Huang et al. (2010), LeBaron (2012), Anufriev and Hommes (2012), Anufriev and Tuinstra 

(2013), Schmitt and Westerhoff (2014), He and Li (2015) and He and Zheng (2016).  

A number of agent-based financial market models may be used to explain the bimodality 

of the distribution of the S&P 500’s distortion. However, the model by Gaunersdorfer and 

Hommes (2007) seems to us to be the ideal model for understanding the key mechanism that 

causes this property. Gaunersdorfer and Hommes (2007) propose a standard discounted value 

asset pricing model in which speculators can invest in a risk-free asset, paying a fixed rate of 

return, or in a risky asset, paying an uncertain dividend. Moreover, speculators switch between 

technical and fundamental analysis rules to predict future asset prices with respect to the rules’ 

past profitability and the market’s deviation from its fundamental value. To be precise, 

speculators prefer rules which have produced higher profits in the recent past and yet, in fear of a 

bursting bubble, they increasingly opt for fundamental analysis as the market’s misalignment 

increases. Gaunersdorfer and Hommes (2007) show that their calibrated model matches 

                                                           
2 Laboratory experiments surveyed in Hommes (2011) and questionnaire studies summarized in Menkhoff and 
Taylor (2007) unanimously confirm that financial market participants rely on technical and fundamental analysis.   
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important statistical properties of the S&P 500 quite well, including bubbles and crashes, excess 

volatility, fat-tailed return distributions, uncorrelated returns and volatility clustering.  

The deterministic skeleton of the calibrated model by Gaunersdorfer and Hommes (2007) 

gives rise to a locally stable limit cycle, surrounding a coexisting locally stable fundamental 

steady state. As it turns out, the bimodality of the distribution of the S&P 500’s distortion may be 

explained by the limit cycle’s properties. Close to the fundamental steady state, the dynamics of 

the model is driven by the trend-extrapolating behavior of chartists. Their trading behavior 

rapidly pushes the asset price away from its fundamental value. As the market’s misalignment 

increases, fundamental analysis becomes more popular. However, the mean reversion pressure 

exercised by fundamentalists is rather weak and thus it takes a while for the price to approach its 

fundamental value. During this adjustment process, both technical and fundamental rules are 

profitable. However, since the market’s misalignment shrinks, more and more speculators return 

to technical analysis. As a result, the momentum of the adjustment dynamics accelerates and the 

price overshoots its fundamental value, tracing out a new bubble path. To sum up: fundamental 

analysis manages to drive asset prices towards fundamental values, but the consequent revival of 

destabilizing technical rules tends to keep the market distorted. Together, these forces render the 

distribution of the distortion bimodal. We show that the same mechanism is at work in the 

calibrated (stochastic) model by Gaunersdorfer and Hommes (2007). It is worth noting how well 

their model matches the bimodality of the distribution of the S&P 500’s distortion, although it 

was designed with a different purpose in mind.   

This outcome does not depend on the details of the model by Gaunersdorfer and Hommes 

(2007), but can also be observed in a number of related models. For instance, Franke and 

Westerhoff (2012) propose an agent-based financial market model in which speculators switch 

between technical and fundamental trading rules with respect to predisposition effects, herding 
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behavior and market misalignments. Franke and Westerhoff (2012) estimate their model using 

the method of simulated moments, and report that their approach is quite powerful in matching a 

number of salient statistical properties of the S&P 500. Computing the distribution of the 

market’s distortion for this estimated agent-based model reveals clear signs of bimodality. Since 

similar results can be detected in many other frameworks – we explicitly explore the seminal 

contributions by Zeeman (1974), Day and Huang (1990), Chiarella (1992), de Grauwe et al. 

(1993), Lux (1995) and Brock and Hommes (1998) – one may conclude that the surprising 

bimodality of the distribution of the S&P 500’s distortion may be explained by agent-based 

financial market models. Put differently, the bimodality of the distribution of the S&P 500’s 

distortion, as documented in our paper, confirms an implicit prediction of many agent-based 

financial market models.   

The rest of our paper is organized as follows. In Section 2, we provide empirical evidence 

indicating that the distribution of the S&P 500’s distortion is bimodal. In Section 3, we conduct a 

simulation study to show that such an outcome is not in line with the dynamics of standard linear 

time series models. In Sections 4, 5 and 6, we present agent-based financial market models in 

which the distortion possesses a bimodal shape. Section 7 concludes our paper. 

 

2 Distributional properties of the S&P 500’s distortion 

In this section, we provide visual and statistical evidence demonstrating that the distribution of 

the S&P 500’s distortion is bimodal. Let us start our analysis by inspecting Figure 1. The black 

line in the top left panel depicts the evolution of the real S&P 500 between January 1871 and 

December 2015 on a log scale. As can be seen, this price time series, comprising 1,740 monthly 

observations, is subject to sustained up and down fluctuations around an upward sloping trend. 

The gray line in this plot represents the S&P 500’s fundamental value, as defined by Shiller 
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(2015). Accordingly, the S&P 500’s fundamental value reflects the present value of dividends 

and is computed from the actual subsequent real dividends using a constant real discount rate of 

7.6 percent per year, equal to the historical average real return on the market since 1871. For 

dividends after December 2015, it is assumed that they will grow forever from the last observed 

dividend with a growth rate of 5.1 percent per year (which is the dividends’ average growth rate 

between 2004 and 2013).3 Shiller (2015, p. 249) notes that it is a striking fact that “the present 

value of dividends looks pretty much like a steady exponential growth line, while the stock 

market oscillates a great deal around it”. Given the evidence, we fully agree with his conclusion.  

The top right panel of Figure 1 shows the S&P 500’s distortion, i.e. the log difference 

between the two aforementioned time series. This panel reveals even more clearly how strong the 

S&P 500’s mispricing may be at times. The bottom left panel of Figure 1 depicts a histogram of 

the S&P 500’s distortion, revealing another striking fact. Visual impression suggests that the 

distribution of the S&P 500’s distortion is bimodal, although – as we believe – most economists 

would expect to see a unimodal distribution. Apparently, this distribution has a local minimum 

very close to where the market’s mispricing is zero, i.e. at the very place where we would expect 

to find the distribution’s global maximum. Our visual impression is further confirmed by the 

bottom right panel of Figure 1 in which a smoothed histogram of the S&P 500’s distortion is 

presented. While the S&P 500 spends more time in bull markets than in bear markets, the 

bimodality of its distribution clearly sticks out.4 Note that the top left panel of Figure 1 already 

                                                           
3 Shiller’s dataset is available at http://www.econ.yale.edu/~shiller/. For more information on the construction of the 
dataset and on the computation of the S&P 500’s fundamental value, see Shiller (1981, 1989, 2015).  
4 As a robustness check, we explored whether the observed bimodality of the distribution of the S&P 500’s distortion 
depends on the level of the real discount rate. Varying the level of the real discount rate between 6.6 and 8.6 percent 
does not destroy the impression of a bimodal distributed distortion. Note that Boswijk et al. (2007) and Hommes and 
in’t Veld (2016) estimate the agent-based financial market model by Brock and Hommes (1998) using time-varying 
real discount rates to compute the S&P 500’s fundamental value. We stick to Shiller’s (1981, 1989, 2015) proposal, 
but agree with an anonymous referee that more empirical work in this direction would appear to be worthwhile.  
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suggests that when the S&P 500 turns from a bull market into a bear market or from a bear 

market into a bull market, it tends to move away from its fundamental value quickly. In Sections 

4, 5 and 6, we discuss agent-based models that are able to produce such dynamics. 

*** Figure 1 about here *** 

We next present statistical evidence that confirms our visual impression. Silverman 

(1981) devised a test to identify the number of modes of an empirical distribution. The null 

hypothesis of his test is that the empirical density has at most k modes. Rejecting this hypothesis 

suggests that the underlying density has more than k modes. The null hypothesis is rejected if the 

returned p-value is smaller than a given level of significance, say 5 percent. Since the p-value for 

the null hypothesis that the distribution of the S&P 500’s distortion has at most one mode is 0.6 

percent and the p-value for the null hypothesis that the distribution of the S&P 500’s distortion 

has at least two modes is 29.0 percent, our visual impression of the bimodality of the distribution 

of the S&P 500’s distortion receives statistical supported.5 Similar visual and statistical results, 

albeit slightly less pronounced, are obtained when the dataset is split into two samples of equal 

size, running from January 1871 to June 1943 and from July 1943 to December 2015. We may 

thus (carefully) conclude that unimodality can be rejected for the total sample as well as for the 

two subsamples.6 

                                                           
5 All tests were carried out using the R package “silvermantest”, available at https://www.uni-marburg.de/fb12/stoch/ 

research/rpackage. This package takes Hall and York’s (2001) refinements of Silverman’s (1981) test into account, 

preventing it from being too conservative. Note that the test only requires a choice of the number of modes for the 

null hypothesis (in our case either k=1 or k=2) and the number of bootstrap replications (we used the default setting 

M=999, but also checked that larger number of repetitions yield similar results). Since critical p-values are derived 

from varying the bandwidth, the test automatically determines the amount of smoothing. 
6 Since the assumptions behind Silverman’s (1981) test are not fully satisfied, our statistical analysis needs to be 

treated with some care. While our observations are not independent, we remark that the underlying time series is at 

least stationary. However, this aspect deserves more attention in the future. 



