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Abstract: The Authors present a new approach to the modelling of human driving behaviour,
which describes driving behaviour as the result of an optimization process within the formal
framework of hybrid automata. In contrast to most approaches, the aim is not to construct a
(cognitive) model of a human driver, but to directly model driving behaviour. We assume
human driving to be controlled by the anticipated outcomes of possible behaviours. These
positive and negative outcomes are mapped onto a single theoretical variable - the so called
reinforcement value. Behaviour is assumed to be chosen in such a way that the reinforcement
value is optimized in any given situation. To formalize our models we use hybrid automata,
which allow for both continuous variables and discrete states. The models are evaluated
using simulations of the optimized driving behaviours. A car entering a freeway served as the
scenario to demonstrate our approach. First results yield plausible predictions for car
trajectories and the chronological sequence of speed, depending on the surrounding traffic,
indicating the feasibility of the approach.

1 Introduction

In the domain of driver modelling assumptions aweeeabout the factors controlling driver
behaviour. Among these variables are for examplauaés, personality, experience, driver
state, task demand and situation awareness [ljhdnliterature different types of driver
models can be found. One familiar classificatiothis one of Michon who distinguishes four
basic types of driver behaviour models [2]: tasklgses, trait models, mechanistic/adaptive
control models and motivation/cognitive models. Jédeare organized in a two-way
classification table distinguishing input-outputeflaviour oriented) and internal state
(psychological/motive oriented) firstly and taxononand functional secondly [3]. Driver
behaviour models can further be located on a dimmemanging from specific to unspecific
[2].

Driver models fulfil different purposes, leading amother distinction, e.g. conceptual and
computational models [4]. Conceptual models areelbped in order to understand the
processes involved in driving. Computational modais constructed in order to compute,
simulate and predict individual driving behaviourto rebuild interactions among several
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road users. Driver models are used in researchtasl dor Rapid-Prototyping, reducing the
need of extensive experiments with real subject§][4The dominant paradigm for the
modelling of human driving behaviour is informatiprocessing in the cognitive domain in
the tradition of cognitive architectures (e.g. ACA, 8]). The cognitive approach tries to
model the relevant cognitive processes of a drikeorder to explain and to predict his
driving behaviour in certain situations. There ardarge number of cognitive processes
possibly involved in driving behaviour, for exampberceiving, evaluating, goal-setting,
deciding, etc. [9, 10]. Therefore, many existing deling approaches use cognitive
architectures (e.g. ACT [7, 8]). Because the dpson of dynamic processes is difficult
within these modelling frameworks their applicatippnses considerable problems in the
domain of driver simulation. An alternative approais the use of models for vehicle
guidance that focus on the interaction betweenedrand vehicle and are conceptualized
according to cognitive action theories [11, 12]. this framework driver behaviour is
described as the result of extensive internal ptenand decision processes [13, 14]. These
approaches focus on the specification of proceasdsstructures underlying cognition [15].
The cognitive approach — although intuitively camoing — does not only suffer from heavy
methodological problems (cognitive processes atensically unobservable [8]), but also
leaves open the question whether it is actuallessary to model internal processes in order
to predict behaviour.

In contrast to this approach, we propose a new thogldramework for driving behaviour,
which uses theoretical concepts from BehaviouraycRslogy [16]. In Behavioural
Psychology the focus lies on observing apparentielr and analysing its relations to
situational stimuli. Theories of inner processesrast of primary interest [17, 18].

The core idea is that in a pragmatic setting whatdeded is not diver-model but a model

of human driving — that is, a formal description of how controlebéxternal variables
influence the movement of a car in traffic. Thetfdwat this is mediated by the cognitive
processes (and of course by the physical actidns)iving driver sitting inside the car is not
essential to questions concerning car movementreldre the approach put forward takes
driver and car to be one single agent in a traffienario, rather than modelling the interaction
between them. The theoretical background useddmpthsent approach is an application of
optimization theory and rests on the assumptionhtheman behaviour is gradually adapted to
the environment (this may include physical envirenin as well as social factors or the
behaviour of other organisms) [19-21]. In our mgdek are neither interested in the internal
processes that lead to the observed behaviourijmdnose that mediate the process of
adaptation. Instead, we start with the generalmapsion that driving behaviour is the result of
an optimization process. Thus, the key to modeltinging behaviour is to find out what is
“optimal” in a given situation [22]. How the optimation process is implemented in the
organism is not relevant for our models.
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2 Behavioural approach

