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The evolution of taking roles∗

Florian Herold† and Christoph Kuzmics‡

Abstract

Individuals engage in an ex-ante symmetric situation, in which in
addition to a symmetric equilibrium there are also asymmetric equi-
libria. Individuals can assume one of a finite set of payoff irrelevant
publicly observable labels and can condition their action choice on their
own assumed label as well as the label of their opponent. We study
evolutionary (and neutrally) stable strategies of such games. While
the formal analysis is similar to the analysis of cheap talk games with
evolutionary equilibrium selection, we are here mostly interested in the
social structure that underlies such equilibria. For the class of 2 × 2
games with asymmetric pure strategy equilibria (hawk-dove games) we
find a key distinction between two subclasses. While the best-response
structure is identical for both subclasses, the evolution is quite differ-
ent for hawk-dove games in which if you play dove you would prefer
the opponent to play hawk (we call these anti-coordination games),
and hawk dove games in which you always prefer the opponent to
choose dove (we call them conflict games). Two social structures of
particular interest are a hierarchical structure and an egalitarian struc-
ture. Furthermore, complex social structures composed of simpler sub-
structures can emerge and we characterize their evolutionary stability.
We discuss when they are evolutionary stable and the consequences of
different structures for welfare.
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1 Introduction

Specialization is a hallmark of economic activity. Sometimes to the benefit
of all - the baker needs the farmer to grow the crop and the farmer profits
from the baker specializing in producing bread, cakes, and pastries. Other
specializations - say specializing in theft - may evolve detrimental to other
peoples benefit - but still evolve as equilibrium behavior. While farmers
would prefer nobody specializing in theft, once there are farmers planting
crop, there may be an incentive to specialize in stealing some crop or in other
methods of rent extraction. On the other hand, if there are no farmers and
nobody from which you could extract rents, these specializations become
pointless. We want to investigate the evolution of different roles in such
interactions. Ex ante people are symmetric and could specialize in any task
or role, but the structure of the game is such that mutual best-responses
in pure strategies are asymmetric and there exist several asymmetric pure
strategy equilibria.

We investigate under which circumstances people endogenously evolve
into assuming different roles in situations when they start in symmetric po-
sitions and face a symmetric interaction. The canonical example we consider
is an interaction which has the structure of a symmetric 2×2 game in which
both pure strategy equilibria are asymmetric. The best-responses to the
opponents’ pure strategies are as in the hawk-dove game: The best response
to one pure strategy is the other pure strategy. We are interested in games
where the two players earn different payoffs in the asymmetric equilibria
and the two players therefore prefer different pure strategy equilibrium play.
Consider the base game

H D
H c a
D b d

,

W.l.o.g. we assume a > b (otherwise simply switch the labels H and D).
The key restrictions we impose on our game are b > c and a > d.

This class of games is the canonical example in the evolutionary game
theory literature for a game in which the evolutionary stable strategy in a
one population model is very different from the evolutionary stable strate-
gies in two-population models. In the one-population model both players
playing the game are drawn from the same population and the unique evo-
lutionary stable strategy is the symmetric mixed Nash equilibrium. In the
two population model the mixed Nash equilibrium is not even a neutrally
stable strategy (and thus neither evolutionary stable) and the only evolu-
tionary stable strategies are the two asymmetric equilibria. The cause for
this drastic difference in results is that in the one population model players
cannot make their play contingent on their player-position and thus it is
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essentially impossible to play an asymmetric mixed strategy profile. When
we move from the one population model to the two population model we do
however not only allow players to play contingent on their position, but we
also assume that evolutionary competition occurs only within the popula-
tion of each player-positions separately. We want to consider a framework
in which players have different labels which do not affect payoffs directly yet
allow matched players with different labels to play asymmetrically. Evolu-
tionary competition however is still evaluated across the entire population.
Thus, not only actions conditional on labels evolve, but also the distribution
of labels itself. More precisely we consider neutrally stable strategies (NSS)
and evolutionary stable strategies (ESS) of the meta-game in which players
can choose their label and an action that can condition on the opponent’s
label or type.1

An important observation (Lemma 2) for all further results is that in
any NSS matched players with different labels must anti-coordinate, while
players must play the mixed Nash-equilibrium when matched with their own
label.2 To develop a better intuition for the coming results one can imagine
that for the exiting labels a social-structure develops that specifies for each
combination of different labels which of the two asymmetric Nash equilibria
is the convention. Given such a social structure, labels that do earn lower
payoffs become less frequent over time. Hence in a NSS of the meta-game
all labels in the supports of the NSS must earn the same payoff given this
distribution of labels and given a social structure consistent with Lemma 2.

For a situation with two potential labels only, there is - up to a permu-
tation in labels - only one social structure that is consistent with Lemma 2.
A ’top’ label will play H against the other ’bottom’ label. A key distinction
emerges from the evolutionary analysis between two (sub)classes. While all
symmetric base-games we consider have the same best-response structure, it
is interesting to note that these two classes of games are economically quite
different games. We call the first sub-class the class of conflict games. In
a game of conflict you always prefer the opponent to play the dove strat-
egy D, independently of your own choice of action.3 We call the second
sub-class anti-coordination games. In anti-coordination games a player who
did commit to playing action D would actually prefer the opponent to play
action H. Thus, this class of games corresponds rather to a game of spe-
cialization in which, for instance, the two players act in a team and success

1Note that types play a somewhat different role here compared to the literature on the
evolution of preferences under observability in which a type implies some subjective pref-
erences and therefore certain strategic behavior (compare e.g. Dekel, Ely, and Yilankaya
(2007) and Herold and Kuzmics (2009)). Here choosing a type does not constrain the
strategies you may choose.

2The result that players with different roles must anti-coordinate is already present in
Selten (1980), but he keeps these roles exogenous.

3The interaction in a conflict game corresponds e.g. to the Hawk-Dove game described
in Maynard Smith (1982) in which the reward is equally shared if both animals retreat.
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requires two different skills. One skill is more attractive to acquire than
the other, but given you acquired one particular skill, you prefer that your
partner has acquired the complementary skill necessary for joint success.
We name such interactions “anti-coordination games”. It turns out that
in conflict games only the top label can be in the support of an NSS and
despite the existence of the two labels we are essentially back to the result
of the one-population model without labels. For anti-coordination games,
in contrast, both labels are present in the support of the unique NSS, but
bottom types in a lower proportion than top types. Thus the inefficiency is
reduced, but some inefficiency remains in the NSS.

For more then two labels Lemma 2 is consistent with several social struc-
tures: For instance one might have a structure in which labels have a tran-
sitive order and higher labels play H against lower labels. We call this a
hierarchical structure. Yet, also some circular structures are possible, which
for an odd number of labels can lead to egalitarian outcomes (and for an
even number of labels to outcomes approximately egalitarian). For a specific
anti-coordination game Hurkens and Schlag (2002) showed this already and
they conjecture that their result extends to other anti-coordination games.
We briefly confirm this conjecture, after we provide general characterizations
of ESS and NSS in our general setup.

Then we focus our analysis on games of conflict. First, in games of
conflict no hierarchical structure can form an NSS with more than one label
in its support. Second another interesting distinction emerges. In conflict
games in which the payoff d (if both players play dove) is below the average
payoff the two players obtain in the asymmetric equilibrium, an egalitarian
types structure forms an ESS.

For a large number of labels complex social structures composed of stable
substructures can be evolutionary stable and we provide a characterization of
when such group substructures are stable. Finally, we summarize some key
results contingent on the parameter d and discuss the welfare implications.
It turns out that in our setting an egalitarian social structure is good for
a society - even from an efficiency point of view. Intuitively, an egalitarian
social structure makes all roles in society equally attractive and thus helps
to avoid situations where too many players choose the more attractive roles
in society.4

1.1 Related Literature

The hawk-dove games was one of the first games analyzed in in evolutionary
game theory starting with the seminal work by Maynard Smith and Price
(1973) and Maynard Smith (1982). Selten (1980) already discusses explicitly

4Results in this spirit have been established for repeated symmetric games by Bhaskar
(2000) and Kuzmics, Palfrey, and Rogers (2014), where the promise of an egalitarian
continuation play induces efficient randomization in early rounds of play.
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that if there is some asymmetry between the opponents or if they have
different roles, only the asymmetric pure strategy equilibria are evolutionary
stable. While in Selten (1980) these different roles are given exogenously,
we are interested here in their endogenous evolution.

The most closely related literature are evolutionary papers on cheap talk
games. We can redefine payoff irrelevant labels as cheap talk messages and
search for the NSS or ESS of these games. An early paper that discusses an
anti-coordination game with a specific type of cheap talk messages is Farrell
(1987). He allows only for a specific type of communication corresponding
to our hierarchical structure in anti-coordination games and analyzes the
corresponding Nash equilibria. Most of this related cheap talk literature,
such as Robson (1990), Wärneryd (1993), Sobel (1993), Blume, Kim, and
Sobel (1993), Schlag (1993), Schlag (1995), Kim and Sobel (1995), Bhaskar
(1998), Banerjee and Weibull (2000), Hurkens and Schlag (2002), focus on
coordination games and in how far cheap talk will - or will not help to se-
lect against in-efficient equilibria. Most closely related formal setup to our
work is Hurkens and Schlag (2002) and Banerjee and Weibull (2000). While
both papers focus on coordination games, the work by Hurkens and Schlag
(2002) has also a section on a task allocation game which falls in our sub-
class of anti-coordination games. For this task-allocation game they find
necessary conditions for ESS corresponding to our conditions (a),(b) and(d)
in Lemma 3. Our lemma adds to their necessary condition by providing a
full characterization of ESS. In their proofs of the lowest and highest payoffs
in ESS they also use constructions corresponding to what we call hierarchical
type structure and respectively egalitarian or approximate egalitarian type
structure. They also conjecture that that these results extend to a larger
class of anti-coordination games. We briefly conform this conjecture. More
importantly we analyze all 2 × 2 games with the best response structure
of hawk-dove games and find the key distinction between anti-coordination
games and conflict games not discussed in the literature before. Thus, from
the perspective of the cheap talk literature, we complete the analysis of the
class of all 2× 2 games. We think another perspective is perhaps even more
important: We endogenize the evolution of roles. While Selten’s argument
that different roles lead to asymmetric pure strategy equilibria is confirmed,
it is a subtle question how likely different labels meet in equilibrium for a
large number of potential labels. For hierarchical type structures the top la-
bel often dominates other types or is played more often than would required
by efficiency. Only for more subtle circular type structures opponents are
likely to have different labels in the evolving equilibrium. The emerging
stable social structures (or type structure) are interesting in their own right.
One interesting conclusion is that an egalitarian social structure can enhance
efficiency relative to a hierarchical social structure, because in an hierarchi-
cal structure too many players want to have the top label which prevents
anti-coordination.
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We come back to the relation to Farrell (1987), Banerjee and Weibull
(2000), and Hurkens and Schlag (2002) and discuss it in more detail in
Section 4 after we derived our results.

2 Model

This paper studies a special class of symmetric two-player two-strategy
games with a pre-game cheap-talk phase. We call the two by two game
the base game and the base game plus the cheap-talk phase the meta
game as in Banerjee and Weibull (2000).

2.1 The Base Game

The base game is a symmetric 2x2 game given by the payoff matrix

H D
H c a
D b d

,

with the following restrictions.5 W.l.o.g. we assume that all payoffs are non-
negative, i.e. a, b, c, d ≥ 0 (one could always add a constant to all payoffs
without affecting the incentives in the game). W.l.o.g. we assume a > b (if
not we would simply switch labels H and D).

The key restrictions we impose on our game are b > c and a > d. These
last two restrictions imply that the best response to H is D and to D is H.
This means we rule out dominant strategy games and coordination games
and this is all we rule out.6 We shall call the class of games as described
above (general 2× 2) hawk-dove games.

The results in this paper will differ crucially for two (disjoint and jointly
exhaustive) subclasses of the class of hawk-dove games. The crucial dis-
tinction is how b compares to d. When b ≤ d a player always prefers the
opponent to play the dove strategy D, independently of her own choice of
action. We shall call such games conflict games. In contrast, when b > d
then a player who did commit to playing action D would actually prefer the
opponent to play action H. We call such games anti-coordination games.

5Throughout the paper we ignore the possibilities of payoff-ties. Generically there are
no payoff-ties and this simplifies the exposition without affecting the main message.

6Symmetric 2x2 games are typically classified by the best responses into four categories:
two classes of dominant strategy games (efficient dominant strategy games and prisoners
dilemma games), coordination games, and hawk-dove (also chicken) games (Compare e.g.
Weibull (1995) or Eshel, Samuelson, and Shaked (1998). Dominant strategy games are
of no interest for our purpose. In such games in our model evolution will always lead
to everyone playing the dominant action. Players may send messages but they will not
impact play. Coordination games are of interest in our context, but have already been
subjected to a thorough analysis in Banerjee and Weibull (2000) and Hurkens and Schlag
(2002), among others.
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The following lemma collects a few immediate and mostly well-known facts
about this class of games, which are later useful for the further analysis of
the meta game.