9 
 

3 Distributional properties of standard linear time series models 

As is well known, standard linear time series models are not appropriate for explaining the S&P 

500’s bimodal distributed distortion. Nevertheless, we conduct a simple simulation study to rule 

out the observed bimodality being due to finite sample effects, assuming that the true distribution 

is unimodal. First of all, we check which standard linear time series model best explains the 

dynamics of the S&P 500’s distortion.7 Using the Akaike information criterion as the relevant 

model selection criterion, we find that an ARMA (2,2) model proves to be the most appropriate 

linear time series model out of a large class of possible linear models in this respect.8 A 

representative simulation run of the estimated ARMA (2,2) model is depicted in the top left panel 

of Figure 2. This simulation run, containing 1,740 observations, displays fluctuations which at 

first sight are quite similar to the dynamics of the S&P 500’s distortion, as depicted in the top 

right panel of Figure 1. In particular, the empirical and the simulated time series display strong 

oscillations around the zero line and spend more time above than below it. 

*** Figure 2 about here *** 

Nevertheless, there are important differences. The top right panel of Figure 2 shows a 

smoothed distribution for this simulation run (black line), along with the asymptotic distribution 

of the estimated ARMA (2,2) model (gray shaded area).9 As is well known, the distribution of 

                                                           
7 For our model selection, we use Mathematica’s built-in function TimeSeriesModelFit, thereby taking into account 

AR, MA, ARMA and ARIMA model families. Enders (2014) provides an excellent introduction to this area.  
8 The Bayesian information criterion and the Schwartz-Bayes information criterion both suggest that an ARMA (1,1) 

model is best at explaining the S&P 500’s distortion. Performing the simulation study outlined in this section on the 

basis of an ARMA (1,1) model reveals almost identical results.    
9 Distributions are smoothed using Mathematica’s built-in function SmoothHistogram. The SmoothHistogram 

function allows choosing a kernel function and a method for the bandwidth selection. We use Mathematica’s default 

setting, i.e. the Gaussian kernel and Silverman’s method for the bandwidth selection. However, we also tried other 

bandwidth selection methods and determined, for instance, the bandwidth in units of standard deviation. Various 

experiments reveal that our results are robust with respect to the exact smoothing procedure.  
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ARMA (2,2) models becomes unimodal for sufficiently long samples. For short samples, 

however, this may not necessarily be the case. For instance, the smoothed distribution of the 

simulated time series possesses two dips. Compared to the dip we observe in the empirical 

distribution, however, these dips appear to be much smaller. Since we are able to quantify the 

magnitude of such dips, we can be more precise. Taking the most conservative approach possible, 

we measure the magnitude of a dip by taking the smaller of the two distances between the 

minima and the two maxima. As indicated in the bottom right panel of Figure 1, we obtain a dip 

size of 0.259 for the empirical distribution. In contrast, the magnitude of the two dips of the 

simulated distribution amount to only 0.059 and 0.005, respectively. 

This brings us to the following test idea. We can use the estimated ARMA (2,2) model to 

generate a large number of simulation runs. An interesting question is then in how many of these 

simulation runs we can detect a dip size comparable to the empirical dip. If the fraction of 

simulation runs in which we notice a dip size exceeding 0.259 is large, the empirical dip does not 

appear to be particularly surprising since it may be reconciled with the dynamics of standard 

linear time series models. On the other hand, if we observe such a dip size only rarely, say in less 

than 5 percent of the simulation runs, we may conclude that the empirical dip cannot be explained 

by the dynamics of standard linear time series models, and it may therefore be regarded as odd. 

Of course, in case the simulated distribution has more than one dip, we always compare the 

empirical dip with the largest dip size of the simulated distribution.  

Our simulation study is based on 100,000 simulation runs. One preliminary result is that 

26.73 percent of the simulation runs display no dip at all; 49.89 percent of the simulation runs 

display one dip; 20.19 percent of the simulation runs display two dips; 2.96 percent of the 

simulations runs display three dips; and 0.22 percent of the simulation runs display four or more 

dips. More importantly, we obtain the following results with respect to the dip sizes of simulated 
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distributions. The relative frequency distribution of simulated dip sizes is depicted in the bottom 

left panel of Figure 2. Clearly, the bulk of simulation runs show dip sizes that are much smaller 

than the empirical dip. The fraction of simulation runs for which the dip size exceeds a critical 

dip size, i.e. the p-value, is presented in the bottom right panel of Figure 2. Accordingly, we 

observe that the simulated distributions possess a dip size larger than the empirical dip of 0.259 

in about p = 1.25 percent of cases.10 Based on this analysis, we conclude that standard linear time 

series models are unable to explain the bimodality of the distribution of the S&P 500’s distortion. 

As a byproduct, we note that linear economic dynamics models can be ruled out as potential 

candidates for explaining this observation. Or, put differently, our simulation study suggests that 

the S&P 500’s distortion may be subject to nonlinear forces.   

 

4 Distributional properties of the agent-based model by Gaunersdorfer and Hommes 

We now demonstrate that simple nonlinear agent-based financial market models may account for 

the bimodality of the S&P 500’s distortion. We start our analysis with the model by 

Gaunersdorfer and Hommes (2007) for the following reasons. First, Gaunersdorfer and Hommes 

(2007) assume that speculators compute the asset’s fundamental value by discounting the sum of 

future dividends, i.e. the speculators’ value approach is closely related to Shiller’s value 

approach, underlying our empirical study. Second, Gaunersdorfer and Hommes (2007) show that 

their model has the power to explain a number of important stylized facts of financial markets. 

From this perspective, their model may be regarded as validated. Moreover, we can rely on their 

parameter setting for our analysis. Third, the dynamics of the deterministic skeleton of their 

                                                           
10 For the estimated ARMA (1,1) model, mentioned in footnote 8, this probability is about 1.27 percent. In contrast, 

resampling the S&P 500’s distortion 100,000 times via a block bootstrap with block lengths of 10 years reveals that 

dips exceeding the empirical dip can be detected in about 50 percent of these time series.  
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calibrated model gives rise to endogenous dynamics, which reveals most clearly why the 

distribution of a stock market’s distortion may be bimodal. After exploring the model by 

Gaunersdorfer and Hommes (2007), we discuss – as a robustness check – the model by Franke 

and Westerhoff (2012) in Section 5 and the models by Zeeman (1974), Day and Huang (1990), 

Chiarella (1992), de Grauwe et al. (1993), Lux (1995) and Brock and Hommes (1998) in Section 

6. Note that we explicitly abstain from building our own agent-based financial market model. 

While it may be possible to develop a model that fits the dynamics of stock markets even better, 

we find it more insightful and convincing to show that the puzzling behavior of the S&P 500’s 

distortion is already solved by existing agent-based models.  

Let us turn to the details of the model by Gaunersdorfer and Hommes (2007). Their model 

represents a standard discounted value asset pricing model, with the exception that speculators 

rely on technical and fundamental analysis rules to predict future asset prices. Speculators’ 

predictor selection depends on the rules’ past profitability and on current market conditions. 

Speculators can invest in a risky asset, paying an uncertain dividend ty  per share, and in a risk-

free asset, paying a fixed rate of return r . Gaunersdorfer and Hommes (2007) assume an IID 

dividend process for the risky asset, specified as 11 ++ += tt yy δ  with ),0(~1
δσδ Nt+ . 

Speculators are aware of the properties of the dividend process and compute the risky asset’s 

fundamental value by discounting the sum of expected future dividends. Accordingly, the 

fundamental value of the risky asset is perceived as ryp /* = . Note that if all speculators had 

rational expectations, the model’s rational expectation equilibrium price would be *p . 

Speculators using technical analysis are called chartists and are indexed by Ch = ; 

speculators using fundamental analysis are called fundamentalists and are indexed by Fh = . 

Forecasts according to the technical analysis rule are expressed as 
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)(][ 2111 −−−+ −+= tttt
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t ppgppE ,                                                                                        (1) 

where 0≥g  denotes the strength of speculators’ trend extrapolation. Predictions of the 

fundamental analysis rule are formalized as  

)(][ *
1

*
1 ppvppE tt

F
t −+= −+ ,                                                                                                   (2) 

where 10 ≤≤ v  indicates speculators’ expected mean reversion speed. The time structure of this 

model implies that speculators do not know the current price of the risky asset when they form 

their predictions. The last observable information that enters (1) and (2) is from period 1−t . 

 Speculators are myopic mean-variance maximizers. As is well known, the demand for the 

risky asset by speculator type h  is thus given by 

])1([

])1([
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h

t
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h
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=
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++ ,                                                                                               (3) 

where a  denotes the speculators’ uniform risk aversion parameter. For simplicity, Gaunersdorfer 

and Hommes (2007) assume that the beliefs about the conditional variance in (3) are constant 

over time and equal for all speculators, i.e. 2
11 ])1([ σ=+−+ ++ ttt

h
t prypV .11 

 The price of the risky asset adjusts such that the market clears in every period. Let sz  

denote the outside supply of the risky asset per speculator and C
tn  and F

tn  the market shares of 

chartists and fundamentalists, respectively. The market equilibrium condition can then be 

expressed as s
ttt

F
t

F
tttt

C
t

C
t zaprypEnaprypEn =+−+++−+ ++++

2
11

2
11 /])1([/])1([ ss . 