To formalize the concept of optimization we introdua theoretical variable which will be
called “reinforcement value” (due to its theoretioaots in operant behaviour theory). This
reinforcement value plays an essential role inmadels and simulations, because we assume
behaviour to be chosen in order to maximize a #teza reinforcement value. The
reinforcement value of a behaviour in a given situmis taken to be a mapping of all
anticipated positive and negative consequencesisfltehaviour onto a single dimension

(Fig. 1).
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Fig 1: Origin of the reinforcement value [ 23]

Thus, in any given situation, all possible behaxsaztan be assigned a reinforcement value by
means of specific evaluative functions.

Behaviour is assumed to be the result of this edmln against positive and negative
outcomes, in the way that in each situation theatbielir with the highest expected
reinforcement value (with regard to a specific tim@rizon and a specific set of possible
behaviours) is chosen. We would like to stress thiat approach — although situated in the
domain of behavioural psychology — does not takeabeur to be determined by external



This paper is a postprint of a paper submitted to and accepted for publication in IET Intelligent Transport Systems
and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at IET
Digital Library

factors alone, but to be the result of the specdinforcement values of a person with respect
to the possible behaviours in a given situationfdet, the notion of reinforcement value
maximization is very similar to the basic idea ofpEcted Utility Theory [24]. In contrast to
Expected Utility Theory, however, the current agmto does not assume driving behaviour to
be the result of a rational decision process. Maeedor reasons of parsimony, we omit the
concepts of expectancies and subjective probaslitivhich results in a slightly different
formalization.

21  Hybrid automata

We use the ‘Theory of Hybrid Automata’ as a forntckground to implement these
assumptions into a quantitative model. Hybrid awtanprovide a helpful framework for our
models, because they allow both for continuousabées as well as discrete states to describe
a system [25]. Within a single state the changearh variable is described by a differential
equation. Between states there are certain critgniah specify the transition from one state
into another. This way it is possible to specifyngie if-then-rules as well as continuous
functions and even their interaction.

To apply this formal framework to the aforementidribeory of optimal behaviour we break
up the timeline into distinct situations and idgnthese with the states of a hybrid automaton.
The driving behaviour in each situation changeginanusly over time — thus we identify the
corresponding variables (namely speed and trajcteith the continuous part of the
automaton. Thus, driving behaviour is describea lwjfferent set of continuous functions of
time in each situation. To incorporate the conacejptreinforcement maximization, these
continuous functions are not specified a priori Imaidelled as unknown functions, which are
to be maximized against a reinforcement value whgbends upon suitably chosen functions
of relevant external variables (e.g. distance beotars, lateral position, steering angle etc.).

2.2  Exemplary scenario

As an exemplary scenario to apply our modellingrapph we take a car entering the
freeway. Merging onto the freeway is a rather caxplriving task, as several factors have to
be considered by the driver. The driver has to ldepspeed according to several factors, e.g.
the road geometry, the speed limit and the cardgHeahas to control the distance to the car
ahead, the lane markings and the end of the aatielerlane, before a lane change can be
conducted he has to find an appropriate gap orfréevay, he has to adjust his driving
speed to the traffic on the motorway, change lamé fanally reach travelling speed [26].
Instead of modelling all these tasks and makingurapsions about the related internal
processes like perception, decision and resporsetis@, and response execution [27] or
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taking into account every variable that might haue influence in the situation, like
personality, experience, task demand, driver saaig situation awareness [1], our model
focuses on observable behaviour, namely traje@ndyspeed of the ego car. Furthermore, as
mentioned before, we model the driver and the saorege unit, omitting intermediate steps
like steering or breaking. As long as these drikehaviours are causally dependent on
external factors, it is not necessary to includarthin the model, since they do not enhance
predictive power. It is important to indicate thad do not doubt that the mentioned variables
and interactions may have an impact on drivinggrerance. However, we want to evaluate
the predictive and explanatory power of a parsimosimodel which is deduced from another
scientific paradigm.