Lemma 1. A hawk-dove game (with parameters a, b, c, d satisfying a > b > c
and a > d) has the following properties.

1. There are exactly two pure strategy Nash equilibria. These are asym-
metric. One player plays H and the other D.

2. The game has a unique symmetric equilibrium which is in mixed strate-
gies with probability x∗ placed on H, where x∗ = a−d

a−d+b−c
.

3. The expected payoff (to both players) in the symmetric (mixed strategy)
equilibrium is given by u∗ = ab−cd

a−d+b−c
.

4. The payoff in the symmetric equilibrium, u∗, is lower than b, the low
payoff in the asymmetric equilibria, if and only if d < b (i.e. if and
only if the game is an anti-coordination game).

5. There exists a strategy limiting the opponent’s expected payoff to min{u∗, b}.
In anti-coordination games this is achieved by playing x∗, in conflict
games by playing x = 1 (hawk).

6. Keeping the parameters a, b, c fixed the mixed equilibrium payoff u∗

is strictly increasing in the parameter d, with limd→−∞ u∗ = c and
limd→a u

∗ = a.

7. Keeping a, b, c fixed, there is a unique cutoff value d̄ ∈ (a+b
2 , a) for

which u∗(d̄) = a+b
2 , specifically d̄ = a2+b2−c(a+b)

a+b−2c .
The payoff in the symmetric equilibrium u∗ is higher than the average
of the two payoffs in an asymmetric equilibrium 1

2(a + b) if and only
if d > d̄.

Points 1-3 of this Lemma are commonly known and their proofs omit-
ted. The remaining points are not usually emphasized. Their straightfor-
ward proofs are given in Appendix A.1. In particular Point 4 will turn out
important for the further evolutionary analysis of the meta game.

2.2 The Meta Game

Let G = (A, u) be any two player hawk-dove game (with a > b > c and
a > d), the base game. Before players play the base game they can freely,
i.e. without cost, adopt one of finitely many (commonly observable) roles
or types (or can send one of finitely many commonly distinguishable mes-
sages). The finite set of types (roles, messages) is given by type space Θ.
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Types are, therefore, payoff-irrelevant, but perfectly observable and play-
ers can condition their play on the opponents type θ′ ∈ Θ. The formal
setup is, thus, almost identical with that of Banerjee and Weibull (2000)
and Hurkens and Schlag (2002), except that we study the entire class of
hawk-dove base-games and focus on the resulting social-structures, while
their focus is to study equilibrium selection in coordination games and in an
anti-coordination game.7

Let F = {f : Θ → A} the (finite) set of action-functions. Then f(θ′)
provides the action that a player chooses against an opponent of type θ′.

Define S = Θ×F as the (finite) set of pure strategies of the meta game.
Correspondingly, let ∆(S) be the set of mixed strategies of the meta game
and u the properly expanded payoff function. Thus Γ = (S, u) defines the
finite meta-game.

A mixed strategy σ ∈ ∆(S) thus induces both a probability distribution
over adopted types as well as, for each adopted type, a probability distribu-
tion over actions. For the purpose of stating (and proving) our results it is
useful to have formal expressions of these distributions.

We define σ(θ) ≡
∑

f∈F σ(θ, f), the marginal probability of a player, us-
ing mixed strategy σ ∈ ∆(S), adopting type θ ∈ Θ. Furthermore we denote
the (conditional) probability that a player of type θ, given strategy σ ∈ ∆(S)

plays H against an opponent of type θ′ by xθ(θ
′) =

∑

f∈F,f(θ′)=H
σ(θ,f)

σ(θ) .8

Note that any σ ∈ ∆(S) uniquely determines σ(θ) for every θ ∈ Θ and
xθ(θ

′) for all θ, θ′ ∈ Θ. The converse is not generally true.9 However, in
order to compute the expected payoff u(σ, σ̃) which a player with strategy
σ obtains against an opponent with strategy σ̃ it is sufficient to know σ(θ)

7There is one formal, but non-substantive, difference between the way we define pure
strategies in the meta-game and the way this is done in Banerjee and Weibull (2000).
They allow players to condition on both their opponent’s as well as their own type. We
prefer to reduce the number of strategies, without losing anything, by allowing players to
condition only on their opponent’s type. We thus, follow Schlag (1993), Schlag (1995) and
Hurkens and Schlag (2002), in this respect. For a discussion of this issue see pages 11-12 in
Banerjee and Weibull (2000). One advantage of using this reduced form approach is that
it makes more clear when a failure of evolutionary but not neutral stability is simply due
to a large number of equivalent strategies or due to a more fundamental problem intrinsic
to the game under analysis.

8We should perhaps indicate the dependence of xθ(θ
′) on σ by writing xσ

θ (θ
′). The

context should be sufficient for clarity. We shall, for instance, have σ and σ′ and then
correspondingly xθ(θ

′) and x′
θ(θ

′).
9Consider for instance a meta game with Θ = {T, B} and the corresponding set of

action functions F = {fHH , fHD, fDH , fDD}, where faT ,aB
is the action function with

f(T ) = aT and f(B) = aB for aT , aB ∈ {H,D}. Then the two strategies σ = 1

2
(T, fHH)+

1

2
(T, fDD) and σ̃ = 1

2
(T, fHD) + 1

2
(T, fDH) which are different from each other but lead

to the same σ(θ) = σ̃(θ) for every θ ∈ Θ and xθ(θ
′) = x̃θ(θ

′) for all θ, θ′ ∈ Θ.
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and σ̃(θ) for every θ ∈ Θ and xθ(θ
′) and x̃θ(θ

′) for all θ, θ′ ∈ Θ:

u(σ, σ̃) =
∑

θ,θ′∈Θ σ(θ)σ̃(θ′)
[

xθ
(

θ′
)

x̃θ′ (θ) c

+xθ
(

θ′
)

(1− x̃θ′ (θ)) a

+
(

1− xθ
(

θ′
))

x̃θ′ (θ) b

+
(

1− xθ
(

θ′
))

(1− x̃θ′ (θ)) d
]

We thus call two strategies σ ∈ ∆(S) and σ̂ ∈ ∆(S) equivalent if
σ(θ) = σ̂(θ) for all θ ∈ Θ and xθ(θ

′) = x̂θ(θ
′) for all θ, θ′ ∈ Θ. We can

now define the corresponding equivalent classes. It will however turn out
that all strategies that satisfy some necessary conditions for neutral stability
or evolutionary stability are unique in their equivalent class and we do not
further need to worry about this issue for our results.

2.3 The Solution Concept

We can now use standard concepts such as Evolutionary Stable Strategy
(ESS) and Neutrally Stable Strategy (NSS) from evolutionary game theory
and apply them to our meta game.10 One way to define these concepts is as
follows.

Definition 1. A strategy of the meta game σ ∈ ∆(S) is a neutrally stable
strategy (NSS) if and only if the following two conditions hold:

u(σ, σ) ≥ u(σ′, σ) ∀σ′ ∈ ∆(S)(1)

u(σ, σ) = u(σ′, σ) ⇒ u(σ, σ′) ≥ u(σ′, σ′) ∀σ′ 6= σ.(2)

Strategy σ ∈ ∆(S) is an evolutionary stable strategy (ESS) if and only
if the same two conditions hold and the last inequality is strict.

We shall refer to condition (1) as the first order condition or FOC and
condition (2) as the second order condition or SOC. Note that any ESS is
also an NSS.

3 Results

3.1 Preliminaries

Lemma 2. For any neutrally stable strategy (NSS) σ ∈ ∆(S) of the meta
game of any hawk-dove base game the following necessary conditions must
hold:

(a) For all θ ∈ Θ with σ(θ) > 0: xθ(θ) = x∗.

10See e.g. Chapter 2 of Weibull (1995) for a textbook treatment of these definitions and
concepts.
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(b) For all θ, θ′ ∈ Θ with σ(θ) > 0 and σ(θ′) > 0:
xθ(θ

′) = 1− xθ′(θ) ∈ {0, 1}.

In other words in any neutrally stable strategy (and therefore also in
any evolutionary stable strategy) of the meta game every two different types
which are chosen with positive probability must anti-coordinate on {H,D}
or {D,H} when matched against each other. When matched with their own
type the mixed symmetric equilibrium of the base game must be played.

The detailed proof of Lemma 2 is given in Appendix A.2. The result,
however, is in some sense well known. We know fromMaynard Smith (1982),
see e.g. (Weibull 1995, pp.40-41) for a textbook treatment that in the single
population case (i.e. here, whenever two individuals of the same type meet)
the only evolutionary stable outcome is the symmetric mixed equilibrium.
We known from Selten (1980) that in the multiple population model (i.e.
here, whenever two individuals of different types meet) the only evolutionary
stable outcome must be a strict, and, hence, pure and possibly asymmetric
equilibrium. The proof of Lemma 2 follows essentially the arguments of the
two mentioned results given the language of our model.

Note that Lemma 2 is silent about the distribution over types in Θ in
an NSS. Understanding this is where the contribution of this paper lies and
this is what we investigate in the next three (sub)sections.

These necessary conditions for NSS must also be necessary conditions for
ESS, of course. For a specific anti-coordination game (task allocation game)
Hurkens and Schlag (2002) provided corresponding necessary conditions for
evolutionary stability and showed that in any ESS all labels must be played
with positive probability (refer to their Lemma 2(ii)). Adding an additional
condition (which holds for all anti-coordination games and some but not all
conflict games) we can provide a nice characterization of ESS:

Lemma 3. Let |Θ| ≥ 2. A strategy σ ∈ ∆(S) of the meta game of any
hawk-dove base game is an ESS if and only if the following five conditions
are all satisfied.

(a) For all θ ∈ Θ: xθ(θ) = x∗.

(b) For all θ, θ′ ∈ Θ:
xθ(θ

′) = 1− xθ′(θ) ∈ {0, 1}.

(c) For all θ ∈ Θ: σ(θ) > 0 (all labels are played with positive probability).

(d) All strategies in the support of σ earn the same payoff: u(s, σ) =
u(σ, σ) ∀s ∈ Supp(σ).

(e) a+b
2 > d.

In contrast to ESS, neutrally stable strategies do not necessarily play ev-
ery label with positive probability. Yet, if all labels are played with positive
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probability, then the next lemma provides a very similar characterization
for all such NSS with full label-support:

Lemma 4. Let |Θ| ≥ 2 and σ(θ) > 0, for all θ ∈ Θ (all labels are played
with positive probability). Then the following conditions are necessary and
jointly sufficient to establish that the strategy σ ∈ ∆(S) of the meta game of
any hawk-dove base game is a neutrally stable strategy (NSS):

(a) For all θ ∈ Θ: xθ(θ) = x∗.

(b) For all θ, θ′ ∈ Θ: xθ(θ
′) = 1− xθ′(θ) ∈ {0, 1}.

(c) All strategies in the support of σ earn the same payoff: u(s, σ) =
u(σ, σ) ∀s ∈ Supp(σ).

(d) a+b
2 ≥ d.

Note that Lemma 4 is mute about strategies σ′ for which there is a θ ∈ Θ
such that σ′(θ) = 0: these may - or may not - be an NSS. The next lemma
gives a necessary condition for NSS in case we do not have full label-support.

Lemma 5. Let σ be a strategy of the meta game of any hawk-dove base
game. For such σ let ΘS denote the set of labels θ ∈ Θ with σ(θ) > 0 and
let ΘM denote the set of labels θ′ ∈ Θ with σ(θ′) = 0. Let furthermore σ|ΘS

denote the strategy σ restricted to the set of labels ΘS.
A necessary condition for σ to be an NSS of the meta game with set of

labels Θ is that σ|ΘS is an NSS of the meta game with the same hawk-dove
base game with the set of labels ΘS.

We can also provide a sufficient condition for NSS without full label
support, by extending any full label support equilibrium from a smaller set
of labels ΘS, with 2 ≤ |ΘS | < |Θ|, to the entire set of labels Θ.

Lemma 6. Let σ|ΘS be a NSS of the meta game of a hawk-dove base game
with full label support on the set of labels ΘS, with |ΘS | ≥ 2. Then for any
Θ ⊃ ΘS there exists a strategy σ that is an NSS of the meta game with the
same hawk-dove base game with σ(θ) = 0 for all θ /∈ ΘS, σ(θ) = σ|ΘS(θ)
for all θ ∈ ΘS and identical xθ(θ

′) for all θ, θ′ ∈ ΘS.

In contrast to the cheap talk literature our focus is more on the social
structure, or type structure, that develops in the meta game. It is therefore
useful to imagine a two-speed dynamics: In the short run the distribution
of labels is given. A fast learning dynamics leads to behavior consistent
with Conditions (a) and (b) of Lemma 2: Players play the mixed base-game
equilibrium against their own label and, when two different labels meet,
there is a clear convention who plays H and who plays D. This is what we
call a pre-stable type structure.
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Definition 2. Consider a meta game with a hawk-dove base game and a set
of labels Θ. Given a meta-game strategy σ ∈ ∆(S), we call the induced type
behavior x with xθ(θ

′) ∈ ∆(A) the behavior of type θ when meeting type θ′

as defined in Section 2.2, the induced type structure.