Assuming that the outside supply of the risky asset is zero yields the price equation 

                                                           
11 By exploring the more complicated case in which speculators’ variance beliefs are time-varying, Gaunersdorfer 

(2000) shows that this simplifying assumption is, at least in the case of an IID dividend process, not critical for the 

model’s key results. 
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where the random variable ),0(~ εσε Nt  captures additional effects on tp  that are not explicitly 

considered in the model, such as exogenous liquidity demand or the market impact of noise 

traders.12  

Accordingly, the risky asset’s price equals the discounted value of tomorrow’s average 

expected price plus tomorrow’s expected dividends. It remains to specify how the market shares 

of chartists and fundamentalists change over time. Note first that accumulated realized profits by 

speculator type h  result in 

h
t

h
tttt

h
t UzprypU 111))1(( −−− ++−+= h .                                                                                  (5) 

The first term on the right-hand side of (5) represents current realized excess profits of speculator 

type h  which are given by the realized excess return per share of the risky asset over the risk-free 

asset multiplied by the demand for the risky asset. The second term on the right-hand side of (5) 

denotes speculator type h ’s past accumulated realized profits, with 10 ≤≤η  being a memory 

parameter that measures how quickly past performance is discounted.13 

Gaunersdorfer and Hommes (2007) use the discrete choice approach by Manski and 

McFadden (1981) to model the market shares of chartists and fundamentalists, yet buffet it by a 

correction term. To be precise, the market share of chartists is given by  

 ])(exp[
]exp[]exp[

]exp[ 2
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*
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αββ

β −
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− −
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+
= t

F
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t
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UU

U
n .                                                                    (6) 

Since the market shares of chartists and fundamentalists add up to one, the market share of 

                                                           
12 Note that Brock (1997) motivates the simplifying case z s = 0 by introducing risk-adjusted dividends. 
13 Gaunersdorfer et al. (2008) provide an analysis of this model with risk-adjusted profits. Their results are similar to 

those generated by Gaunersdorfer and Hommes (2007). 
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fundamentalists can be expressed as 

C
t

F
t nn −=1 .                                                                                                                               (7) 

The discrete choice term in (6) ensures that the rule selection behavior of speculators depends on 

the rules’ profitability, where parameter 0≥β  controls how quickly the mass of speculators 

switches to the more profitable rule. Due to the correction term in (6), speculators’ rule selection 

behavior also depends on current market conditions. Parameter 0>α  regulates how sensitively 

the mass of speculators reacts to the market’s mispricing. As long as the price of the risky asset is 

close to its fundamental value, the market fractions of the speculators’ rules depend almost 

completely on their past profitability. But if the price of the risky asset moves away from its 

fundamental value, the correction term becomes smaller. More and more speculators then start to 

believe that a fundamental price correction is about to occur. 

 The dynamics of the model by Gaunersdorfer and Hommes (2007) is due to a six-

dimensional first-order nonlinear dynamical system. Gaunersdorfer and Hommes (2007) show 

that their model can explain a number of stylized facts of financial markets, including bubbles 

and crashes, excess volatility, fat-tailed return distribution, uncorrelated price changes and 

volatility clustering.14 For reviews of the statistical properties of financial markets see, among 

others, Mantegna and Stanley (2000), Cont (2001) and Lux and Ausloos (2002). The top left 

panel of Figure 3 shows a representative price trajectory of the model. Recall that Gaunersdorfer 

                                                           
14 Bearing in mind the model’s ability to match the stylized facts of financial markets, Franke (2009) extends this 

model along two lines. First, he considers multiplicative noise instead of additive noise in price equation (4). Second, 

he adds random shocks to expectation rules (1) and (2). Straightforward simulations reveal that these two model 

versions also give rise to bimodal distributed distortions. Since the original model by Gaunersdorfer and Hommes 

(2007) allows a better explanation of the origins of the distortion’s bimodality, we base the bulk of our analysis on it. 

However, the model by Franke and Westerhoff (2012), discussed in Section 5, incorporates Franke’s (2009) 

suggestions.    
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and Hommes (2007) calibrate their model to the daily behavior of the S&P 500. To obtain 1,740 

monthly observations, as in our empirical analysis, we simulate their model for a time span of 

145 years, assuming that a year gives rise to 2521221 =⋅  trading days. Out of these 

540,36252145 =⋅  daily observations, we plot every 21st observation. Of course, the simulation run 

is based on the parameter setting by Gaunersdorfer and Hommes (2007), that is we set 1=y , 

0=δσ , 001.0=r , 1=v , 9.1=g , 1=σa , 10=εσ , 99.0=η , 800,1=α  and 2=β . Note that the 

price of the risky asset (black line) oscillates in wild swings around its fundamental value (gray 

line), similar to the case of the S&P 500. 

*** Figure 3 about here *** 

 The top right panel of Figure 3 depicts the distribution of the simulation run’s distortion, 

again defined as the log difference between the risky asset’s price and its fundamental value, 

while the bottom left panel in Figure 3 shows the asymptotic distribution of the model’s 

distortion, derived from a sufficiently long time series. Evidence for bimodality is clearly visible. 

In absolute terms, the risky asset’s price dynamics is (almost) symmetric with respect to its 

fundamental value. In relative terms, however, bear markets may be more severe than bull 

markets. Overall, we find it surprising how well the model by Gaunersdorfer and Hommes (2007) 

matches the magnitude of bubbles and crashes and, in particular, the magnitude of the distortion 

– although it was not designed for this specific purpose. The bottom right panel depicts the 

evolution of the price of the risky asset versus the market share of chartists. We return to this 

panel in the sequel. 

 Figure 4 illustrates the deterministic dynamics of the calibrated model by Gaunersdorfer 

and Hommes (2007), i.e. for 0=δσ  and 0=εσ .15 The top left panel of Figure 4 reveals that the 

                                                           
15 Gaunersdorfer and Hommes (2007) show that the deterministic skeleton of their model has a unique steady state in 
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deterministic model gives rise to a limit cycle according to which the price of the risky asset 

(black line) oscillates around its fundamental value (gray line). The top right panel of Figure 4 

shows the corresponding market shares of chartists. The dynamics may be understood as follows. 

Around period 100, the price of the risky asset is considerably below its fundamental value. As a 

result, the market impact of chartists is low. Due to the trading behavior of fundamentalists, the 

price of the risky asset recovers slowly.16 This has two important effects. First, technical analysis 

correctly predicts the upward movement of the market and thus generates profits. Second, the 

market’s mispricing decreases continuously. Both effects increase the market share of chartists 

which, in turn, amplifies the momentum of the market’s upward movement. Eventually, however, 

the price of the risky asset overshoots its fundamental value, and speculators switch to 

fundamental analysis. Now the dynamics of the model reverses. Initially, the price of the risky 

asset decreases slowly. Then the momentum of the price reduction picks up, until the market 

finally crashes. Overall, this kind of dynamics – a rapid movement away from the fundamental 

value combined with a slow correction of high misalignment levels – renders the distribution of 

the market’s distortion bimodal, as evidenced by the bottom left panel of Figure 4. 

*** Figure 4 about here ***  

                                                                                                                                                                                            
which the price of the risky asset is equal to its fundamental value and in which the market shares of chartists and 

fundamentalists are equal. Moreover, they show that the steady state becomes unstable if chartists’ trend chasing 

becomes sufficiently strong, i.e. if g > 2 (1 + r). The dynamics is then characterized by periodic, quasi-periodic or 

chaotic motion. The model may also give rise to endogenous dynamics for g < 2 (1 + r). For the current parameter 

setting, for instance, the locally stable steady state coexists with a locally stable limit cycle. 
16 The calibration of the model suggests that v is close to unity. In fact, Gaunersdorfer and Hommes (2007) set v 

equal to 1, which implies that the fundamental analysis rule predicts no change in the risky asset’s price. 

Fundamentalists may thus be regarded as efficient market believers. Note that if all speculators rely on fundamental 

analysis, the dynamics of the deterministic model is due to pt = pt–1 + (r/(1+r)) (p* – pt–1) ≈ pt–1 + 0.001 (p* – pt–1), 

indicating that the price converges only very slowly to its fundamental value.   
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The bottom right panel of Figure 4 depicts the development of the price of the risky asset 

versus the market share of chartists. The dynamics on this figure-8 cycle is counterclockwise. 

When the market is slightly overvalued and the market impact of chartists is high, the price of the 

risky asset disconnects rapidly from its fundamental value. When the market is strongly 

overvalued and the market impact of chartists is low, the price of the risky asset needs a 

considerable amount of time to converge towards its fundamental value. However, the price 

dynamics becomes faster and faster and finally overshoots the fundamental value. Note that such 

a counterclockwise figure-8 dynamics is also discernible in the bottom right panel of Figure 3. 