The model is based on the assumption that the rdsitegts at a given velocity and has a
desired travelling speed on the freeway. Movingdhe freeway he tries to minimize forces
due to acceleration or trajectory change (tryingtoid unpleasant jerks, as well as possible
threat associated with sudden car movements)atoast far to the right as possible (resulting
in a tendency to drive on the rightmost lane, whitalso stipulated by the German road
traffic regulations) and, of course, avoid collissowith other vehicles. The minimization of
forces, accomplished by gradual braking and acathey, results in smooth movements. It is
supposed that drivers pursue smooth movementsalbelogical adaptation. Since abrupt
movements are associated with aversive stimulusat&ins like stumbling, running into
something or being hit, they are assumed to besarxeper se. Any departure from smooth
movements are therefore taken to be the resukgificting factors in the environment (e.g.
cars that get into the way of the ideal — that nsogth — trajectory). To formalize our
assumptions we assigned corresponding reinforcenanes to high forces, collisions etc.
The resulting hybrid automaton is depicted in AgNote that the timeline is divided into
three functionally distinct parts — each being alsaed by a circle containing the continuous
functions controlling behaviour in this state. Thet state stands for the time just before it is
possible to enter the freeway. The second staterides the process of filtering into the
traffic. The third state is just an exit-state, @hhcorresponds to the fact that filtering onto the
freeway is now accomplished. In a more elaboratedet) of course, there would have to be
a number of new states describing the task of mgian the freeway — possibly completed by
additional states corresponding to changes in theranment like new cars entering or
overtaking manoeuvres.The states contain a descripf both the ego car and external
factors relevant to driving behaviour. The ego isamssigned a positio(x,y), a current
velocityv, and an angler to the lane. Our model considers the variabhleand a to be
controlled by the driver via the functiofsand g, representing acceleration and steering,
respectively. These two functions are optimizedrf@aximal reinforcement valug. We add
another car to our model, which is driving on tight lane of the freeway — with position
(x5, y,) and velocityw. To transform steering and acceleration behaviotar absolute car
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position the model uses the trigonometric functiang sin(a) and v X cos(a). State
transitions are determined by the position on ta&is, which corresponds to how far the ego
car has proceeded on its way onto the freeway.nide& important part of the model is given
by the two evaluative functions;, andA,, which assign a reinforcement valgeto every
possible steering and acceleration behavioursdoh enomentary state of the ego car. These
functions are formalizations of the aforementiorleeloretical assumptions made about the
effects of certain external variables on the driveuring the process of filtering in the
evaluative function is given by

A
(x—x)2+(y—y2)?+k

Ay = —f(x)® — tan(g(x)*)v? —

The parameterss and A are person specific values which express forcesawe and the
aversiveness of collisions, respectively. Forcesamsumed to be only moderately aversive
when small, but increasingly unpleasant when highie-model this by the use of a power
function withw > 1. To formalize the avoidance of car crashes we theksquared distances
in both dimensions to construct a hyperbolic fumetivithA > 1 contributing to the steepness
of the curve. This results in extremely negativiiga for small distances and values close to
zero for large distances. Because the term undefréiction line must not be zero we add a
constantc, which is to be set to a very small number.

As soon as the ego car has arrived on the freetwvayvaluative function changes to

A, = —T(V — Vges)? + o[min(0, y — bound,) + min(0, bound; — y)] —p Xy

A
= x)?+ (— )2+ k

The collision term is the same as in the previdatesinstead of force aversion, however, we
include the squared deviation from the desired ¢dpgg,, which is weighted by person and
situation specific factor. This parameter stands for the relative importawiceeaching the
desired travelling speed and can be interpretetinas pressure. We further modelled the
tendency to avoid leaving the road by assigningtivesvalues, if the ego car is within the
boundaries of the roalbund, andbound,. These terms are weighted by another parameter,
o, which stands for the threat posed by an accideatto deviations from the road. The last
factor is a general tendency to drive on the rigie corresponding weighting parameper
stands for the threat posed by the German tra#fie, Iwhich demands to drive on the
rightmost lane, whenever possible.
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v X cos(o)
y = v X sin(x)
v=20
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Fig. 2 Model of driver moving onto a freeway with another vehicle already on it