• A pre-stable type structure is a type structure satisfying the fol-
lowing conditions:

(a) For all θ ∈ Θ: xθ(θ) = x∗.

(b) For all θ, θ′ ∈ Θ: xθ(θ
′) = 1− xθ′(θ) ∈ {0, 1}.

• The induced type game of a pre-stable type structure is a 2-player
normal-form game with |Θ| × |Θ| payoff-matrix T defined by Tθθ ≡ u∗

for all θ ∈ |Θ| and for all θ′ 6= θ: Tθθ′ = a if xθ(θ
′) = 1 and Tθθ′ = b

if xθ(θ
′) = 0.

For any given pre-stable type structure we can now investigate how the
composition of labels evolves (imagine at a slow speed) in the corresponding
reduced form “type game”. First, we investigate which distribution of labels
leads to an Nash-equilibrium in this type game. Then it is straightforward
to check whether the corresponding strategies are stable in the meta game.
The relationship is summarized in the following lemma:

Lemma 7. Consider the meta game of any hawk-dove base game with finite
set of types Θ, with |Θ| ≥ 2.

(a) There exists an evolutionary stable strategy (ESS) σ ∈ ∆(S) of the
meta game with a certain type structure, if and only if the type struc-
ture is pre-stable, the corresponding type game has a full support Nash-
equilbrium, and a+b

2 > d.11

(b) There exists a neutrally stable strategy (NSS) σ ∈ ∆(S) of the meta
game with a certain type structure and σ(θ) > 0 for all θ ∈ Θ, if and
only if the type structure is pre-stable, the corresponding type game has
a full support Nash-equilbrium, and a+b

2 ≥ d.

The proof follows immediately from Lemmata 3 and 4.
Note furthermore, that if σ is an ESS of the meta game, then it must be

the unique ESS with this type structure. To see this note that if σ is an ESS

11Within the type game the ESS condition is only a+b
2

> u∗. Yet, for stability in the
meta game, we need the more restrictive condition a+b

2
> d: there are hawk dove base-

games with a+b
2

< d < d̄ for which egalitarian structures (defined later) form no NSS,
for example a = 3, b = 1, c = 0, and d = 2.2. Then a+b

2
= 2, d̄ = 2, 5, x∗ = 4

9
, and

σ = 1

27
(4, 4, 4, 5, 5, 5) (where we restrict σ to the mixtures of pure best responses, and

write first the 3 optimal pure strategies playing H against its own label, and then the
three optimal pure strategies playing D against its own label). Then, e.g., the mutant
strategy µ = 1

27
(4, 4, 4, 8, 2, 5) violates the SOC of NSS (and thus also for ESS).
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of the meta game, then the corresponding strategy must also be an ESS of
the corresponding type game. In the type game it is a full support ESS and
must therefore be unique.12 But then no other strategy of the meta game
with the same type game can form an ESS.

To check whether there exist NSS of the meta game a certain pre-stable
type structure without full label support, it is still useful to look at Nash
equilibria the type game (without full support), yet we need to check that
all best responses in the meta game, do perform weakly worse against them-
selves than the NSS strategy against this mutant strategy.

3.2 The meta game with two types

This section considers the special case when only two types (or roles) are
available. This case is relatively simple to analyze and, yet, already demon-
strates a key insight of this paper, which is then generalized in Section 3.3.

Proposition 1. Let Θ = {T,B} and consider the meta game Γ with base
game given by a hawk-dove game (with a > b > c and a > d).

(a) If b ≤ d, i.e. the base game is a conflict game, then σ ∈ ∆(S) is a
neutrally stable strategy if and only if there is a θ ∈ Θ with the property
that σ(θ) = 1, xθ(θ) = x∗, and xθ(θ

′) > x∗ for θ′ 6= θ. Furthermore,
there exists no evolutionary stable strategy.

(b) If b > d, i.e. the base game is an anti-coordination game, then for
σ ∈ ∆(S) to be a neutrally stable strategy it must satisfy σ(θ) > 0 for
both θ ∈ {T,B}. In fact it is an NSS if and - up to a permutation
of labels - only if σ(T ) = σ∗

T , xT (T ) = x∗ = xB(B), xT (B) = 1, and

xB(T ) = 0, where σ∗
T ≡ (a−c)(a−d)

a2+2cd−ad−ac−bd−bc+b2
. These neutrally stable

strategies are also evolutionary stable strategies (ESS).

The proof of Proposition 1 is given in Appendix A.8. A simple sketch
of the proof is as follows. By Lemma 2 we know that in an NSS when
two people of the same type meet they must use the symmetric equilibrium
x∗ and when two people of different types meet they must play one of the
the two asymmetric equilibria.13 All that remains then is to identify the
NSS equilibrium probabilities of adopting types. In essence, we have the
following, and subject to relabelling T and B unique, “type game”.

12See e.g. (Weibull 1995), page 41. Any interior ESS must be unique: Since it has
full support, all strategies are best responses against the ESS strategy. Hence, the SOC
always applies and the ESS strategy must earn more against any other mutant strategy
then the mutant strategy against itself. Hence, none of these other strategies can form an
ESS.

13In this sketch of the proof we ignore that Lemma 2 implies this behavior only for
positive probability types. The proper proof in Appendix A.8 is more careful.
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T B
T u∗ a
B b u∗

This game has a dominant “strategy” T if and only if u∗, the payoff in
the mixed strategy equilibrium of the underlying base game, exceeds b, and
u∗ exceeds b if and only if the underlying base game is an conflict game by
Lemma 1.4. This implies that if the underlying base game is an conflict
game any neutrally stable strategy must put probability weight on a single
type, here T . Thus, in conflict games we do not expect two subpopulations
of types to emerge and we do expect the symmetric (and mixed strategy)
equilibrium of the base game to be played in all encounters.

On the other hand, if the base game is an anti-coordination game, again
by Lemma 1.4, u∗ < b, and the “type game” is again in the class of hawk-dove
games, in fact, it is another anti-coordination game. Here, we do expect, in
any NSS of the meta game, that two subpopulations evolve.

3.3 The meta game with any finite number of types

In this section we consider an arbitrary finite type space Θ.
The following definitions prove useful for our further analysis.

Definition 3. Consider a meta-game strategy σ ∈ ∆(S) and an induced
pre-stable type structure with xθ(θ) = x∗ for all θ ∈ Θ.

• If there is an order of types ≻ such that xθ(θ
′) = 1 (plays H) if θ ≻ θ′

and xθ(θ
′) = 0 (plays D) if θ′ ≻ θ, then x is called a hierarchical

type structure.

• Suppose |Θ| is odd. If xθ(θ
′) = 1 (plays H) for exactly half of all types

θ′ 6= θ and xθ(θ
′) = 0 (plays D) for the other half of all types θ′ 6= θ,

then x is called an egalitarian type structure.14

• Suppose |Θ| ≥ 4 is even, i.e. there is a natural number k > 1 such that
|Θ| = 2k. If for exactly k types xθ(θ

′) = 1 (plays H) for exactly half
of all types θ′ 6= θ and xθ(θ

′) = 0 (plays D) for the other k − 1 of all
types θ′ 6= θ, and if for the remaining k types xθ(θ

′) = 1 (plays H) for
exactly k− 1 of all types θ′ 6= θ and xθ(θ

′) = 0 (plays D) for the other
k of all types θ′ 6= θ (and if the resulting type game has a full support
Nash-equilibrium), then x is called a approximate egalitarian type
structure.15

14If |Θ| is even, then an exactly egalitarian type structure is obviously impossible. Yet,
one can define an close to egalitarian structure in which half the types play exactly one
more time H than D and the other half one more time D then H. The results would be
very similar to the results we obtain for odd numbers of types, but would complicate the
arguments and notation.

15The assumption of a full support Nash-equilibrium of the type game is probably
already implied, but we still need to prove that.
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Note that these definitions are not empty, meaning that we can indeed
construct a strategy σ ∈ ∆(S) with a hierarchical type structure and we can
also construct one with an egalitarian type-structure, provided the number
of types in Θ is odd.16 If the number of types in Θ is even we can also
construct a strategy σ ∈ ∆(S) with a close to egalitarian type structure.17

As an example consider the case Θ = {T,M,B}, i.e. |Θ| = 3. The
hierarchical and egalitarian, respectively, type structures can be represented
in terms of the induced “type game” given by the following two matrices.

T M B
T u∗ a a
M b u∗ a
B b b u∗

T M B
T u∗ a b
M b u∗ a
B a b u∗

hierarchical egalitarian

For the hierarchical type structure type T is the “top type” and plays
hawk (H) against all other types. Type M is the middle type, who plays
dove (D) against type T and hawk (H) against type B. Type B is the
bottom type, who plays dove (D) against all other types.

In the egalitarian type structure all types play hawk (H) against one
other type and dove (D) against the remaining other type. Thus, they are
all in equal or “egalitarian” positions.

The next two lemmata investigate the stability properties of hierarchical
and egalitarian type structures in our two classes of games, games of anti-
coordination and conflict games.

Proposition 2. Let |Θ| ≥ 2.

(a) There exists an ESS of the meta game with an hierarchical type struc-
ture if and only if the base game is an anti-coordination game, i.e.
b > d. This ESS is the unique symmetric equilibrium with hierarchical
type structure.

(b) There exists an NSS of the meta game with an hierarchical type struc-
ture for all hawk-dove base-games. For anti-coordination games this
NSS is the unique ESS with hierarchical type structure with full label

16There exist several ways to visualize an egalitarian type structure. For instance, one
could arrange types in Θ on a circle such that each type θ plays hawk (H) against the
(n− 1)/2 types located clockwise from θ and plays dove (D) against all other types.

17One construction can again be visualized by arranging Types in Θ on a circle such
that the first k of the 2k types θ plays hawk (H) against the k types located clockwise
from θ and plays dove (D) against the other types. Each type θ′ from the remaining
k + 1 to 2k types plays hawk (H) against the k − 1 types located clockwise from θ′ and
dove (D) against the others. It only remains to check that this type structure has a
full support equilibrium. In one of their proofs Hurkens and Schlag (2002) use already a
similar construction to the one used in this footnote.
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support from above. For conflict games this hierarchical NSS has only
strategies in its the support that play exclusively the top-label.

For conflict games the unique symmetric Nash-equilibrium of the hierar-
chical type game puts all weight on the top-label strategy. The correspond-
ing strategy cannot be an ESS of the meta game but is still a NSS.

Proposition 3. Let n ≡ |Θ| ≥ 3 be an odd number. There exists a strategy
of the meta-game of any hawk-dove base-game that induces an egalitarian
type structure and has full label support. In this egalitarian equilibrium each
strategy receives an average payoff of

(3) vn ≡
u∗

n
+

n− 1

n

a+ b

2
.

• If d < a+b
2 then such a strategy inducing an egalitarian type structure

forms an ESS (and thus also an NSS) of the meta game.

• If d > a+b
2 then such a strategy inducing an egalitarian type structure

is not a NSS (and thus also not an ESS) of the meta game.

The proofs of Proposition 2 and 3 are relegated to Appendices A.9 and
A.10. They both follow the same steps. First, we compute the unique
symmetric full type support equilibrium (if it exists). Evolutionary stability
- or instability - then follows from Lemma 3.

Note that, the egalitarian equilibrium payoff vn lies strictly between u∗

and a+b
2 . It approximates a+b

2 as n gets large - from below if u∗ < a+b
2 .

In case of a base game with u∗ > a+b
2 , vn approaches a+b

2 from above, but

note that by Lemma 1, part 7, we know that in this case d > d̄ > a+b
2 and

hence, by Lemma 4, this full label support egalitarian equilibrium cannot
be a NSS.

Proposition 4. Let n ≡ |Θ| ≥ 4 be an even number. If d < b (i.e. anti-
coordination base game), then there exists a strategy of the meta-game of any
hawk-dove base-game that induces an approximate egalitarian type structure
and has full label support.

For conflict games and for |Θ| = 4 and for |Θ| = 6 we can show that the
meta game has no ESS. We do not yet know if this is true for all even |Θ|.

3.4 The meta game with 4 types

Next consider the case |Θ| = 4. With four types there is again the hierar-
chical structure. Since the number of types is odd, there is no egalitarian
structure, but there is a circular structure that is approximate egalitarian.
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L1 L2 L3 L4

L1 u∗ a a a
L2 b u∗ a a
L3 b b u∗ a
L4 b b b u∗

L1 L2 L3 L4

L1 u∗ a a b
L2 b u∗ a a
L3 b b u∗ a
L4 a b b u∗

hierarchical approximate egalitarian

It will turn out to be useful to consider a further reduces form type
game in which some labels are summarized in sub-groups which are treated
equally by all other labels. For instance:

G12 L3 L4

G12 h2 a a
L3 b u∗ a
L4 b b u∗

L1 G23 L4

L1 u∗ a b
G23 b h2 a
L4 a b u∗

hierarchical approximate egalitarian

For both type structure, full label support equilibria exist only for anti-
coordination games, but not for conflict games.