While exogenous shocks make the attractor fuzzier, the same forces are at work as in the 

deterministic model. One important difference is that exogenous shocks amplify the fluctuations 

of the price dynamics. In some periods, the market may be strongly overvalued or undervalued 

and then it may take even longer for the market to normalize. Obviously, this reinforces the 

bimodality of the distribution of the market’s distortion. 

 

5 Distributional properties of the agent-based model by Franke and Westerhoff 

The model by Franke and Westerhoff (2012) differs from the model by Gaunersdorfer and 

Hommes (2007) along a number of important dimensions. First, Franke and Westerhoff (2012) 

assume a disequilibrium framework in which a market-maker changes the price of the risky asset 

with respect to speculators’ order flow. Second, there are neither direct price shocks nor dividend 

shocks. Instead, Franke and Westerhoff (2012) assume that speculators’ trading rules entail 

random elements. Third, speculators’ rule selection behavior depends on predisposition effects, 

herding behavior and market misalignments. Put differently, past profits do not influence 

speculators’ rule selection behavior. Finally, Franke and Westerhoff (2012) estimate their model 

using the method of simulated moments. Their model is supported by the data, and matches the 
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statistical properties of the daily behavior of the S&P 500 quite well, also from a quantitative 

perspective. 

Let us briefly summarize the main building blocks of this model (as in the previous case, 

we follow the authors’ notation to present the model). Franke and Westerhoff (2012) assume that 

the market-maker quotes the next period’s price of the risky asset with respect to the speculators’ 

excess demand, using the log-linear price adjustment rule 

)(1
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t

F
t

C
t

C
ttt dndnpp ++=+ µ ,                                                                                             (8) 

where tp  is the log of the price of the risky asset, 0>µ  is the market-maker’s price adjustment 

parameter, C
tn  and F

tn  are the market shares of chartists and fundamentalists (the number of 

speculators is normalized to one), and C
td  and F

td  are the orders placed by a single chartist and a 

single fundamentalist, respectively. Accordingly, the market-maker increases (decreases) the log 

of the price of the risky asset if the speculators’ excess demand is positive (negative). 

Franke and Westerhoff (2012) assume that speculators have the choice between a 

representative technical trading rule and a representative fundamental trading rule. Orders 

generated by these two trading rules are formalized as  
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where χ  and φ  are positive reaction parameters, *p  is the log of the fundamental value, and   

),0(~ CC
t N σε  and ),0(~ FF

t N σε  are random disturbance terms. Note that both (9) and (10) 

entail a deterministic and a stochastic component. The deterministic components reflect the basic 

principle of technical and fundamental analysis. While technical analysis predicts that the price of 
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the risky asset moves in trends, fundamental analysis presumes that the price of the risky asset 

returns towards its fundamental value. The stochastic components capture part of the diversity of 

actual technical and fundamental trading rules.17  

 The market share of speculators following the technical trading rule is given by 
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Since the market shares of chartists and fundamentalists add up to one, we further have 

C
t

F
t nn −=1 .                                                                                                                             (12) 

Obviously, the market shares of chartists and fundamentalists are modeled via the discrete choice 

approach, where β  stands for the speculators’ intensity of choice and C
tu 1−  and F

tu 1−  denote the 

fitness of the trading rules. Note that the discrete choice approach implies that the rules’ relative 

fitness, defined as C
t

F
tt uua 111 −−− −= , is what matters for speculators’ rule selection behavior. 

Franke and Westerhoff (2012) model the relative fitness of fundamental analysis over 

technical analysis as 

2*
0 )()( panna tp

F
t

F
tnt −+−+= aaa .                                                                           (13) 

Accordingly, the relative fitness depends on three socio-economic principles. First, speculators 

may display a behavioral preference for one of the two trading rules, expressed by parameter 0α . 

If 00 >α , speculators have a behavioral preference for fundamental analysis. If 00 <α , they have 

a behavioral preference for technical analysis. Second, speculators are subject to herding 

behavior. The higher the herding parameter 0>nα , the more strongly speculators follow the 

                                                           
17 Schmitt and Westerhoff (2016) show that the representative trading rules (9) and (10) may, under some 

assumptions, be derived from a setup in which all speculators follow their individual technical and fundamental 

trading rules. 
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crowd. Third, speculators react to current market conditions. As the price of the risky asset moves 

away from its fundamental value, they perceive an increasing probability that a fundamental price 

correction is about to set in, thus preferring more strongly fundamental analysis over technical 

analysis. Parameter 0>pα  controls the extent to which the relative fitness depends on current 

market conditions.  

 Since the market-maker’s price adjustment parameter and the speculators’ intensity of 

choice parameter are scaling parameters, they are set to 01.0=µ  and 1=β . Moreover, the 

dynamics of the model does not depend on the level of the log of the fundamental value and thus 

it is assumed that 0* =p . Franke and Westerhoff (2012) estimate the remaining seven model 

parameters using the method of simulated moments. The method of simulated moments searches 

for the parameter setting for which the model best matches a predefined set of summary statistics, 

capturing important stylized facts of financial markets. The estimated parameter setting, given by 

5.1=χ , 12.0=φ , 147.2=Cσ , 708.0=Fσ , 336.00 −=α , 839.1=nα and 671.19=pα , reveals that 

speculators have a behavioral preference for technical analysis and that the randomness 

associated with the technical trading rules is about three times as strong as the randomness 

associated with the fundamental trading rule. In addition, 671.19=pα  signifies that speculators’ 

rule selection behavior depends on market circumstances.  

 The summary statistics included in the estimation approach by Franke and Westerhoff 

(2012) explicitly consider the S&P 500’s average volatility, its fat-tailed return distribution, its 

random walk property and its volatility clustering behavior. Although the estimation approach 

does not account for the S&P 500’s distortion, the top left panel of Figure 5 reveals that the 
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model is able to produce bubbles and crashes.18 As can be seen, the log of the price of the risky 

asset (black line) fluctuates in a complex manner around its log fundamental value (gray line).19 

The top right panel of Figure 5 shows the distribution of the distortion for this simulation run, 

while the bottom left panel of Figure 5 shows the asymptotic distribution of the model’s 

distortion (computed from a sufficiently long time series). Although the magnitude of the 

model’s boom and bust dynamics is less pronounced than the one of the S&P 500, the 

distribution of the model’s distortions has – without question – a clear bimodal shape. 

*** Figure 5 about here *** 

The explanation for this is as follows. Suppose that the price of the risky asset is close to 

its fundamental value. In such a situation, the market is dominated by chartists and their trading 

behavior rapidly drives the price of the risky asset away from its fundamental value. But the more 

severe the market’s distortion becomes, the more speculators prefer fundamental analysis. Since 

the mean reversion pressure exercised by fundamentalists is rather weak, the price of the risky 

asset converges only slowly towards its fundamental value. Once the market’s distortion has 

resolved, speculators return towards destabilizing technical trading rules and create the next 

boom or bust episode. This can also be seen in the bottom right panel of Figure 5 in which the 

market’s distortion is plotted against the market share of chartists. For visibility reasons, we 

project only a snapshot of the dynamics in this panel. Broadly speaking, there are two regimes. If 

the market’s distortion is low, the market impact of chartists is strong and the price is quickly 
                                                           
18 Franke and Westerhoff (2012) calibrate their model to the daily behavior of the S&P 500. We thus simulate 

540,361451221 =⋅⋅  daily observations of which every 21st observation is used to obtain 1,740 monthly observations. 
19 The estimated parameter setting implies that the deterministic version of this model possesses a locally stable 

steady state in which prices reflect their fundamental values. The (technical) reason why the stochastic version of this 

model produces realistic dynamics is that exogenous noise triggers complex transient dynamics. Franke and 

Westerhoff (2016) provide a deeper analysis of the interplay between a locally stable steady state, exogenous noise, 

complex transient dynamics and the stylized facts of financial markets for a closely related model.  
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driven away from fundamental values. Alternatively, if the market’s distortion is high, the market 

impact of fundamentalists is strong and the price slowly approaches its fundamental value. Since 

the latter regime is more persistent, the dynamics spends relatively more time in bull or bear 

markets than in the vicinity of its fundamental value.20 Note that the strong destabilizing nature 

of technical analysis, the weak stabilizing nature of fundamental analysis, and the speculators’ 

preference for fundamental analysis in distorted markets are not convenient ad hoc assumptions – 

the model by Franke and Westerhoff (2012) has been estimated and thus these model features are 

empirically supported. 