X, y: position,v: velocity, a: angle to freeway directio,, y,: position of car 2w: velocity of car 2fe[0, 2]®: acceleration (optimized),
ge[—0.1,0.1]®: steering (optimized)y: reinforcement value (measuredkat 14.0)
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3 Evaluation of the model

In order to evaluate the basic properties of thelehowe conducted a series of numerical
simulations. For this reason we assigned exemplahyes to the variables specifying the
scenario. The dimensions of the road were givethbse driving lanes, each 5 metres wide
and an acceleration lane of 55 metres length. Témtirgy speed of the ego car was set to
40 km/h and the desired travelling speed was figedl20 km/h (the unit used in the
simulations was actually0 km/h — the reason for this is that dividing velocity by enabled
us to keep the remaining parameters simple, ragulti more comprehensive formulas) . The
velocity of the second car was varied between 7¢hkamd 80 km/h. The person specific
parameters of the evaluative functiohsandA, were estimated within a simplified model
which did not contain other cars on the freeway wast identical to the original model in
every other respect. We used an iterative estimagpimcedure to find estimates which
resulted in a smooth movement from the accelerdéina onto the freeway. To accomplish
the estimation oft without having an car to collide with we set gual too. This seems
reasonable because both parameters representrikeaséicipated consequence: the threat for
death due to either collisions with other carseawving the road. The resulting values were:

* =1 for the force aversion parameter

» 1 =1 for the weighting of reaching desired speed

» p = 5 for the tendency to drive on the rightmost lane

» A1 =0 = 1000 for the avoidance of crashes
The constank was set td.01, representing an arbitrary small number to predénsion by
zero. The resulting evaluative functions are

1000
(x —x2)? + (y —¥2)? +0.01

Ay = —f(x)* —tan(g(x)*)v? —
for state number two and
A, = —(v —12)2 + 1000[min(0,y — 5) + min(0,15 — y)] — 5y

1000
(x —x2)? + (y —¥2)? +0.01

for state number three, respectively.

To test the plausibility of the specified model argered the estimated parameter values into
the complete model (including the other car on fileeway) and observed the resulting
optimal behaviour when another car “gets in the "wdyor reasons of computational
resources we did not calculate the complete sfateesof the automaton but executed monte-
carlo approximations to estimate the expected valtiethe reinforcement value. The
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optimization was accomplished by a genetic algorith

3.1 Resultsof the evaluation process

First results of the simulation show the feasipibf our approach. Depending on the traffic
on the freeway, our model predicts different divmanoeuvres, which are rather complex in
nature. If there are no cars on the freeway, tlwecag “drifts” smoothly to the driving lane. If,
however, there is another car on the lane, thecageither enters the freeway in front of the
other car or slows down and filters in behind tligeo car to overtake it after having entered
the driving lane (see Fig. 2). The behaviour issgmdepending on the speed of the other car
— a car that “gets in the way” of the preferregeittory changes the optimal behaviour in this
situation and thus results in a trajectory that bandescribed as a best alternative to what
would have been done if there had been no othebarbehaviour of the ego car underwent
an abrupt change between= 7.8 andw = 7.9: When the other car travelled at 79 km/h the
ego car stayed slow until it has passed and eattsthe other car. If, however, the other car
travels just a little bit more slowly (78 km/h)etlego car overtakes and enters the freeway in
front of the second car.

(%) HyBS-HD Simulator - strategymd4_1.pha o || =B e

Optimize [-3382.7947] |> C O

| £ HyBS-HD Simulator - strategym4_2.pha (o] ® |[=s.)