Furthermore, for |Θ| ≥ 4 there are also structures with a partial hierarchy
among some intra-egalitarian groups. Consider the case |Θ| = 4:

L1 L2 L3 L4

L1 u∗ a a a
L2 b u∗ a b
L3 b b u∗ a
L4 b a b u∗

L1 L2 L3 L4

L1 u∗ a b a
L2 b u∗ a a
L3 a b u∗ a
L4 b b b u∗

Top label and egalitarian-group Egalitarian-group - bottom label

Considering in the first type-game the types L1-L3 as one egalitarian
group GT , and in the second type-game the types L2-L4 a further reduction
of the type-structures is given by

T GB

T u∗ a
GB b v3

GT B
GT v3 a
B b u∗

Top label and egalitarian-group Egalitarian-group - bottom label

Analogous pre-stable type structures with a hierarchy between a single
type and an egalitarian group of k ≡ |Θ| − 1 labels exist, of course, for any
even number of labels |Θ| and lead to the correspondingly further reduced
type-structure:
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T GB

T u∗ a
GB b vk

GT B
GT vk a
B b u∗

Top label and egalitarian-group Egalitarian-group - bottom label

Remember that vk ∈ [u∗, a+b
2 ] or [a+b

2 , u∗]. In conflict games with u∗ ≥ b
it follows for all k ≥ 3 that vk > b. Hence, the top-label (or the labels of
the top egalitarian group in the second reduced type-game) dominates the
labels of the bottom egalitarian group (or the bottom label, respectively).
In equilibrium all probability weight must therefore be on the top-label, or,
respectively, on the labels of the top egalitarian group. In anti-coordination
games with u∗ < b in the first game there is a full label-support equilibrium
with a top label and an egalitarian group at the bottom of the hierarchy.
In the second game it depends: For sufficiently small k the expected payoff
within the egalitarian group vk is still smaller than b and there is a full
-label-support equilibrium, yet there must be a k̄ such that for all k ≥ k̄
the payoff vk ≥ b, the payoff of the top-group dominates the payoff of the
bottom label payoff and the bottom label cannot be played in equilibrium.

3.5 Group sub-structures

These arguments can be generalized for more hierarchies among groups with
different sub-structures.

Definition 4. Group sub-structures:

(a) A pre-stable type structure has a group sub-structure if the set of
labels Θ can be partitioned into non-empty sets Θ1, ...,ΘM with M <
|Θ| such that for all i, j ∈ {1, . . . ,M} holds xθi(θj) = xθ′i(θ

′
j) for all

θi, θ
′
i ∈ Θi and θj , θ

′
j ∈ Θj.

(b) A pre-stable structure has a hierarchy among groups if Θ can be
partitioned into two nonempty sets ΘT and ΘB such that xθ(θ

′) = 1
for all θ ∈ ΘT and θ′ ∈ ΘB.

(c) In a pre-stable type structure a label θT is called a top label if xθT (θ) =
1 for all θ ∈ Θ \ {θT } and a top label within subgroup Θg if
xθT (θ) = 1 for all θ ∈ Θg \ {θT }.

(c) In a pre-stable type structure a label θB is called a bottom label
if xθB(θ) = 0 for all θ ∈ Θ \ {θB} and a bottom label within
subgroup Θg if xθB (θ) = 0 for all θ ∈ Θg \ {θB}.

Consider the type game of a pre-stable structure with a group sub-
structure. A full support strategy in this type game can only be on equilib-
rium if within each group the payoffs are equilibrated. More precisely, for
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any subset of labels Θj ⊂ Θ let for all θ ∈ Θj

(4) σ|Θj
(θ) =

σ(θ)
∑

θ′∈Θj
σ(θ′)

.

Definition 5. Consider the type game of a pre-stable structure with set of
labels Θ and with a group sub-structure (Θ1, . . . ,ΘM ).

(a) Let for each Θj the sub-group type game GΘj
denote the |Θj| ×

|Θj | game derived from the full type game by eliminating all rows and
all columns for labels θk /∈ Θj .

(b) A full support strategy σ of the type game with full set of labels Θ
is called equilibrated within group Θj if under σ|Θj

every label
θ ∈ Θj obtains exactly the same expected payoff wj in the sub-group
type game GΘj

.

(c) A full support strategy of the type game with full set of labels Θ =
⊎M

j=1Θj is called within sub-group equilibrated if for every Θj

with j ∈ {1, . . . ,M} it is equilibrated within group Θj.

For a strategy of the meta game σ that induces a pre-stable type struc-
ture that is within sub-group equilibrated we can now introduce a fur-
ther reduced inter-group type game that has one pure strategy ϑj, j ∈
{1, . . .M}, for every sub-group and a M ×M payoff matrix with payoff wj

on the diagonal and payoffs a and b as induced by the original type game.
Note further that a strategy σ of the original meta game induces a strategy σ̂
in the inter-group type game via

(5) σ̂(ϑj) =
∑

θ′∈Θj

σ(θ′).

Definition 6. Consider a full label-support strategy of the meta game with
set of labels Θ inducing a type game of a pre-stable structure with a group
sub-structure (Θ1, . . . ,ΘM ), within sub-group equilibrated. The induced full
support strategy σ of the type game with full set of labels Θ is called inter-
group equilibrated if every induced strategy in the inter-group type game
earns the same expected payoff.

Definition 7. A full support strategy σ of the type game induced by a pre-
stable structure is called equilibrated if every pure strategy in the type game
earns the same expected payoff under σ.

Lemma 8. Consider a pre-stable type structure with a group sub-structure
Θ1, ...,ΘM . A full label support strategy σ of the type game with set of types
Θ =

⊎M
j=1Θj is equilibrated if and only if

• it is within sub-group equilibrated, and
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• it is inter-group equilibrated.

Note that a full support strategy σ of the type game is equilibrated
if and only if it is a Nash equilibrium of the type game. Lemma 8, in
conjunction with Lemma 7, gives us therefore a clear picture when when a
full label support NSS or ESS exists for a pre-stable structure with sub-group
structure.

Proposition 5. Consider a conflict base-game. For the corresponding meta
game with |Θ| ≥ 2 no ESS and no full label support NSS can exists with . . .

(a) . . . a top label, or

(b) . . . a bottom label, or

(c) . . . a hierarchy among groups, or

(d) . . . a group sub-structure in which one group with more than one label
has has a top player (within that group), or

(e) . . . a group sub-structure in which one group with more than one label
has has a bottom player(within that group).

3.6 Welfare

Lemma 9. Consider the average payoff in a type game induced by a pre-
stable type structure.

• If u∗ < a+b
2 then the average payoff is maximized by an equal distri-

bution over all labels and minimized by having all weight on one label
only.

• If u∗ > a+b
2 then the average payoff is maximized by a distribution

that has only one type in its support and is minimized by an equal
distribution over all labels.

The next proposition characterizes which NSS and which ESS (if they
exist) are efficient among all possible distributions over pre-stable structures
and which are at least Pareto dominating any other NSS. Note that in our
setting at least one NSS exists always and that a > d̄ > a+b

2 > b is always
guaranteed.

Proposition 6. Welfare properties of NSS and ESS:

(a) If d > d̄: any NSS has only one label in its support and earns the
expected payoff u∗, which is efficient (since u∗ > a+b

2 ). No ESS exists.
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(b) If d̄ > d > a+b
2 : still any NSS has only one label in its support and

earns the expected payoff u∗, but this is now inefficient (since now
u∗ < a+b

2 ) and the lowest payoff in any pre-stable equilibrium. Note

that u∗ ∈ (b, a+b
2 ). No ESS exists.

(c) If a+b
2 > d ≥ b: For |Θ| ≥ 3 several NSS with distinct payoffs exist.

The NSS with only one label in its support give the minimum payoff
among pre-stable equilibria. For odd |Θ| the egalitarian NSS (which is
also ESS) gives the maximum expected payoff. Note that the payoff is
in [u∗, vn] ⊂ [b, a+b

2 ).

(d) If b > d: In these anti-coordination games many ESS and even more
NSS exist. Egalitarian ESS (which exist for odd |Θ|) give the maxi-
mum expected payoff. For even |Θ| approximate egalitarian ESS exist.
Hierarchical ESS also exist and are Pareto dominated by the egalia-
trian or approximate egalitarian ESS.

We conjecture that the hierarchical structure gives the lowest expected
payoff among ESS (i.e. the expected payoff of any ESS is in [hn, vn], with
hn < b, limn→∞hn = b, vn ∈ (u∗, a+b

2 ), and limn→∞ vn = a+b
2 . Furthermore,

we conjecture that a structure with only two labels in its support gives the
lowest expected payoff among NSS.

4 Discussion

4.1 Relation and Contribution to the cheap talk literature

4.1.1 Cluster points in payoff space

Banerjee and Weibull (2000) study NSS of the meta-game when the base
game is a coordination game. Denote by Un the set of ex-ante expected
payoffs in an NSS of the meta-game when the set of types has n elements.
Banerjee and Weibull (2000) show that the union of all these payoffs sets
⋃∞

n=0 Un has a unique cluster point, which is the Pareto efficient Nash equi-
librium payoff.

In contrast, for anti-coordination games, we can show that the set of
possible NSS payoffs has multiple cluster points. For instance, as every
meta-game has a hierarchical NSS by Proposition 2, there is a cluster point
at b (the lower payoff in the asymmetric pure strategy equilibrium of the
base game). This follows immediately from Lemma 11. However, every anti-
coordination meta-game with an odd number of types has also an egalitarian
NSS by Proposition 3, which implies that there is another cluster point at
a+b
2 .

Also, for conflict games with d < a+b
2 we have at least two cluster points.

One cluster point at a+b
2 , by Proposition 3, and a cluster point at u∗ since

we always have a single type NSS in this case.
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4.1.2 Connection with Farrell, 1987

Farrell (1987) was, as far as we know, the first who studied a model in
which there is cheap talk before a game of anti-coordination is played once.
In his model players engage in T ≥ 1 rounds of communication. At each
stage t ≤ T both players simultaneously and independently of each other
send one of two messages, labelled H and D. Farrell (1987) investigates
equilibria of this game, in which play after communication is given by the
following rule. The player who sent message H at the first point in time
at which both players sent different messages (if there is such a time) then
plays action H in the anti-coordination game. The other player the plays
action D. If both players send identical messages in every round, then they
play the symmetric equilibrium x∗.

More formally, let θ = (θt)
T
t=1 be a vector of messages, one message for

each point in time. Let Θ be the set of all such vectors. In our language this
is a set of types. For each pair of types θ, θ′ ∈ Θ let t∗(θ, θ′) = mint{θt 6= θ′t}.
If θt = θ′t for all t let t

∗(θ, θ′) = ∞.
In the language of this paper, Farrell (1987) investigates equilibria of the

meta-game that satisfy

(6) xθ(θ
′) =







x∗ if t∗(θ, θ′) = ∞
1 if t∗(θ, θ′) < ∞ and θt∗(θ,θ′) = H

0 if t∗(θ, θ′) < ∞ and θt∗(θ,θ′) = D

It is straightforward to see that this corresponds to what we here call
the “hierarchical” type structure. We can reproduce Farrell’s (1987) result
by noting that every meta-game with a finite number of types has a (unique
- up to relabelling of types) hierarchical NSS. The ex-ante expected payoff
in this NSS is bounded from above by b (the lower payoff in the asymmetric
pure strategy equilibrium of the anti-coordination game). As T tends to
infinity the payoff in this NSS tends to b and is, thus, even in this limit, far
away from the efficient payoff of a+b

2 . Note that all this requires that the
game is one of anti-coordination.

For conflict game, we know that there is no hierarchical NSS (or even
Nash equilibrium). Imposing the hierarchical structure in these games would
yield the result that every hierarchical NSS places probability 1 on a single
type. We also know now, however, that there are other NSS, based for
instance on the egalitarian structure.

For a final example, to see how the egalitarian structure could be im-
plemented in Farrell’s (1987) model, consider the case T = 2. We then
have four “types” given by (H,H), (H,D), (D,H), (D,D). The egalitarian
structure could then be imposed as follows.
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(H,H) (H,D) (D,H) (D,D)
(H,H) u∗ a b a
(H,D) b u∗ a a
(D,H) a b u∗ a
(D,D) b b b u∗

This type game has an NSS (provided u∗ < a+b
2 ), in which the first three

types are used with probability 1
3 each, while type (D,D) is not used.