 

6 Distributional properties of other agent-based financial market models 

In the last two sections, we discussed two empirically validated agent-based financial market 

models that are able to explain the bimodality of the distribution of the S&P 500’s distortion. The 

goal of this section is twofold. First, we show that a number of seminal agent-based financial 

market models, including the contributions by Zeeman (1974), Day and Huang (1999), Chiarella 

(1992), de Grauwe et al. (1993), Lux (1995) and Brock and Hommes (1998), are also able, at 

least from a qualitative perspective, to produce a bimodal distributed distortion. In contrast to the 
                                                           
20 In the models by Gaunersdorfer and Hommes (2007) and Franke and Westerhoff (2012), the fundamental value 

plays a prominent role: it determines the demand of fundamentalists and influences speculators’ rule selection 

behavior. As a robustness check, we also considered the case in which speculators misperceive the fundamental 

value by assuming that 𝐹𝐹𝑡𝑡 = 𝐹𝐹� + 𝜀𝜀𝑡𝑡, where 𝐹𝐹� is the true fundamental value and 𝜀𝜀𝑡𝑡~𝑁𝑁(0, 𝜎𝜎) captures speculators’ 

perception errors. The models by Gaunersdorfer and Hommes (2007) and Franke and Westerhoff (2012) still 

produce bimodal distributed distortions, even if speculators’ perception errors become large. More elaborate models 

for speculators’ perception of the fundamental value, such as AR(1) models, yield similar results. The reason for this 

– at least at first sight – surprising result is that the stock market’s mispricing is usually quite substantial in both 

models, and it does not matter much whether a market is, say, 30 or 35 percent overvalued. Since Shiller (2015) 

demonstrates that the S&P 500 is also quite mispriced on average, we conjecture that fundamental perception errors, 

or disagreement about the true fundamental value, are also not that relevant for the dynamics of actual stock markets. 

For the models discussed in Section 6, however, the fundamental value is less relevant. 
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models by Gaunersdorfer and Hommes (2007) and Franke and Westerhoff (2012), these models 

depend less strongly on the assumption that speculators know the stock market’s true 

fundamental value. Second, we show that quite different dynamical mechanisms may give rise to 

a bimodal distributed distortion. In the model by Franke and Westerhoff (2012), the underlying 

unique steady state is locally stable. The distribution of the distortion is bimodal since exogenous 

shocks trigger complex transient dynamics. There are two locally stable steady states in the 

model by Zeeman (1974), as well as in the models by Day and Huang (1990), Lux (1995) and 

Brock and Hommes (1998). A bimodal distributed distortion may emerge in these models if 

exogenous noise induces random transitions between the two attracting steady states. In the 

models by Chiarella (1992), Lux (1998) and Gaunersdorfer and Hommes (2007), the bimodal 

distributed distortion is due to a limit cycle. In Brock and Hommes (1998), two coexisting locally 

stable limit cycles, subjected to exogenous shocks, can yield random changes between bull and 

bear market dynamics. Finally, the models by Day and Huang (1990) and de Grauwe et al. (1993) 

generate chaotic price fluctuations, which, in turn, lead to a bimodal distributed distortion.  

 In the following, we briefly recap the essence of these models in chronological order. The 

cusp catastrophe model by Zeeman (1974) is one of the first contributions that takes into account 

the behavior of chartists and fundamentalists. One property of Zeeman’s (1974) model is that it 

may possess three coexisting steady states: an unstable inner steady state and two locally stable 

outer steady states. Moreover, the inner steady state marks the border of the basins of attraction 

of the two outer steady states. Another important property of this model is that the adjustment 

towards the outer steady states is assumed to occur very fast. While Zeeman (1974) models the 

change of a stock market index, we follow Diks and Wang (2016) and use this model to explain 

the level of a stock market index. To be precise, the log of the stock market index results as 
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𝑃𝑃𝑡𝑡+1 = �
𝑃𝑃𝐻𝐻 + 𝜀𝜀𝑡𝑡    𝑖𝑖𝑖𝑖   𝑃𝑃𝑡𝑡 > 𝐹𝐹
𝐹𝐹 + 𝜀𝜀𝑡𝑡    𝑖𝑖𝑖𝑖   𝑃𝑃𝑡𝑡 = 𝐹𝐹
𝑃𝑃𝐿𝐿 + 𝜀𝜀𝑡𝑡    𝑖𝑖𝑖𝑖   𝑃𝑃𝑡𝑡 < 𝐹𝐹

, where 𝐹𝐹 is the log of the fundamental value of the stock market, 

corresponding to the unstable inner steady state, 𝑃𝑃𝐻𝐻 and 𝑃𝑃𝐿𝐿 are locally stable bull and bear market 

steady states with 𝑃𝑃𝐻𝐻 > 𝐹𝐹 > 𝑃𝑃𝐿𝐿, and 𝜀𝜀𝑡𝑡 captures a normally distributed random disturbance term 

with mean zero and constant standard deviation 𝜎𝜎. Due to the instantaneous adjustment towards 

the bull or bear market steady state, the log of the stock market index is (basically) either given 

by 𝑃𝑃𝐻𝐻 + 𝜀𝜀𝑡𝑡 or by 𝑃𝑃𝐿𝐿 + 𝜀𝜀𝑡𝑡, depending on whether the stock market is above or below the 

fundamental value. The top left panel of Figure 6 shows the evolution of the log of the stock 

market index for 300 periods. As indicated by the top right panel of Figure 6, random switches 

between bull and bear market dynamics imply a bimodal distributed distortion. The underlying 

parameter setting for these simulations is given by 𝑃𝑃𝐻𝐻 = 0.25, 𝐹𝐹 = 0, 𝑃𝑃𝐿𝐿 = −0.25 and 𝜎𝜎 = 0.1. 

Also Diks and Wang (2016), who study the dynamics of housing markets, remark that the model 

by Zeeman (1974) is able to produce a bimodal distributed distortion. Rosser (2007) provides 

more historical background on Zeeman’s (1974) model while Barunik and Vosvrda (2009) 

present empirical support for Zeeman’s (1974) model. 

*** Figure 6 about here *** 

The model by Day and Huang (1990) follows the tradition of Zeeman (1974), but is more 

explicit when it comes to describing the market participants’ trading behavior. Day and Huang 

(1990) assume that a market-maker adjusts the stock price using the linear price adjustment 

function 𝑃𝑃𝑡𝑡+1 = 𝑃𝑃𝑡𝑡 + 𝑎𝑎(𝐷𝐷𝑡𝑡𝐶𝐶 + 𝐷𝐷𝑡𝑡𝐹𝐹), where 𝑎𝑎 stands for a positive price adjustment parameter and 

𝐷𝐷𝑡𝑡𝐶𝐶 and 𝐷𝐷𝑡𝑡𝐹𝐹 denote the orders placed by chartists and fundamentalists, respectively. Chartists 

believe in the persistence of bull and bear markets, i.e. they buy (sell) when the stock price is 

above (below) its fundamental value. Their orders are represented by the linear trading rule 

𝐷𝐷𝑡𝑡𝐶𝐶 = 𝑏𝑏(𝑃𝑃𝑡𝑡 − 𝐹𝐹), where 𝑏𝑏 is a positive reaction parameter. Note that the price dynamics in this 
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model is bounded between 0 and 1 and that the fundamental value is assumed to be 𝐹𝐹 = 0.5. 

Fundamentalists believe in mean reversion and use the trading rule 𝐷𝐷𝑡𝑡𝐹𝐹 = 𝑐𝑐(𝐹𝐹−𝑃𝑃𝑡𝑡)
�(𝑃𝑃𝑡𝑡+0.01)(0.99−𝑃𝑃𝑡𝑡)

. The 

main motivation behind the nonlinearity of this trading rule is as follows. Fundamentalists 

become more and more convinced that a fundamental price correction is about to set in as the 

market’s misalignment increases. Therefore, they trade more aggressively as the price deviates 

from its fundamental value. The bottom left panel of Figure 6 shows a simulation run with 80 

observations for this model, assuming that 𝑎𝑎 = 1, 𝑏𝑏 = 0.89, 𝑐𝑐=0.2 and 𝐹𝐹 = 0.5. Apparently, the 

model may endogenously produce alternating periods of bull and bear market dynamics. As 

evidenced by the bottom right panel of Figure 6, such chaotic dynamics may give rise to a 

bimodal distributed distortion.21 Since the dynamics is bounded between 0 and 1, the distortion in 

in this panel is computed as the difference between the stock price and its fundamental value. For 

recent extensions of the model by Day and Huang (1990), see Huang et al. (2010), Huang and 

Zheng (2012) and Tramontana et al. (2013). Amongst others, these contributions make it clear 

that the model by Day and Huang (1990) has the potential to match a number of important 

stylized facts of financial markets. 

 In contrast to Day and Huang (1990), Chiarella (1992) assumes that the trading behavior 

of fundamentalists is linear while the trading behavior of chartists is nonlinear. There are several 

motivations for the chartists’ nonlinear trading behavior. For instance, Chiarella et al. (2011) 
                                                           
21 The model by Day and Huang (1990) may also yield locally stable bull and bear market steady states. In these 

steady states, destabilizing orders placed by chartists are just offset by stabilizing orders placed by fundamentalists. 