Optimize [-3230.684] >

Fig. 2. Two simulation results with differing velocitie$ the other vehicle.
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We took the evaluation a step further by varyingnsoof the person parameters which
determine the driver’s preferred behavior. The aias to explore how changes of preferences
could lead a driver to engage in a risky overtakimgnoeuver in a situation where he would
otherwise have filtered in after the other car passed. Therefore we set the other car’s
velocity to w = 79km/h, resulting in the safer behaviour depicted in kheer panel of
figure 2. We then changed the weighting factor efidtion from the desired travelling speed
from 7 =1 tot = 10, representing a situational change in preferefareekample the event
of taking a look at a watch and noticing that oas to hurry). As one might expect, the ego
car's behavior switched to the risky overtaking oeuwver (resulting in a trajectory very
similar to that of the upper panel of fig.2). Anettparameter we were interested in was the
tendency to drive on the rightmost lane. The qoastie were interested in was whether a
higher tendency to drive on the rightmost lane d@aakult to riskier behavior — although it is
mostly considered to prevent car accidents by erihgrtraffic flow. We therefore doubled
the corresponding parameter £ 10). Indeed, this change resulted in the riskier takaéng
behaviour, as well.

4 Conclusions and outlook

We presented a model of driving behaviour basedassumptions from Behavioural
Psychology. Internal processes are neglected ioufawf a parsimonious behavioural
approach which takes behaviour to be the resutsafbjective optimization process. In order
to formalize this idea, a theoretical variable rffeicement value) is introduced to represent
the evaluation and summation of consequences ailpesdehaviours. We chose the driving
task “merging onto the freeway” as an exemplaryade to apply the model.

At least on a qualitative level, the model genexrg@ti@usible predictions for driving behaviour
in this situation. We would like to stress thahaligh our model predicts qualitatively distinct
manoeuvres, we did not model a decision processhédalid we attempt to model a learning
process. What our model does is to find an optidnaing trajectory for a given situation,
provided a valid evaluation of anticipated conseges. The rationale behind this approach is
that behaviour can be best understood if one siattistheoretical assumptions about how an
organism would behave, if there were no restrigifstam the environment. Formalizing these
theoretical assumptions within a behavioural maoaledws for the deduction of specific
instances of behaviour from the underlying prinesplVariation in behaviour is understood as
the result of external disturbances, which leadeiaations from the optimal behaviour. In the
exemplary scenario given above behaviour is “ogtinwith respect to the specific
preferences (incorporated in the model as reinfoecg values) of a driver. The
reinforcement value of acceleration forces, fornepke, may vary considerably between
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drivers, depending on age, experience or gendess, the model allows for differences in the
behaviour of different drivers and proposes a gsiteple explanation for them. The critical
point of our modelling approach is to determine“ttw@rect” reinforcement values for a given
class of drivers. Whilst in the present model tbeesponding functions are merely plausible
assumptions based on a very general behaviouraitimggis (“high forces are aversive”), it
would be desirable to derive the exact distribigiohthe parameters empirically. This would
also allow for the exploration of different drivirsgyles (e.g. “sportive” vs. “play-it-safe”). A
differential approach to modelling driving behawiauthin the current theoretical framework
arises naturally from the fact that variation innfercement values leads to systematic
variation in driving behaviour. Differences in dgivbehaviour can therefore be incorporated
by letting the reinforcement parameters vary betwvegvers. Although our approach may
seem rather technical, paying little attention teatvhappens “inside” the driver, the principle
of reinforcement maximization does say a lot abth# agent in the car. Since the
reinforcement values in our model reflect (possibtyconscious) driver preferences, they
might as well be interpreted as motivational fasta®hifting the focus away from the
information processing occuring in a driver, thegmsed model presents a way to formalize a
functional approach to driving behaviour. Insteddmmdelling how a person accomplishes
driving, the reinforcement maximization approachegi an account for why people drive the
way they do. This perspective can give new insightthe driving process and provide a
promising ground for the development of advancededrassistance systems that take into
account both external factors and their interactiaiih behavioural preferences. Knowledge
about drivers’ preferred behaviour may as well leagredictions about optimal (that is safe)
road construction As our approach does not onlgwalfor the deduction of qualitative
hypotheses but leads to specific quantitative Hygses that can be compared to empirical
data, it should be possible to derive a more vsilidulation using an adequate experimental
setting.
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