4.1.3 Connection with Hurkens and Schlag, 2002

Hurkens and Schlag (2002) consider the effect of cheap talk messages on
equilibrium in coordination games and - more closely related to our paper
- a task allocation game which is a specific anti-coordination game in our
terminology. They also conjecture that their results hold for a class of games
that corresponds to anti-coordination games, a conjecture that our analysis
confirms. Specifically, they are interested in the effect of an option not to
take part in cheap talk communication, which they model as a special cheap
talk message ”stay away from cheap talk” which commits the sender to play
one action of the base game without conditioning on the opponent’s mes-
sage. For coordination games Hurkens and Schlag (2002) find that without
the option to stay away from cheap talk there exists an inefficient evolution-
ary stable strategy, but with the option to stay away from cheap talk, the
set of strategies resulting in the efficient outcome is the unique evolutionary
stable set. Most related to our paper is their analysis of the task allocation
game without the option to stay away (Section 4.1): We originally worked
only with NSS and Lemma 2, until we became aware of the connection to
their results. The necessary conditions for ESS that they established in
their Lemma 2 inspired our characterization of ESS (Lemma 3 in our pa-
per). In their proof of Proposition 3 they construct for their task allocation
game evolutionary stable strategies that correspond to our hierarchical type
structure and to our egalitarian or approximate egalitarian type structure,
respectively. They continue their analysis of the task allocation game by
adding again the option to stay away from communication (Section 4.2) and
show that while (in our terminology) the hierarchical type structure equi-
librium remains evolutionary stable, all evolutionary stable strategies are
bounded away from the efficient outcome (and hence the egalitarian type
structure is not evolutionary stable anymore). While the option to stay
away from pre-play communication seems plausible in the cheap talk con-
text, in our context where players meet automatically and can condition
their play on visible features (labels) of the opponent it seems difficult to
visibly commit not to do so.
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4.2 Adding one more type

Throughout this paper so far, we always focussed on a finite set of possi-
ble types. This means, in particular, for full type support NSS, that there
are no unused types. But then the restriction to a fixed set of types seems
somewhat arbitrary. In this section we discuss the possible ways one can
think about what could happen if one additional “radically new” type sud-
denly appeared. Suppose we have a finite set of types Θ and evolution has
progressed to the point that an NSS of the meta-game has established itself.
Now suppose a, previously unheard of, type θ∗ 6∈ Θ appears.

There are many ways one could think about what could happen next,
but we feel it reasonable to assume that the presence of this new type, now
available to be adopted by individuals, will not upset the type structure of
the incumbent types. Suppose, for instance, the NSS of the original game
(without type θ∗) has a full egalitarian structure. Let us assume that the
introduction of the new type does not change that. Having assumed that
we now have to think about what behavior the old types will display when
they meet the new type and, conversely, what behavior the new type will
display when meeting other types.

One way to think about this is to assume nothing other than evolution
will now lead to some new NSS, in which the old types interact with each
other as before, but any stable behavior between the new and old types can
emerge. If this is our view, then there is an even sharper distinction between
anti-coordination games and conflict games.

In anti-coordination games, the new NSS (with the given restriction)
may possibly look quite different from the old NSS, but we know that any
new NSS must still have at least two types in its support. So the multiplicity
of types is in this sense stable or robust to the introduction of a radically
new type.

This is not true for conflict games (and here it does not matter whether
u∗ < a+b

2 or not). For conflict games the new type evolve to be such that
it plays hawk (H) against all other types and they play dove D against
it. In this case, however, this new type dominates all other types, and the
only NSS with this type structure is the one in which the new type receives
probability weight one. In this sense, the possible multiplicity of types in
conflict games is not stable or robust to the introduction of a radically new
type.

Going back to anti-coordination games, it is interesting to note, that,
while the multiplicity of types is robust, the NSS can nevertheless change
dramatically from before to after the introduction of the new type. To see
this consider the three-type hierarchical structure with one added type X
as given below
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T M B X
T u∗ a a b
M b u∗ a a
B b b u∗ b
X a b a u∗

The type game without type X has a unique NSS, and that NSS has
full type support. The meta game with type X has an egalitarian NSS with
equal support on T,M, and X, while B is not in its support. This is true
for conflict games (provided u∗ < a+b

2 ), but more importantly also for anti-
coordination games as long as 1

3 (u
∗ + a+ b) > b. This is for instance true

when c = d = 0 and b = 1 and a = 3.

5 Conclusion

We investigated the evolution of taking roles in symmetric 2 × 2 games
with asymmetric pure strategy equilibria. We provided a characterization of
evolutionary (and neutrally) stable strategies in the meta game. Depending
on the parameters and the number of payoff-irrelevant labels or roles we
discussed social structures that can emerge as evolutionary (and neutrally)
stable strategies and their welfare implications. Two structures of particular
interest are the egalitarian and hierarchical type structure. The results are
very different for two sub-classes of these base games: conflict games and
anti-coordination games. In situations in which different payoffs can be
sustained by neutrally stable strategies, the payoffs in the egalitarian type
structure Pareto dominate the payoffs of the hierarchical types structure. In
this sense an egalitarian organized social structure can promote efficiency in
our setting.

It remains an interesting question which neutrally (or evolutionary) sta-
ble strategies are likely to emerge if several exist. One way to think about it
is to consider further equilibrium refinement. Hierarchical social structures
seem fairly common and typically a structure that is cognitively easier to
process. If we would assume in addition that players have small cognitive
costs for perceiving different labels as separate, this may influence which
equilibria remain stable and seems an interesting road for further inquiry.
Another way to deal with multiple stable equilibria is to embrace them: It
is in the case of multiple stable equilibria that our theoretical analysis and
recommendations might have an impact by changing from one focal point
equilibrium to a new (and hopefully better) one.18 Thus, economic theorist
might see multiple stable equilibria as a blessing rather than a curse.

18For instance, Roger Myerson pointed out in his lecture at GAMES 2016 that much of
economic activity (such as exchanging goods for a piece of paper called money) might be
best interpreted as a shift from one focal equilibrium to another.
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A Proofs

A.1 Proof of Lemma 1

The payoff u of Player 1 in the base game if he plays hawk with probability
x ∈ [0, 1] and Player 2 plays hawk with probability y ∈ [0, 1] is given by

u(x, y) = xyc+ x(1− y)a+ (1− x)yb+ (1− x)(1− y)d

= d+ y(b− d) + x [a− d− y (a− d+ b− c)] .(7)

If the opponent plays y∗ = a−d
a−d+b−c

then the term in square brackets is zero,

Player 1’s expected payoff is u∗ = d + y∗(b − d) = ab−cd
a−d+b−c

, independently
of his own action. Player 1 is thus willing to mix and (x∗, x∗) is the mixed
equilibrium. If y > a−d

a−d+b−c
, then the term in square brackets is negative and

x = 0 is the unique best response. If y < a−d
a−d+b−c

, then the term in square
brackets is positive and x = 1 is the unique best response. Hence, in addition
to the mixed equilibrium there are exactly two more Nash equilibria: (x =
0, y = 1) and (x = 1, y = 0). This proves the first three points.

To prove point 4 consider the equivalence of the following inequalities.

ab− cd

a− d+ b− c
< b,

⇔ −cd < −bd+ b2 − cb,

⇔ d(b− c) < b(b− c),

⇔ d < b.

Now we prove point 5: For conflict games (b ≤ d) we now from the previous
point that b ≤ u∗ and hence b = min{b, u∗}. The opponent can limit the
payoff of a player to b by playing H (hawk). (Each player can also guarantee
himself a payoff of at least b by playing strategy D. Hence, a player’s minmax
value is indeed b for conflict games.)

For anti-coordination games (b > d) we now from the previous point that
b > u∗ and hence u∗ = min{b, u∗}. The opponent can limit the expected
payoff of a player to u∗ by playing x∗.

To prove point 6 consider the function u∗ : (−∞, a) → R defined by
u∗(d) = ab−cd

a−c+b−d
for fixed parameter values a, b, c. Then the first derivative

of this function is strictly positive:

(u∗ (d))′ =
(−c) (a− d+ b− c)− (ab− cd) (−1)

(a− d+ b− c)2
=

(a− c) (b− c)

(a− d+ b− c)2
> 0.

Hence u∗ is strictly increasing in d. Furthermore,

(8) lim
d→−∞

u∗(d) = lim
d→−∞

ab

a+ b− c− d
− c

1
a+b−c

d
− 1

= 0 + (−c)
1

0− 1
= c,
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and, by continuity of u∗

(9) lim
d→a

u∗(d) = u∗(d = a) =
ab− ca

a− a+ b− c
=

a (b− c)

b− c
= a.

To prove point 7 note that

u∗ =
ab− cd

a− d+ b− c
>

a+ b

2
⇔ 2(ab− cd) > (a+ b)(a− d+ b− c)

⇔ da+ db− 2dc > a2 + b2 − ac− bc

⇔ d >
a2 + b2 − c(a+ b)

a+ b− 2c
.

We, thus, have

(10) d̄ =
a2 + b2 − c (a+ b)

a+ b− 2c
.

Next, we show d̄ ∈ (a+b
2 , a):

d̄ >
a+ b

2
(11)

⇔ a2+b2−c(a+b)
a+b−2c >

a+ b

2
⇔ 2

(

a2 + b2 − ac− bc
)

> (a+ b) (a+ b− 2c)

⇔ 2a2 + 2b2 − 2ac− 2bc > a2 + b2 + 2ab− 2ac− 2bc

⇔ 2a2 + 2b2 − 2ac− 2bc > a2

⇔ a2 + b2 > 2ab

⇔ (a− b)2 > 0.

The last inequality is obviously true, which implies the first inequality.
Furthermore, by assumption we have a > b and b > c which implies

a(b− c) > b(b− c)

⇔ 0 > b2 + ac− cb− ab

⇔ a2 + ab− 2ac > a2 + b2 − ca− cb

⇔ a >
a2 + b2 − c(a+ b)

a+ b− 2c

⇔ a > d̄.

This completes the proof of point 7.
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A.2 Proof of Lemma 2

We need to prove that any σ ∈ ∆(S) that does not satisfy conditions (a)
and (b) is not an NSS. To prove part (a) consider a σ ∈ ∆(S) such that
there is a θ ∈ Θ with σ(θ) > 0 and xθ(θ) > x∗ (the case xθ(θ) < x∗ can be
proven analogously), where x∗ is the symmetric equilibrium probability of
H in the base game (see Lemma 1.2). Now consider a strategy σ′ ∈ ∆(S)
with the property that σ′(θ′) = σ(θ′) for all θ′ ∈ Θ and x′θ′(θ

′′) = xθ′(θ
′′)

for all θ′, θ′′ ∈ Θ such that at least one of θ′, θ′′ is not equal to θ, and
finally xθ(θ) = 0. In words, strategy σ′ mimics strategy σ in all respects
except when adopting type θ and meeting type θ it plays D.19 Strategy σ′

thus generates different payoff than strategy σ against σ only when both
strategies adopt type θ (which happens with positive probability). Then,
however, strategy σ′ describes the unique best response and, thus, generates
a higher payoff than strategy σ does (as σ does not prescribe this best
response in this case). This violates the FOC of neutral stability and proves
part (a).

To prove part (b) consider a strategy σ ∈ ∆(S) such that there are
θ, θ′ ∈ Θ with σ(θ) > 0 and σ(θ′) > 0. A similar argument to the one above
that proves part (a) implies that each of the two types must play a best
response to the other type, otherwise the FOC of neutral stability is violated.
It remains to be shown that the two types playing the symmetric equilibrium
of the base game against each other can not be part of an NSS either. Thus,
suppose xθ(θ

′) = xθ′(θ) = x∗. Then consider strategy σ′ ∈ ∆(S) such that
σ′ mimics σ in all respects except in its prescription for x′θ(θ

′) and x′θ′(θ).
In fact let x′θ(θ

′) = 1 and x′θ′(θ) = 0. It is easy to see that u(σ′, σ) = u(σ, σ)
as the only difference that could occur is when types θ and θ′ are employed
and then, as σ prescribes the mixed strategy equilibrium strategy x∗ both
pure actions of the base game H and D give equally payoff against x∗. Thus
the FOC for neutral stability is satisfied with equality. We then need to
check the SOC and compare u(σ′, σ′) with u(σ, σ′). We find that the follow
inequalities are equivalent

u(σ′, σ′) > u(σ, σ′)

σ(θ)σ(θ′)a+ σ(θ′)σ(θ)b > σ(θ)σ(θ′) (ax∗ + d(1 − x∗)) + σ(θ′)σ(θ) (ax∗ + d(1− x∗))

σ(θ)σ(θ′) [a+ b] > σ(θ)σ(θ′) [(c+ a)x∗ + (b+ d)(1 − x∗)]

a+ b > (c+ a)x∗ + (b+ d)(1 − x∗)

a+ b >
(c+ a)(a− d)

a− d+ b− c
+

(b+ d)(b− c)

a− d+ b− c
a(b− c) + b(a− d) > c(a− d) + d(b− c),

where the final inequality is true for all hawk-dove games as, by assumption,

19It is easy to see that such a strategy exists. It may not be unique. See footnote 9.
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a > d and b > c. Thus, the SOC for neutral stability is not satisfied and we
arrive at a contradiction, proving part (b).