Buffeted with dynamic noise, the dynamics may, as in Zeeman’s (1974) model, produce a bimodal distributed 

distortion. Two further comments are in order. Due to their close relation, the model by Day and Huang (1990) may 

be used to better understand the origin of the multiple steady states in Zeeman’s (1974) model. Moreover, the 

discrete-time approximation of Zeeman’s (1974) model presented in Diks and Wang (2016) may generate 

endogenous bull and bear market dynamics which are similar to the bull and bear market dynamics reported in Day 

and Huang (1990). 
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argue that chartists become more cautious in their trend-extrapolating behavior as price trends 

accelerate. Moreover, they use a hyperbolic tangent function to model the generally sigmoid 

demand function of chartists. Although originally formulated in continuous time, we express the 

model in discrete time. Using a log-linear price adjustment rule, the log of the price is determined 

by 𝑃𝑃𝑡𝑡+1 = 𝑃𝑃𝑡𝑡 + 𝑎𝑎(𝐷𝐷𝑡𝑡𝐶𝐶 + 𝐷𝐷𝑡𝑡𝐹𝐹), where 𝑎𝑎 is a positive price adjustment parameter and 𝐷𝐷𝑡𝑡𝐶𝐶 and 𝐷𝐷𝑡𝑡𝐹𝐹 are 

the excess demands of chartists and fundamentalists, respectively. In its most simple form, the 

excess demand of chartists can be expressed as 𝐷𝐷𝑡𝑡𝐶𝐶 = 𝑏𝑏 tanh (𝑐𝑐(𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡−1)) while the excess 

demand of fundamentalists takes the form 𝐷𝐷𝑡𝑡𝐹𝐹 = 𝑑𝑑(𝐹𝐹 − 𝑃𝑃𝑡𝑡), where 𝑏𝑏, 𝑐𝑐 and 𝑑𝑑 are positive 

parameters and 𝐹𝐹 denotes the log fundamental value. The top left panel of Figure 7 displays a 

simulation run for the parameter setting 𝑎𝑎 = 1, 𝑏𝑏 = 1, 𝑐𝑐 = 1.05, 𝑑𝑑 = 0.85 and 𝐹𝐹 = 0. The log price 

dynamics is depicted for 60 periods and reveals that the model produces a limit cycle. The top 

right panel of Figure 7 shows the corresponding distribution of the distortion. Note that Chiarella 

et al. (2008, 2011) already point out that this framework may give rise to a bimodal distributed 

distortion. In particular, they are interested in the stochastic bifurcation behavior of a noisy 

version of this model and study under which conditions so-called phenomenological and 

dynamical bifurcations may turn a unimodal distribution into a bimodal distribution. For more 

technical details about these kinds of bifurcation and their distributional implications, see Diks 

and Wagener (2008, 2011).   

*** Figure 7 about here *** 

In spite of having been developed to explain the dynamics of foreign exchange markets, 

the model by de Grauwe et al. (1993) may also be applied to stock markets. In the basic version 

of the model, the current stock price is given by 𝑃𝑃𝑡𝑡 = 𝑋𝑋𝑡𝑡(𝐸𝐸𝑡𝑡[𝑃𝑃𝑡𝑡+1])𝑎𝑎, where 𝑋𝑋𝑡𝑡 is an exogenous 

variable representing the fundamental part of the model, 𝐸𝐸𝑡𝑡[𝑃𝑃𝑡𝑡+1] is the average of the 

speculators’ next period’s expected stock price, and parameter 0 < 𝑎𝑎 < 1 is a discount factor. We 
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follow de Grauwe et al. (1993) and set 𝑋𝑋𝑡𝑡 = 1, implying that the model’s fundamental value 

results in 𝐹𝐹 = 1. Market participants either form regressive expectations, i.e. 𝐸𝐸𝑡𝑡𝐹𝐹[𝑃𝑃𝑡𝑡+1] =

𝑃𝑃𝑡𝑡−1(𝐹𝐹/𝑃𝑃𝑡𝑡−1)𝑏𝑏, where 0 < 𝑏𝑏 < 1 indicates the fundamentalists’ mean reversion speed, or 

extrapolative expectations, i.e. 𝐸𝐸𝑡𝑡𝐶𝐶[𝑃𝑃𝑡𝑡+1] = 𝑃𝑃𝑡𝑡−1((𝑃𝑃𝑡𝑡−1
𝑃𝑃𝑡𝑡−2

)/(𝑃𝑃𝑡𝑡−1
𝑃𝑃𝑡𝑡−3

)0.5)2𝑐𝑐, where 𝑐𝑐 > 0 captures the 

strength of chartists’ extrapolation behavior. The latter rule combines a short-term moving 

average, given by (𝑃𝑃𝑡𝑡−1/𝑃𝑃𝑡𝑡−2), with a long-term moving average, given by (𝑃𝑃𝑡𝑡−1/𝑃𝑃𝑡𝑡−3)0.5, and 

predicts, for instance, a price increase (decrease) if the short-term moving average is more (less) 

positive than the long-term moving average. An interesting feature of the model by de Grauwe et 

al. (1993) is that fundamentalists disagree about the stock market’s true fundamental value. To be 

precise, the fundamentalists’ perception of the fundamental value is normally distributed around 

the true fundamental value. As a result, half of the fundamentalists believe that the stock market 

is overvalued (undervalued) when the price equals its fundamental value. In such a situation, the 

market impact of fundamentalists is zero. However, the more the price exceeds (falls below) the 

fundamental value, the more fundamentalists are convinced that the stock market is overvalued 

(undervalued). Hence, the fundamentalists’ market impact increases with the stock market’s 

mispricing. For this reason, de Grauwe et al. (1993) define the speculators’ average stock price 

expectation as 𝐸𝐸𝑡𝑡[𝑃𝑃𝑡𝑡+1] = 𝐸𝐸𝑡𝑡𝐶𝐶[𝑃𝑃𝑡𝑡+1]𝑚𝑚𝑡𝑡𝐸𝐸𝑡𝑡𝐹𝐹[𝑃𝑃𝑡𝑡+1]1−𝑚𝑚𝑡𝑡, where the market impact of chartists and 

fundamentalists is due to the bell-shaped function 𝑚𝑚𝑡𝑡 = 1/(1 + 𝑑𝑑(𝐹𝐹 − 𝑃𝑃𝑡𝑡−1)2). Parameter 𝑑𝑑 > 0 

controls how quickly the market impact of fundamentalists increases as the stock price moves 

away from its fundamental value. The bottom left panel of Figure 7 depicts a time series example 

for this model with 300 observations, assuming that 𝑎𝑎 = 0.95, 𝑏𝑏 = 0.65, 𝑐𝑐 = 3, 𝑑𝑑 = 10,000 and 

𝐹𝐹 = 1. The dynamics is characterized by chaotic stock price fluctuations. As revealed by the 

bottom right panel of Figure 7, the associated distribution of the distortion is bimodal. 
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Lux (1995) stresses the relevance of socio-economic interactions and sentiment dynamics. 

In his model, chartists are either optimistic or pessimistic. Most importantly, the mood of 

chartists depends on herding behavior. For instance, the probability that a pessimistic chartist will 

become an optimistic chartist increases with the number of optimistic chartists. Furthermore, the 

mood of chartists depends on market conditions. For instance, the probability that a pessimistic 

chartist will become an optimistic chartist increases if stock prices increase. For simplicity, we 

present the model by Lux (1995) in discrete time, assume that there is a continuum of chartists, 

normalized to 𝑁𝑁 = 1, and allow for some exogenous noise. Accordingly, a market-maker quotes 

the stock price using the price adjustment rule 𝑃𝑃𝑡𝑡+1 = 𝑃𝑃𝑡𝑡 + 𝑎𝑎(𝑁𝑁𝑡𝑡𝑂𝑂𝐷𝐷𝑡𝑡𝑂𝑂 + 𝑁𝑁𝑡𝑡𝑃𝑃𝐷𝐷𝑡𝑡𝑃𝑃 + 𝐷𝐷𝑡𝑡𝐹𝐹) + 𝜀𝜀𝑡𝑡, where 𝑎𝑎 

is a positive price adjustment parameter, 𝐷𝐷𝑡𝑡𝑂𝑂 and 𝐷𝐷𝑡𝑡𝑃𝑃 are the orders placed by optimistic and 

pessimistic chartists, 𝑁𝑁𝑡𝑡𝑂𝑂 and 𝑁𝑁𝑡𝑡𝑃𝑃 are the market shares of optimistic and pessimistic chartists 

(with 𝑁𝑁𝑡𝑡𝑃𝑃 = 1 − 𝑁𝑁𝑡𝑡𝑂𝑂), 𝐷𝐷𝑡𝑡𝐹𝐹 are the orders placed by fundamentalists, and 𝜀𝜀𝑡𝑡 is normally distributed 

exogenous noise with mean zero and constant standard deviation 𝜎𝜎. The orders placed by 

optimistic and pessimistic chartists are formalized as 𝐷𝐷𝑡𝑡𝑂𝑂 = 𝑏𝑏 and 𝐷𝐷𝑡𝑡𝑃𝑃 = −𝑏𝑏 with 𝑏𝑏 > 0, i.e. they 

buy or sell fixed amounts of stocks. The orders placed by fundamentalists are represented by 