A.3 Proof of Lemma 3

First we prove that Conditions (a)-(d) are necessary for σ being an ESS.
We start by proving that σ can only be an ESS if all labels are played with
positive probability (Condition (c)). Suppose to the contrary that there
exists a label θ̂ ∈ Θ with σ(θ̂) = 0. Then consider the strategy σ′ which is
identical to σ except (potentially) when playing against the label θ̂ (which
does not happen in equilibrium). If playing against an opponent with label
θ̂, strategy σ′ would plays D (dove). Clearly, u(σ′, σ) = u(σ, σ) = u(σ′, σ′) =
u(σ, σ′) and hence σ can only be ESS if it happens to be identical to σ′. But
then the strategy s playing θ̂ with probability one and playing H (hawk)
against all types in the support of σ would obtain a payoff u(s, σ) = a >
u(σ, σ) which contradicts that σ was ESS.

Given Condition (c) has to hold in any ESS the necessity of Condition (a)
and Condition (b) follow immediately from Lemma 2. The necessity of
Condition (d) follows directly from the first order condition of the definition
of an ESS. Otherwise σ could not even form a Nash equilibrium with itself.

Now we start proving that Conditions (a)-(d) are sufficient to establish
that σ is an ESS of the meta game of the hawk dove base game, provided
a+b
2 > d. First note that under conditions (a) and (b) if σ(θ) is specified for

all θ ∈ Θ and xθ(θ
′) ∈ {0, 1} for all θ′ 6= θ ∈ Θ then σ is uniquely determined.

In particular, there is no further equivalent strategy since for any match of
different labels a pure (contingent) strategy is played. Note that there are
2|Θ| pure best responses to any σ that satisfies conditions (a)-(d), and that
these are all in the support of such a σ. (For each label θ ∈ Θ there are two
corresponding pure best replies to σ: Select label θ, play against other types
θ′ 6= θ whatever xθ(θ

′) the strategy σ prescribes, and play against your own
label θ either “H” or “D”.) A symmetric Nash equilibrium (σ, σ) is called
quasi-strict, if σ has all pure best responses to σ in its support.

For a quasi-strict Nash equilibrium (σ, σ), strategy σ is an ESS if and
only if the payoff matrix is negative definite with respect to the support of
σ. (see van Damme (1991), Theorem 9.2.7 and the preceding text on pages
220/221).20

A K ×K payoff matrix M is called negative definite with respect to a
nonempty subset S if and only if
(12)

yTMy < 0 for all y ∈ R
K with y 6= 0,

∑

i

yi = 0, and zi = 0 for i /∈ S.

20Van Damme attributes Theorem 9.2.7 to Haigh (1975) and Abakus (1980). Similar
arguments are used in the proofs of Hurkens and Schlag (2002) and inspired our strategy
of proof.
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Let M be the 2|Θ| × 2|Θ| payoff matrix when we restrict the set of pure
strategies to the pure best responses to σ. Let the first |Θ| pure strategies
be those in which “H” is played against an opponent with the same label,
and strategies from |Θ|+ 1 to 2|Θ| those in which “D” is played against an
opponent with the same label. On the diagonal this matrix M has then first
|Θ| times the entry c and then |Θ| times the entry d. Off the diagonal it has
half of the entries a and half of the entries b, such that Mij +Mji = a + b

for all i 6= j. Hence, for any y ∈ R
2|Θ| with y 6= 0,

∑2|Θ|
i=1 yi = 0 we have

yTMy = c

|Θ|
∑

i=1

y2i + b

2|Θ|
∑

i=|Θ|+1

y2i +
a+ b

2

2|Θ|
∑

i=1

2|Θ|
∑

j=1,j 6=i

yiyj

=

(

c−
a+ b

2

) |Θ|
∑

i=1

y2i +

(

d−
a+ b

2

) 2|Θ|
∑

i=|Θ|+1

y2i ,(13)

where we used
∑

i

∑

j 6=i yiyj =
∑

i yi

(

∑

j 6=i yj

)

=
∑

i yi(−yi) = −
∑

i y
2
i to

obtain the last line. The first term is always negative because of a > b > c.
The second term is negative for a+b

2 > d, which then implies yTMy < 0

for any y ∈ R
2|Θ| with y 6= 0,

∑2|Θ|
i=1 yi = 0. This implies that the payoff

matrix is negative definite with respect to its carrier and together with the
fact that (σ, σ) is quasi-strict, it implies that σ is an ESS.

Finally, we prove that a+b
2 > d is also a necessary condition for ESS. If,

in contrast, a+b
2 ≤ d then we can choose a vector y ∈ R

2|Θ| that has zeros
in the first |Θ| entries and some non-zero entries in the remaining entries.
Then yTMy ≥ 0 and the corresponding σ cannot be an ESS.

A.4 Proof of Lemma 4

First note that under conditions (a) and (b) if σ(θ) is specified for all θ ∈ Θ
and xθ(θ

′) ∈ {0, 1} for all θ′ 6= θ ∈ Θ then σ is uniquely determined. In
particular, there is no further equivalent strategy since for any match of
different labels a pure (contingent) strategy is played. Note that there are
2|Θ| pure best responses to any σ that satisfies conditions (a)-(d), and that
these are all in the support of such a σ. (For each label θ ∈ Θ there are two
corresponding pure best replies to σ: Select label θ, play against other types
θ′ 6= θ whatever xθ(θ

′) the strategy σ prescribes, and play against your own
label θ either “H” or “D”.) A symmetric Nash equilibrium (σ, σ) is called
quasi-strict, if σ has all pure best responses to σ in its support. Hence, if
σ satisfies Conditions (a)-(c), then (σ, σ) is a quasi-strict, symmetric Nash-
equilibrium.

For quasi-strict symmetric Nash-equilibria Theorem 9.2.7 in van Damme
(1991) provides a nice characterization for ESS which we adapt in the next
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lemma to NSS.

Lemma 10. Let (σ, σ) be a quasi-strict Nash equilibrium, i.e. the set of
pure best responses B(σ) corresponds to the support of σ, supp(σ). Define
K ≡ |supp(σ)| = |B(σ)| and let M denote the K ×K matrix corresponding
to the restriction of the full payoff to pure strategies in supp(σ). Then σ is
an NSS if and only if

(14) yTMy ≤ 0 for all y ∈ R
K with

∑

i

yi = 0.

Proof of Lemma 10: Now, we show for quasi-strict (σ, σ), that σ
NSS implies Condition 14. Let σ be the K-dimensional restriction of σ to
the pure strategies in its support. Quasi-strictness of (σ, σ) implies for all
µ ∈ ∆(supp(σ)): µTMσ = σTMσ. Furthermore, since the FOC holds with
equality, the SOC for NSS implies for all µ ∈ ∆(supp(σ)):

µTMµ ≤ σTMµ

⇔ µTMµ− µTMσ + σTMσ ≤ σTMµ

⇔ (µ− σ)T M (µ− σ) ≤ 0.(15)

Now suppose, with the aim to construct a contradiction, that ∃y ∈ R
K

with
∑

i yi = 0 such that

(16) yTMy > 0.

Then we can construct a µ ∈ ∆(supp(σ)) that violates Inequality 15 in
the following way: First, define ǫ ≡ min{(mini σi), (mini(1 − σi))}, and
ymax ≡ maxi |yi| and then set ỹi ≡

ǫ
ymax

yi. Then
∑

i ỹi = 0 and ỹTM ỹ > 0.
If we set µi ≡ ỹi + σi then µi ∈ [0, 1] and

∑

i µi = 1, hence µ ∈ ∆(supp(σ)),

and furthermore (µ− σ)T M (µ− σ) > 0, which contradicts Inequality 15.
Now we show that Condition 15 implies for any σ that forms a quasi-

strict Nash equilibrium against itself, that σ is NSS. First, consider the case
of a mutant strategy µ ∈ ∆(supp(σ)). For any such µ Condition 15 implies
with y ≡ µ− σ

(µ− σ)TM(µ − σ) ≤ 0,

⇒ µTMµ− µTMσ + σTMσ − σTMσ ≤ 0,

⇒ µTMµ ≤ σTMσ,(17)

where we used that µTMσ = σTMσ for µ ∈ ∆(supp(σ)) if (σ, σ) is a quasi-
strict Nash equilibrium. Hence, for µ ∈ ∆(supp(σ)) the FOC for NSS is
satisfied with equality and the SOC is satisfied by Inequality17. In order
to complete the proof that σ is a NSS, note that for any mutant strategy
µ /∈ ∆(supp(σ)) it follows from the assumption that (σ, σ) is a quasi-strict
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Nash-equilibrium, that µTMσ < σTMσ. Hence, the FOC for NSS is strictly
satisfied and the SOC therefore irrelevant. This completes the proof of
Lemma 10.

We now continue with the proof of Lemma 4: M is the 2|Θ|×2|Θ|
payoff matrix when we restrict the set of pure strategies to the pure best
responses to σ. Let the first |Θ| pure strategies be those in which “H” is
played against an opponent with the same label, and strategies from |Θ|+1
to 2|Θ| those in which “D” is played against an opponent with the same
label. On the diagonal this matrix M has then first |Θ| times the entry c
and then |Θ| times the entry d. Off the diagonal it has half of the entries a
and half of the entries b, such that Mij +Mji = a+ b for all i 6= j. Hence,

for any y ∈ R
2|Θ| with

∑2|Θ|
i=1 yi = 0 we have

yTMy = c

|Θ|
∑

i=1

y2i + d

2|Θ|
∑

i=|Θ|+1

y2i +
a+ b

2

2|Θ|
∑

i=1

2|Θ|
∑

j=1,j 6=i

yiyj

=

(

c−
a+ b

2

) |Θ|
∑

i=1

y2i +

(

d−
a+ b

2

) 2|Θ|
∑

i=|Θ|+1

y2i ,(18)

where we used
∑

i

∑

j 6=i yiyj =
∑

i yi

(

∑

j 6=i yj

)

=
∑

i yi(−yi) = −
∑

i y
2
i to

obtain the last line. The first term is always negative because of a > b > c.
The second term is non-positive for a+b

2 ≥ d, which then implies yTMy ≤ 0

for any y ∈ R
2|Θ| with

∑2|Θ|
i=1 yi = 0. Together with the fact that (σ, σ) is

quasi-strict, Lemma 10 implies that σ is an NSS. If, in contrast, a+b
2 < d

then, for |Θ| ≥ 2, we can choose a vector y ∈ R
2|Θ| that has zeros in the

first |Θ| entries and some non-zero entries in the remaining entries. Then
yTMy > 0 and the corresponding σ cannot be an NSS. This completes the
proof of Lemma 4.

A.5 Proof of Lemma 5

Suppose not. Then there exists a mutant strategy µ|ΘS in the restricted
meta game such that violates either the FOC or SOC of NSS in the restricted
meta game. The same strategy extended to the full meta game with full set
of labels Θ must violate the same NSS condition in the meta game, since
all extra labels are played with probability 0 and do not change expected
payoffs. Hence any NSS of the meta game, must also form an NSS in the
meta game restricted to labels in the support of its strategy, which proves
Lemma 5.
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A.6 Proof of Lemma 6

A strategy that supports the NSS in the meta game with the larger set of
labels Θ is a straightforward extension of the full label support NSS strategy
from the meta game with smaller set of labels ΘS by specifying that xθ(θ

′)
corresponds to the strategy of the base game that gives the opponent only his
minmax value: min{u∗, b}. Note that the expected payoff (call it v) of any
strategy in the support of an NSS with |ΘS | ≥ 2 is strictly above this minmax
value: For u∗ 6= b and any θ ∈ ΘS : v ≥ σ(θ)u∗ + (1 − σ(θ))b > min{u∗, b}.
For u∗ = b, no label in the support of a NSS strategy can play always dove
against all other labels in the support (otherwise it is dominated by any
of the other strategies in the support, as these obtain sometimes a > b
and never below b). Hence there is a label θ′ with σ(θ′) > 0 such that
v ≥ σ(θ′)a+ (1− σ(θ′))b > b = min{u∗, b}. This proves Lemma 6.

A.7 Proof of Lemma 7

The proof follows immediately from Lemmata 3 and 4.

A.8 Proof of Proposition 1

We shall prove parts (a) and (b) simultaneously. We first prove that a
strategy σ ∈ ∆(S) with both types in its support cannot be an NSS if the
base game is an conflict game (i.e. if b < d) and that there is an NSS among
these strategies with both types in their support if the base game is an anti-
coordination game (i.e. if b > d) and that it has the properties stated in (b).
Call this statement (1).