𝐷𝐷𝑡𝑡𝐹𝐹 = c(𝐹𝐹 − 𝑃𝑃𝑡𝑡), where 𝑐𝑐 is a positive reaction parameter and 𝐹𝐹 is the fundamental value. The 

market share of optimistic chartists evolves as 𝑁𝑁𝑡𝑡𝑂𝑂 = 𝑁𝑁𝑡𝑡−1𝑂𝑂 + 𝑁𝑁𝑡𝑡−1𝑃𝑃 𝜋𝜋𝑡𝑡𝑃𝑃𝑃𝑃 + 𝑁𝑁𝑡𝑡−1𝑂𝑂 𝜋𝜋𝑡𝑡𝑂𝑂𝑂𝑂, where 𝜋𝜋𝑡𝑡𝑃𝑃𝑃𝑃 =

min[𝑑𝑑 exp[𝐴𝐴𝑡𝑡] , 1] is the probability that a pessimistic chartist will turn optimistic and 𝜋𝜋𝑡𝑡𝑂𝑂𝑂𝑂 =

min[𝑑𝑑 exp[−𝐴𝐴𝑡𝑡] , 1] is the probability that an optimistic chartist will turn pessimistic. Parameter 𝑑𝑑 

is positive and 𝐴𝐴𝑡𝑡 = 𝑒𝑒�𝑁𝑁𝑡𝑡−1𝑂𝑂 − 𝑁𝑁𝑡𝑡−1𝑃𝑃 � + 𝑓𝑓(𝑃𝑃𝑡𝑡−1 − 𝑃𝑃𝑡𝑡−2) may be regarded as the relative fitness of an 

optimistic chartist mood over a pessimistic chartist mood. Since 𝑒𝑒 > 0, the probability that a 

pessimistic chartist will become optimistic increases with the number of optimistic chartists. Due 

to 𝑓𝑓 > 0, the probability that a pessimistic chartist will become optimistic also increases if prices 

increase more strongly. As long as the mean reversion trading of fundamentalists is not too 
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pronounced, an increase in the number of optimistic chartists will drive the stock market up. 

The model by Lux (1995) can produce very rich dynamics; we discuss two different 

parameter constellations. The top left panel of Figure 8 shows a simulation run for 1,000 periods, 

assuming that 𝑎𝑎 = 1, 𝑏𝑏 = 1.7, 𝑐𝑐 = 0.6, 𝑑𝑑 = 0.5, 𝑒𝑒 = 1.1, 𝑓𝑓 = 0.4, 𝜎𝜎 = 0.2 and 𝐹𝐹 = 5. This parameter 

setting gives rise to two coexisting locally stable steady states, one above and one below the 

fundamental value. Due to exogenous noise, however, the model produces erratic switches 

between bull and bear market regimes. The corresponding distribution of the distortion, depicted 

in the top right panel of Figure 8, is bimodal. The bottom left panel of Figure 8 presents a 

simulation run for 200 periods, assuming that 𝑎𝑎 = 1, 𝑏𝑏 = 1.8, 𝑐𝑐 = 0.5, 𝑑𝑑 = 0.5, 𝑒𝑒 = 1.2, 𝑓𝑓 = 1.2, 

𝜎𝜎 = 0.1 and 𝐹𝐹 = 5. In the absence of exogenous noise, the model now generates a stable limit 

cycle. Adding some exogenous noise, however, renders the dynamics somewhat more irregular. 

As can be seen in the bottom right panel of Figure 8, the distribution of the distortion is again 

bimodal. The model by Lux (1995) is related to the herding model by Kirman (1991, 1993). In 

his model, agents have the choice between two options and agents’ choices are subject to their 

social interactions. Without going into too much detail, Kirman (1991, 1993) shows that the 

distribution of agents across the two options may be bimodal. Assuming that one option implies 

taking a long position while the other option implies taking a short position, it is easy to envision 

a further financial market environment that gives rise to a bimodal distributed distortion.  

*** Figure 8 about here *** 

Brock and Hommes (1998) propose an agent-based financial market model in which 

speculators switch between different prediction rules to forecast asset prices. In particular, the 

speculators’ rule selection behavior depends on the past performance of the rules.22 The model by 

                                                           
22 The model by Gaunersdorfer and Hommes (2007) is closely related to the model by Brock and Hommes (1998). 

We therefore keep the presentation of the model by Brock and Hommes (1998) rather short. 
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Brock and Hommes (1998) can be formulated in deviations from fundamental values. 

Accordingly, the price of the risky asset (in deviations from its fundamental value) is equal to the 

discounted value of the speculators’ average price expectation for the next period plus an 

exogenous noise term, i.e. 𝑋𝑋𝑡𝑡 = (1/(1 + 𝑟𝑟))(𝑁𝑁𝑡𝑡𝐶𝐶𝐸𝐸𝑡𝑡𝐶𝐶[𝑋𝑋𝑡𝑡+1] + 𝑁𝑁𝑡𝑡𝐹𝐹𝐸𝐸𝑡𝑡𝐹𝐹[𝑋𝑋𝑡𝑡+1]) + 𝜀𝜀𝑡𝑡, where 𝑟𝑟 is the risk-

free interest rate, 𝑁𝑁𝑡𝑡𝐶𝐶 and 𝑁𝑁𝑡𝑡𝐹𝐹 are the market shares of speculators using extrapolative and 

regressive expectations, and 𝜀𝜀𝑡𝑡 is a normally distributed random variable with mean zero and 

constant standard deviation 𝜎𝜎. Extrapolative expectations are given by 𝐸𝐸𝑡𝑡𝐶𝐶[𝑋𝑋𝑡𝑡+1] = 𝑎𝑎𝑋𝑋𝑡𝑡 with 𝑎𝑎 > 1 

and predict, as in the model by Day and Huang (1990), an increase in the deviation between 

prices and fundamental values. Regressive expectations are formalized by 𝐸𝐸𝑡𝑡𝐹𝐹[𝑋𝑋𝑡𝑡+1] = 0 and 

forecast a prompt return of prices towards fundamental values. The market shares of chartists and 

fundamentalists are determined by the discrete choice approach, that is 

𝑁𝑁𝑡𝑡𝐶𝐶 = exp [𝑏𝑏𝑏𝑏𝑡𝑡−1𝐶𝐶 ]/(exp�𝑏𝑏𝑏𝑏𝑡𝑡−1𝐶𝐶 � + exp [𝑏𝑏𝑏𝑏𝑡𝑡−1𝐹𝐹 ]) and 𝑁𝑁𝑡𝑡𝐹𝐹 = exp [𝑏𝑏𝑏𝑏𝑡𝑡−1𝐹𝐹 ]/(exp�𝑏𝑏𝑏𝑏𝑡𝑡−1𝐶𝐶 � + exp [𝑏𝑏𝑏𝑏𝑡𝑡−1𝐹𝐹 ]), 

where 𝑈𝑈𝑡𝑡𝐶𝐶 and 𝑈𝑈𝑡𝑡𝐹𝐹 stand for the fitness of the extrapolative and regressive expectation rule, 

measured by past realized profits, and parameter 𝑏𝑏 > 0 denotes the speculators’ intensity of 

choice. Past realized profits of the extrapolative rule are given by 𝑈𝑈𝑡𝑡𝐶𝐶 =  (𝑋𝑋𝑡𝑡 − (1 + 𝑟𝑟)𝑋𝑋𝑡𝑡−1)𝐷𝐷𝑡𝑡−1
𝐶𝐶  

and depend on the realized excess return per share of the risky asset over the risk-free asset, i.e. 

(𝑋𝑋𝑡𝑡 − (1 + 𝑟𝑟)𝑋𝑋𝑡𝑡−1), and the demand for the risky asset suggested by this rule, i.e. 𝐷𝐷𝑡𝑡−1𝐶𝐶 =

(𝐸𝐸𝑡𝑡−1𝐶𝐶 [𝑋𝑋𝑡𝑡] − (1 + 𝑟𝑟)𝑋𝑋𝑡𝑡−1)/𝑐𝑐 with 𝑐𝑐 > 0. Similarly, past realized profits of the regressive rule result 

in 𝑈𝑈𝑡𝑡𝐹𝐹 =  (𝑋𝑋𝑡𝑡 − (1 + 𝑟𝑟)𝑋𝑋𝑡𝑡−1) 𝐷𝐷𝑡𝑡−1𝐹𝐹 − 𝑑𝑑, where 𝐷𝐷𝑡𝑡−1𝐹𝐹 = (𝐸𝐸𝑡𝑡−1𝐹𝐹 [𝑋𝑋𝑡𝑡] − (1 + 𝑟𝑟)𝑋𝑋𝑡𝑡−1)/𝑐𝑐 represents the 

demand according to the regressive rule and 𝑑𝑑 ≥ 0 reflects a possible per period cost associated 

with forming regressive expectations. 

Figure 9 contains two scenarios for which the model by Brock and Hommes (1998) 

generates a bimodal distributed distortion (since the model is formulated in deviations from the 
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fundamental value, distortion is measured by the distance between prices and fundamental 

values). The top left panel of Figure 9 depicts a simulation run with 2,000 observations for 

𝑎𝑎 = 1.2, 𝑏𝑏 = 2.5, 𝑐𝑐 = 1, 𝑑𝑑 = 1, 𝑟𝑟 = 0.1 and 𝜎𝜎 = 0.05. This parameter setting implies that the 

deterministic skeleton of the model possesses two locally stable steady states, one located in the 

bull market region and the other located in the bear market region. Due to exogenous shocks, 

erratic switches between bull and bear market dynamics emerge.23 The top right panel of Figure 9 

reveals that the associated distribution of the distortion is bimodal. The bottom left panel of 

Figure 9 contains the development of 𝑋𝑋𝑡𝑡 for 800 time steps, assuming that 𝑎𝑎 = 1.2, 𝑏𝑏 = 3.6, 𝑐𝑐 = 1, 

𝑑𝑑 = 1, 𝑟𝑟 = 0.105 and 𝜎𝜎 = 0.01. In the absence of exogenous shocks, this parameter setting gives 

rise to two locally stable limit cycles. One limit cycle implies fluctuations above the fundamental 

value while the other limit cycle implies fluctuations below the fundamental value. In the 

presence of exogenous shocks, the dynamics switches between the two (noisy) attractors. As can 

be seen from the bottom right panel of Figure 9, these forces yield a bimodal distributed 

distortion. 