We then prove that a strategy σ ∈ ∆(S) with a single type in its support
cannot be an NSS if the base game is an anti-coordination game (i.e. if b > d)
and that there are NSS among these strategies with a single type in their
support if the base game is an conflict game (i.e. if b < d) and that they
have the properties stated in (a). Call this statement (2).

Statements (1) and (2) together are equivalent to Proposition 1 parts (a)
and (b) together, excepts for the statements about ESS. But these follow
directly from the previous lemmata: In part (a), since any ESS has to be
NSS and hast to have full support by Lemma 3, there cannot exist an ESS.
In part (b), since in any anti-coordination game the condition a+b

2 > b > d
is satisfied Lemma 3 shows that the full support NSS strategy must also be
an ESS.
Proof of statement (1):

Consider an NSS strategy σ ∈ ∆(S) such that σ(T ) > 0 and σ(B) > 0.
Then by Lemma 2 we must have xT (T ) = xB(B) = x∗ and, w.l.o.g. xT (B) =
1 and xB(T ) = 0. Now consider strategy σ′ ∈ ∆(S) such that x′θ(θ

′) = xθ(θ
′)

for all θ, θ′ ∈ Θ and σ(T ) = 1. Then u(σ, σ) = σ(T ) (σ(T )u∗ + σ(B)b) +
σ(B) (σ(T )a+ σ(B)u∗), while u(σ′, σ) = σ(T )u∗+σ(B)a. Suppose the base
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game is an conflict game (i.e. b < d). Then by Lemma 1.4 we have u∗ > b.
By assumption a is the highest payoff possible in the base game and we,
thus, have a > u∗. But then u(σ′, σ) > u(σ, σ) violating the FOC of neutral
stability. Thus σ cannot be an NSS.

Suppose now that the base game is an anti-coordination game (i.e. b > d).
Then by Lemma 1.4 we have u∗ < b. This implies that for σ(T ) close to
zero the best response is to adopt type B, while for σ(T ) close to 1, the
best response is to adopt type T . Thus, there must be an equilibrating
σ∗(T ), which is then an NSS by the same argument that the base game
has a (symmetric mixed strategy) NSS. It is easy to verify that σ∗(T ) is as
stated in Part (b) of Proposition 1.
Proof of statement (2):

Consider an NSS strategy σ ∈ ∆(S) such that there is a type θ ∈ Θ with
σ(θ) = 1. Let w.l.o.g. σ(T ) = 1. By Lemma 2 we must have xT (T ) = x∗.

Note first that any σ′ ∈ ∆(S) with σ′(T ) = 1 satisfies u(σ′, σ′) =
u(σ, σ′) = u(σ, σ) and, thus for such σ′ the FOC for neutral stability is
satisfied with equality and the SOC for neutral stability is satisfied with
equality. Note here that the SOC for evolutionary stability is not satisfied,
proving this part of the statement of part (a): a strategy with a single type
in its support cannot be an ESS.

We, thus, need to consider σ′ ∈ ∆(S) such that σ′(B) > 0. By the lin-
earity of the payoff function (in the probabilities) it suffices to then consider
σ′ ∈ ∆(S) such that σ′(B) = 1. The optimal σ′ among those with σ′(B) = 1
must play a best response against xT (B).

Suppose xT (B) < x∗. Then the optimal best response σ′ among those
with σ′(B) = 1 is to play H, i.e. to set x′B(T ) = 1. In this case u(σ′, σ) =
cxT (B)+ a(1− xT (B)), while u(σ, σ) = u∗. Note that u∗ = cx∗ + a(1− x∗).
As a > c by assumption and xT (B) < x∗ we have u(σ′, σ) > u(σ, σ). This is
true for all hawk-dove games (i.e. irrespective of the relationship between b
and d). Thus, σ with xT (B) < x∗ violates the FOC of neutral stability and
cannot be an NSS.

Suppose next that xT (B) > x∗. Then the best response is to play D,
i.e. to set x′B(T ) = 0. In this case u(σ′, σ) = bxT (B) + d(1 − xT (B)), while
u(σ, σ) = u∗. Note that u∗ = bx∗ + d(1 − x∗). Consider the case b > d
(anti-coordination games). As xT (B) > x∗ we then have u(σ′, σ) > u(σ, σ).
Thus for the anti-coordination case σ with xT (B) > x∗ is also not an NSS
(as the FOC is violated). Consider the case b < d. As xT (B) > x we then
have u(σ′, σ) < u(σ, σ). Therefore σ satisfies both FOC and SOC of neutral
stability, and is thus an NSS.

The only remaining case is xT (B) = x∗. Then any σ′ ∈ ∆(S) is a best
response. I.e. we have u(σ′, σ) = u(σ, σ). We, thus, need to check the SOC
for all σ′. As we shall prove that the SOC is not satisfied (irrespective of
how b compares with d) we only need to find one σ′ that satisfies u(σ′, σ′) >
u(σ, σ′). The following σ′ has this property. Let σ′(T ) = σ′(B) = 1

2 and

34



x′T (T ) = x′B(B) = x∗ and x′T (B) = 0 and x′B(T ) = 1. Then u(σ′, σ′) =
1
2u

∗ + 1
4a + 1

4b, while u(σ, σ′) = 1
2u

∗ + 1
2 [x

∗c+ (1− x∗)b]. As a > c by
assumption we, thus, have indeed u(σ′, σ′) > u(σ, σ′). This finishes the
proof.

A.9 Proof of Proposition 2

The following lemma, in conjunction with Lemma 7, immediately proves
part (a) of Proposition 2.

Lemma 11. Let n ≡ |Θ| ≥ 2. There exists a full support Nash equilibrium
(σ∗, σ∗) of the type-game of the (pre-stable) hierarchical type-structure if and
only if the base game is an anti-coordination game (u∗ < b). If the labels
θ1, θ2, . . . , θn are ordered according to the hierarchical structure (with θ1 top
type), then for i ∈ {2, . . . , n}:

σ∗(θi) = σ∗(θi−1)

(

b− u∗

a− u∗

)

= σ∗(θ1)

(

b− u∗

a− u∗

)i−1

=





1−
(

b−u∗

a−u∗

)

1−
(

b−u∗

a−u∗

)n





(

b− u∗

a− u∗

)i−1

,(19)

and each type earning the average payoff

hn ≡ σ∗(θ1)u
∗ + (1− σ∗ (θ1)) a

=





1−
(

b−u∗

a−u∗

)

1−
(

b−u∗

a−u∗

)n



u∗ +





(

b−u∗

a−u∗

)

−
(

b−u∗

a−u∗

)n

1−
(

b−u∗

a−u∗

)n



 a(20)

Equivalently,

hn = σ∗(θn)u
∗ + (1− σ∗ (θn)) b

=





1−
(

b−u∗

a−u∗

)

1−
(

b−u∗

a−u∗

)n





(

b− u∗

a− u∗

)n−1

u∗ +



1−





1−
(

b−u∗

a−u∗

)

1−
(

b−u∗

a−u∗

)n





(

b− u∗

a− u∗

)n−1


 b

=





1−
(

b−u∗

a−u∗

)

1−
(

b−u∗

a−u∗

)n





(

b− u∗

a− u∗

)n−1

u∗ +







1−
(

b−u∗

a−u∗

)n−1

1−
(

b−u∗

a−u∗

)n






b

Note, that (for anti-coordination games) hn < b and limn→∞ hn = b.

Proof of Lemma 11: For convenience let Θ = {1, 2, ..., n} (with type 1
top-type) and for any mixed strategy σ ∈ ∆(S) let αk ≡ σ(k). Let α ∈ ∆(S)
denote the full support symmetric Nash equilibrium. Given α every type k
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(fixing the hierarchical type structure) must yield the same expected pay-
off. The payoff to type k is given by Ak =

∑k−1
l=1 αlb+ αku

∗ +
∑n

l=k+1 αla.
Equating Ak and Ak+1 yields αku

∗ + αk+1a = αkb+ αk+1u
∗. This, in turn

yields
αk+1

αk
= b−u∗

a−u∗ , which must be true for all k ∈ {1, ..., n−1}. This corre-
sponds to the first equality. This is only possible with full support if b > u∗

and hence the base game must be an anti-coordination game. If the game
in hand is one of anti-coordination, this ratio is a number strictly between 0
and 1. The second equality follows by induction and the third equality from

the requirement 1 =
∑n

i=1 αi = α1
∑n

i=1

(

b−u∗

a−u∗

)i−1
= α1

(

1−
(

b−u∗

a−u∗

)n

1− b−u∗

a−u∗

)

,

where the last step follows from the well known equality
∑N

i=0 δ
i = 1−δN+1

1−δ
,

which is easily proved by induction over N . This proves Lemma 11.

To prove part (b) of Proposition 2 note first that for anti-coordination
games part (b) follows directly from part (a) since every ESS is also NSS.
For conflict games the argument in the proof of Lemma 11 shows that any
NSS with hierarchical type structure must have all weight on the top label.
It remains only to be shown that this is indeed an NSS of the meta game:
Any strategy playing any other label with positive probability earns b or less
against the incumbent top-label population while incumbents earn u∗ ≥ b.
In games u∗ > b the mutant earns strictly less in the FOC. In the knife
edge case of a base game with u∗ = b the FOC is satisfied with equality if
dove is played against the top label with certainty, but then the incumbents
earn a against the mutants, while mutants earn strictly less than a against
themselves.

A.10 Proof of Proposition 3

Under an egalitarian type structure each type plays H against half of all
other types and D against the other half. It is easy to see that for odd
|Θ| (then we can find a natural number l such that |Θ| = 2l + 1) there are
such egalitarian pre-stable structures, i.e. it is a well defined structure. We
can, for instance, locate the 2l+ 1 labels on a circle and each label plays H
against the next l labels located clockwise and D against the next l labels
located anti-clockwise.

For convenience let Θ = {1, 2, ..., n}.Let α ∈ ∆(Θ) denote the full sup-
port symmetric Nash equilibrium of the type game given by αk = 1

n
for all

k ∈ {1, ..., n}.
The expected expected payoff of each strategy in the type game against

α is given by:

(21) vn ≡
u∗

n
+

n− 1

n

a+ b

2
.
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It follows immediately from Lemma 7 that for d < a+b
2 the corresponding

strategy of the meta game forms an ESS, and that d < a+b
2 it cannot form

an NSS, q.e.d.

A.11 Proof of Proposition 4

If |Θ| ≥ 4 is an odd number, we can find a natural number l ≥ 2 such that
|Θ| = 2l. For anti-coordination games, we now construct an approximate
egalitarian pre-stable type structure with a full support Nash equilibrium in
the type game. (For their task allocation game Hurkens and Schlag (2002)
have a similar construction in the proof of their Prop. 3). Imagine the
2l labels placed on a circle. Labels i ∈ {1, . . . , l} play H against the l next
labels located clockwise and D against the l−1 labels located anti-clockwise.
Labels i ∈ {l+1, . . . , 2l} playH against the l−1 next labels located clockwise
and D against the l labels located anti-clockwise. This forms an pre-stable
structure if all labels play also x∗ against their own label.

Consider now the corresponding type game. This has a full support
Nash-equilibrium if and only if there is a full support mixed strategy α =
(α1, . . . α2l) ∈ ∆(Θ) in the type game such that all labels earn the same
expected payoff. Hence, the difference between the payoff of any label θi
and the payoff of the clockwise next label θi+1(mod 2l) must be zero:
For 1 ≤ i < l:

(22) αi (u
∗ − b) + αi+1 (a− u∗) + αi+l+1 (b− a) = 0,

for i = l:

(23) αl (u
∗ − b) + αl+1 (a− u∗) = 0,

for l + 1 ≤ i ≤ 2l − 1:

(24) αi (u
∗ − b) + αi+1 (a− u∗) + αi−l (b− a) = 0.

(Together, these equations should also automatically imply for i = 2l:

(25) αl (u
∗ − b) + α1 (a− u∗) + αl (b− a) + αl+1 (b− a) .)

Note first, that for conflict games (u∗ ≥ b) the equation αl (u
∗ − b) +

αl+1 (a− u∗) = 0 has no solution (with αl, αl+1 ≥ 0). For |Θ| = 4 it is
straightforward to show that all approximate egalitarian structures have
the structure above and thus no approximate egalitarian structure can be
part of an ESS of the meta-game in this case.

Now we prove that there is an ESS of the meta-game under the approxi-
mate egalitarian type structure when the base game is an anti-coordination
game. We proceed by first establishing a lemma that provides a necessary
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condition for an arbitrary finite symmetric two player game to have a sym-
metric completely mixed Nash equilibrium.

A few definitions are necessary. For an m×n matrix A let col(A) denote
the set of column vectors of A. For any vector a ∈ IRm let HS(a) denote
the half space induced by a, given by the set of all vectors v ∈ IRm such
that vT a ≤ 0. For an m× n matrix A let HS(A) =

⋃

a∈col(A)HS(a) denote
the union of all half spaces of columns of A. Note that for every element
v ∈ HS(A) there is a a ∈ col(A) such that vT a ≤ 0.

For a symmetric finite two player game with n × n payoff matrix A let
D = D(A) denote A-induced payoff difference matrix given by the n×n− 1
matrix obtained from A as follows. The k-th row of D is the difference
between rows k+1 and k, for k = 1, 2, ..., n−1. Finally denote by D̄ = D̄(A)
the n× n matrix coincides with D for the first n− 1 rows and has the unit
vector (vector of all ones) in row n.

Lemma 12. Consider a finite symmetric two player normal form game with
n×n payoff matrix A. If this game has a symmetric completely mixed Nash
equilibrium then HS(D(A)) = IRn−1, i.e. the union of half-spaces induced by
the set of columns of the payoff difference matrix covers the whole set IRn−1.

Proof: A necessary condition for this game to have a completely mixed
Nash equilibrium is that there is a vector x ∈ IRn with x ≥ 0 (that is each
coordinate satisfies xi ≥ and there is one i such that xi > 0) such that
D̄x = b, where b = (0, 0, ..., 0, 1)T ∈ IRn.

By Farkas’ lemma this implies that there is no v = (v1, v2, ..., vn)
T ∈ IRn

with vT b > 0 such that vT D̄ ≤ 0. Note that the condition vT b > 0 is
satisfied if and only if vn > 0. Let w = w(v) be the vector in IR(n−1) that
consists of the first n−1 coordinates of v. Note that the condition vT D̄ ≤ 0
is satisfied if and only if wTD ≤ vn. This implies that wTD ≤ 0.

Thus a necessary condition for this game to have a completely mixed
Nash equilibrium is that there is no w ∈ IR(n−1) such that wTD ≤ 0. This
implies that for every w ∈ IR(n−1) there is a vector d ∈ col(D) such that
wTd > 0 and, thus, w ∈ HS(D). This implies HS(D) = IR(n−1). QED

Consider the type game with an approximate egalitarian structure as
described as above with an even number of types n = 2k, for any k = 1, 2, ....
The payoff difference matrix D induced by this game is as follows. Column
1 has two non-zero entries, the first in row 1 given by b− u∗, the second in
row k + 1 given by a − b. Column i with 2 ≤ i ≤ k − 1 has three non-zero
entries at row i− 1 given by −(a−u∗), at row i given by b− u∗, and at row
k + i given by a− b. Column k has two non-zero entries at row k − 1 given
by −(a− u∗) and at row k given by b− u∗. Column k+ 1 has two non-zero
entries at row k given by −(a−u∗) and at row k+1 given by b−u∗. Column
i with k+2 ≤ i ≤ 2k− 1 has three non-zero entries at row i− (k+1) given
by a − b, at row i − 1 given by −(a − u∗), and at row i given by b − u∗.
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Finally, column 2k has two-non-zero entries, one at row k− 1 given by a− b
and one at row 2k − 1 given by −(a− u∗).

Let d1 denote the first column of this matrix D. Let d∗ denote the sum
of all columns 2 to n. Let d∗∗ denote the sum of all columns 2 to n except
column k + 1. The three vectors can be summarized as follows

coordinate d1 d∗ d∗∗

1 b− u∗ −(b− u∗) −(b− u∗)
2 0 0 0
...

...
...

...
k − 1 0 0 0
k 0 b− u∗ −(a− b)

k + 1 a− b −(a− u∗) −(a− b)
k + 2 0 0 0

...
...

...
...

2k − 1 0 0 0

Next we show that HS(D) = IR2k−1. To see this note that HS(d1) ∪
HS(d∗) ∪ HS(d∗∗) ⊂ HS(D) given that d∗ and d∗∗ are positive linear com-
binations of columns of D. Next note that there is a positive linear combi-
nation of d∗ and d∗∗, denoted d̂, that equals exactly the negative of d1 (this
requires u∗ < b). We then have that IR2k−1 = HS(d1) ∪HS(d̂) ⊂ HS(D).

We thus have established the necessary condition of Lemma 12 for the
existence of a completely mixed Nash equilibrium in this type game. In fact
we have shown that there is a mixed strategy that if one player uses it the
other is completely indifferent between all strategies.

Next we need to show that this mixed strategy is completely mixed.
Suppose not. Suppose x ≥ 0 and there is a coordinate i such that xi = 0
and nevertheless Dx = 0. Now denote by D̂ the matrix obtained from D by
removing column i and let x̂ be obtained from x by removing coordinate i.
If D̂x̂ = 0 and x ≥ 0 by Farkas’ Lemma we must again have that there is no
w ∈ IR2k−1 such that wTD ≤ 0. First suppose we remove any column i ≥ 2.
Then D̂ has a row with only non-negative entries, denote this row by row
j. Then choosing a vector w such that wj = −1 and all other coordinates
equal to zero, we have wTD ≤ 0, a contradiction. Now suppose we remove
column 1. Then the vector w of all ones is such that wTD ≤ 0.

A.12 There is no ESS when |Θ| = 4 in the conflict case

Suppose the base game is one of conflict with a+b
2 > d > b and |Θ| = 4.

We now show that this meta game has no ESS. By Lemma 3 any ESS must
have full support on all four types. We then show that any candidate ESS
that satisfies properties a and b of Lemma 3, necessarily has a dominated
type, and thus cannot have full support, violating property c of Lemma 3.
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We have to go through a series of cases. First, suppose that there is
one type who plays H against all other types. Then this type dominates
all other types, and we arrive at a contradiction. Second, suppose that
there is one type who plays D against all other types. Then this type is
dominated by all other types, a contradiction. The only case remaining is
such that all types play H against at least one other type and at most two
other types. This pins down a unique type structure (subject to relabeling),
the unique approximate egalitarian structure (subject to relabeling) given
by the following matrix.

L1 L2 L3 L4

L1 u∗ a a b
L2 b u∗ a a
L3 b b u∗ a
L4 a b b u∗

Given d > b and thus u∗ > b, type L3 is dominated by type L2.

A.13 The only two ESS when |Θ| = 5 in the conflict case

Suppose the base game is one of conflict with a+b
2 > d > b and |Θ| = 5.

This game has exactly two ESS. One is the egalitarian one. The other is as
follows.

L1 L2 L3 L4 L5

L1 u∗ b a a a
L2 a u∗ b b b
L3 b a u∗ a b
L4 b a b u∗ a
L5 b a a b u∗

with the types L3, L4, and L5 receiving equal probability weight and the
other two also positive probability weight.

A.14 There is no ESS when |Θ| = 6 in the conflict case

Suppose the base game is one of conflict with a+b
2 > d > b and |Θ| = 6.

We now show that this meta game has no ESS. By Lemma 3 any ESS must
have full support on all six types. We then show that any candidate ESS
that satisfies properties a and b of Lemma 3 either has a dominated type or
has type game equilibrium that does not have full support. In either case
it then follows that the type game cannot have a full support ESS. This is
immediate in the dominated type case and true in the other case by the fact
that a full support ESS is necessarily the unique Nash equilibrium of a game
(see e.g. Weibull (1995, Proposition 2.2)).
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There are a series of cases to go through. First, consider the case that
there is one type who plays H against all other types. Then this type
dominates all other types, and we arrive at a contradiction. Second, suppose
that there is one type who plays D against all other types. Then this type
is dominated by all other types, a contradiction.

Third, consider the case that one type plays H against all but one other
type. Then, if we want to avoid having dominated types, the type game
must have the following substructure.

L1 L2 L3 L4 L5 L6

L1 u∗ b a a a a
L2 a u∗ b b b b
L3 b a u∗

L4 b a u∗

L5 b a u∗

L6 b a u∗

Note that types the four types 3 to 6 are all treated equally by types 1 and
2. They can only differ in how they play against each other. The problem,
thus, reduces to considering these four types only and by the argument above
there is no type structure with four types in which there is no dominated
type.

Fourth, a similar argument can be made when we consider the case that
one type plays D against all but one other type. This also leads to the
existence of a dominated type in much the same way as in the previous
case.

The remaining cases must then all have that every type plays H against
at least two and at most three opponents. Given that the total number of H
plays in the matrix must be 15 we must have exactly three types who play
H against two opponent types and exactly three types who play H against
three opponent types. Let us call the first group the 2H-group and the
latter the 3H-group. There are now, without loss of generality, four cases.
Each group (of three types each) amongst themselves can only be either
egalitarian or hierarchical. Each case leads to a different type structure, all
are approximate egalitarian.

We omit reproducing the four possible type games here. We only describe
the results. If both groups are hierarchical amongst themselves, this leads to
the approximate egalitarian type structure in which types are allocated on
a circle in a specific way (as used in the proof of Proposition 4). This type
game has a dominated type. If the 3H-group is hierarchical and the 2H-
group is egalitarian then any induced type structure has the non-egalitarian
Nash equilibrium with five types in its support as described above. If the
3H-group is egalitarian and the 2H-group is hierarchical then any induced
type structure has the egalitarian Nash equilibrium with five types in its
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support. If both groups are egalitarian then any induced type structure has
the egalitarian Nash equilibrium with three types in its support.

A.15 Proof of Lemma 8

Proof of Lemma 8: Note that the expected payoff of any label θi, i ∈
{1, . . . , |Θ|}, in some group of labels Θj , j ∈ {1, . . . ,M}, can be decom-
posed in the probability of playing against a label in its own group Θj times
the conditional expected payoff wj in that case, and the probability of play-
ing against any label not in the group and the conditional expectation in
that case.

Consider a full support strategy σ of the type game induced by a pre-
stable structure.

Proof of “only if” statement: Suppose there is a group Θj which is not
within equilibrated. Then there are at least two labels which earn a different
expected payoff conditional on playing in that group. But since all labels
outside the group play identically against both labels, this implies that they
also earn different expected payoffs overall and thus the full support strategy
of the full type game cannot be equilibrated. Thus being within sub-group
equilibrated is a necessary condition for σ to be equilibrated. Next we show
that σ can only be equilibrated if it is inter group equilibrated. Suppose
not. Then pick two labels from different groups Θi and Θj . Then both
labels earn different payoffs, contradicting that σ is equilibrated.

Proof of the “if” statement: Suppose the full label support strategy σ
is within sub-group equilibrated and inter-group equilibrated. Then, be-
cause of within-subgroup equilibration every label θiinΘj earns the same
expected payoff as Θj in the inter group type game. Furthermore all Θj,
j ∈ {1, . . . ,M} earn the same expected payoff (since σ is inter-group equi-
librated), all labels earn the same expected payoff and σ is equilibrated,
q.e.d.

A.16 Proof of Proposition 5

(a) Since u∗ ≥ b for conflict games the top label (who plays hawk and
earns the largest possible payoff a against all other labels) is a (at
least weakly) dominant strategy in the type game and would under
full label support earn strictly more than any other strategy of the
type game.

(b) Since u∗ ≥ b for conflict games a bottom label (who plays dove against
all other labels) is weakly dominated by all other strategies and it thus
cannot be part of any full support equilibrium of the type game.

(c) The same argument as (a) now applies to the top group in the inter-
group type game.

42



(d) The same argument as in (a) now applies to the sub-group type game
GΘj

of such a sub-group Θj with a top label.

(e) The same argument as in (b) now applies to the sub-group type game
GΘj

of such a sub-group Θj with a bottom label.

A.17 Proof of Lemma 9

The average payoff in any type game induced by a pre-stable structure is
given by

∑

θ,θ′∈Θ

σ(θ)Tθ,θ′σ(θ
′) = u∗

∑

θ∈Θ

(σ (θ))2 +
a+ b

2

∑

θ 6=θ′

σ(θ)σ(θ′)

= u∗

(

∑

θ∈Θ

(σ (θ))2
)

+
a+ b

2

(

1−

(

∑

θ∈Θ

(σ (θ))2
))

.(26)

Note that
(

∑

θ∈Θ (σ (θ))2
)

∈ [ 1
|Θ|2

, 1], under the constraint
∑

θ∈Θ σ(θ) = 1,

is minimized by σ with σ(θ) = 1
|Θ| for all θ ∈ Θ and is maximized by a σ

with σ(θT ) = 1 for one label θT ∈ Θ and with σ(θ) = 0 for all remaining
labels θ 6= θT . Thus, the average payoff is a weighted average of u∗ and
a+b
2 and is maximized by putting as much weight as possible on the higher

number of the two, q.e.d.

A.18 Proof of Proposition 6

We know from Lemma 3 and Lemma 4 that for d > a+b
2 (i.e. for cases (a)

and (b) no ESS and no NSS with full label support can exist for |Θ| ≥ 2.
Now if any NSS with more than two labels in its support would exist, then,
by Lemma 5 it would also be an NSS in the game restricted to the set of
labels in the support ΘS. But in this restricted meta game it would be a
full support equilibrium, a contradiction.

Part (a) and (b) follow directly from this argument.

(c) Follows directly from Proposition 2, Proposition 3, and Lemma 9.

(d) Follows directly from Proposition 2, Proposition 3, Proposition 4, and
Lemma 9.
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