*** Figure 9 about here *** 
 

7 Conclusions 

Shiller (2015) makes it clear that stock markets are prone to bubbles and crashes but, fortunately, 

track their fundamental values in the long run. In this paper, we define a stock market’s distortion 

as the log difference between its price level and its fundamental value. One question arising in 

this context, then, is what the distribution of a stock market’s distortion might look like. Having a 

                                                           
23 Recall that such an explanation is also offered by Zeeman (1974) and Lux (1995). The difference between the 

three models is that they imply different adjustment speeds towards the bull and bear market steady states. While the 

adjustment in the model by Zeeman (1974) is very fast (instantaneous), the adjustment in the model by Brock and 

Hommes (1998) is rather slow. The dynamics of the Lux (1995) model is somewhere in between. 
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standard linear time series model in mind, most economists would presumably predict that the 

distribution of a stock market’s distortion is unimodal (and bell-shaped). The key empirical 

message of our paper is thus of a rather puzzling nature: we show that the distribution of the S&P 

500’s distortion is bimodal, i.e. the S&P 500 spends relatively more time in bull and bear markets 

than in the vicinity of its fundamental value. The main theoretical insight offered by our paper is 

that we are able to resolve this puzzle. Agent-based financial market models, such as the ones by 

Gaunersdorfer and Hommes (2007) and Franke and Westerhoff (2012), explain the dynamics of 

stock markets by nonlinear interactions of speculators relying on technical and fundamental 

prediction rules. Close to the fundamental value, stock markets are dominated by the 

destabilizing trading behavior of chartists and, consequently, stock prices are quickly pushed 

away from fundamental values. As bull or bear markets become more pronounced, however, 

speculators place more weight on fundamental analysis. Given that the mean reversion pressure 

exercised by fundamentalists is rather weak, it takes a while for a stock market’s distortion to 

normalize again. We consider it worth mentioning that the bimodality of the distribution of the 

S&P 500’s distortion confirms an implicit prediction of a number of agent-based financial market 

models, including the seminal contributions by Zeeman (1974), Day and Huang (1990), Chiarella 

(1992), de Grauwe et al. (1993), Lux (1995) and Brock and Hommes (1998). 

We conclude our paper by briefly pointing out three avenues for future research. First, our 

empirical analysis rests on Shiller’s (2015) unique S&P 500 dataset. Of course, it would be 

interesting to extend our study to other speculative markets. Besides stock markets, one may also 

consider foreign exchange markets, commodity markets or housing markets. A major challenge 

in this endeavor is that one needs sufficiently long time series. Second, we show that existing 

agent-based financial market models are able to explain the bimodal shape of the distribution of 

the distortion of the S&P 500. Alternatively, one may develop a novel agent-based financial 
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market model to mimic the stylized facts of the S&P 500. The calibration or estimation of such a 

model can then explicitly take into account the properties of the S&P 500’s distortion, e.g. the 

shape of its distribution or the average duration of bull and bear markets. The method of 

simulated moments, applied to estimate the model by Franke and Westerhoff (2012), may be 

quite powerful in this respect. By quantifying the usual stylized facts plus some distortion 

properties, the method of simulated moments also allows us to rank different agent-based 

financial market models in their ability to explain the behavior of the S&P 500.24 Third, our 

theoretical analysis focuses on agent-based financial market models. It seems worthwhile to 

explore whether there are other economic reasons for the distributional properties of the S&P 

500’s distortion. Our contribution poses a first benchmark in this respect. To sum up, we provide 

empirical evidence and theoretical explanations for the puzzling bimodality of the distribution of 

the S&P 500’s distortion and hope that our paper stimulates more work in this exciting research 

direction. 

                                                           
24 As remarked by an anonymous referee, the average duration of bull and bear markets produced by the models by 

Gaunersdorfer and Hommes (2007) and Franke and Westerhoff (2012) seems to be too short. Nevertheless, it is 

interesting to see how well both models replicate crucial properties of the S&P 500’s distortion. One can find out 

which of the two models does a better job in this respect by re-estimating these approaches using the method of 

simulated moments. 
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Figure 1: Properties of the S&P 500. The top left panel shows the evolution of the real S&P 

500 (black line) and its real fundamental value (gray line) between 1871 and 2015. The top right 

panel shows the log difference between these two time series. The bottom left panel shows a 

histogram of the S&P 500’s distortion. The bottom right panel shows the same as the bottom left 

panel, except that the histogram is smoothed. The underlying data and the computation of the 

fundamental value are from Shiller (2015).  
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Figure 2: Properties of the estimated ARMA (2,2) model. The top left panel shows a 

simulation run of the estimated ARMA (2,2) model for a time span of 145 years. The top right 

panel shows a smoothed distribution for this simulation run (black line) along with its asymptotic 

distribution (gray shaded area). The bottom left panel shows the relative frequency of observed 

dips computed from 100,000 simulation runs of the estimated ARMA (2,2) model. The bottom 

right panel shows the corresponding p-values. 
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Figure 3: Properties of the stochastic model by Gaunersdorfer and Hommes. The top left 

panel shows the evolution of the price (black line) and its fundamental value (gray line) for a time 

span of 145 years (to obtain 740,114512 =⋅  monthly observations, every 21st observation out of 

540,361451221 =⋅⋅  daily observations is plotted). The top right panel shows a histogram of the 

distortion of this simulation run. The bottom left panel shows the asymptotic distribution of the 

model’s distortion. The bottom right panel shows the price versus the market share of chartists 

for a shorter time window. Model parameters are taken from Gaunersdorfer and Hommes (2007) 

and reported in Section 4. 
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Figure 4: Properties of the deterministic model by Gaunersdorfer and Hommes. The top left 

panel shows the evolution of the price (black line) and its fundamental value (gray line) for 1,000 

observations. The top right panel shows the corresponding market shares of chartists. The bottom 

left panel shows the asymptotic distribution of the model’s distortion. The bottom right panel 

shows the price versus the market share of chartists. Model parameters are taken from 

Gaunersdorfer and Hommes (2007) and reported in Section 4. 
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Figure 5: Properties of the stochastic model by Franke and Westerhoff. The top left panel 

shows the evolution of the log price (black line) and its log fundamental value (gray line) for a 

time span of 145 years (to obtain 740,114512 =⋅  monthly observations, every 21st observation out 

of 540,361451221 =⋅⋅  daily observations is plotted). The top right panel shows a histogram of the 

distortion of this simulation run. The bottom left panel shows the asymptotic distribution of the 

model’s distortion. The bottom right panel shows the price versus the market share of chartists 

for a shorter time window. Model parameters are taken from Franke and Westerhoff (2012) and 

reported in Section 5. 
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Figure 6: Properties of the models by Zeeman and Day and Huang. The top left panel shows 

the evolution of the log price (black line) and its log fundamental value (gray line) for the model 

by Zeeman (1974). The top right panel shows the corresponding distribution of the distortion. 

The bottom left panel shows the evolution of the price (black line) and its fundamental value 

(gray line) for the model by Day and Huang (1990). The bottom right panel shows the 

corresponding distribution of the distortion. Model parameters are reported in Section 6. 
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Figure 7: Properties of the models by Chiarella and de Grauwe et al. The top left panel 

shows the evolution of the log price (black line) and its log fundamental value (gray line) for the 

model by Chiarella (1992). The top right panel shows the corresponding distribution of the 

distortion. The bottom left panel shows the evolution of the price (black line) and its fundamental 

value (gray line) for the model by de Grauwe et al. (1993). The bottom right panel shows the 

corresponding distribution of the distortion. Model parameters are reported in Section 6. 
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Figure 8: Properties of the model by Lux. The top left panel shows the evolution of the price 

(black line) and its fundamental value (gray line) for a parameter setting in which the 

deterministic model by Lux (1995) possesses locally stable bull and bear market steady states. 

The top right panel shows the corresponding distribution of the distortion. The bottom panels 

show the same except that the parameter setting now gives rise to a limit cycle, subject to some 

exogenous noise. Model parameters are reported in Section 6. 
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Figure 9: Properties of the model by Brock and Hommes. The top left panel shows the 

evolution of the price in deviation from its fundamental value (black line) for a parameter setting 

in which the deterministic model by Brock and Hommes (1998) possesses locally stable bull and 

bear market steady states. The top right panel shows the corresponding distribution of the 

distortion. The bottom panels show the same except that the parameter setting now gives rise to 

two coexisting locally stable limit cycles, subject to some exogenous noise. Model parameters are 

reported in Section 6. 
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