
Porting the xv6 OS to
the Nezha D1 RISC-V Board

Michael Engel
Department of Computer Science

NTNU
https://multicores.org

https://multicores.org

Porting the xv6 OS to the Nezha D1 RISC-V Board 2

Motivation
• Provide a basis for OS teaching and research

• Small and easy to understand for a single student
• Useful in emulation (qemu) as well as on real hardware
• Sufficiently complex to demonstrate important CPU

features
• Protection modes, virtual memory, interrupt handling,

system calls, …
• Enable students to do quantitative analysis on real HW
• Show students the challenges of running bare-metal OS

code on a real hardware system vs. an emulator
• Additional benefit:

• Providing simple example code for other OS porting
projects

Porting the xv6 OS to the Nezha D1 RISC-V Board 3

The xv6 OS
• Small teaching OS
• Developed since summer

2006 for MIT's OS course
• Inspiration: 6th Edition PDP11 Unix (1975)

• Used by Prof. John Lions at UNSW
(Australia) to teach OS engineering

• Lions’ book ("commentary") on the 6th
edition kernel source code [1]

• Problems of using 6th Edition/Lions’ book:
• In 1975: book violated AT&T’s copyrights

• only distributed to Unix licensees
• Finally published in 1996

• Today: (almost) nobody owns a PDP11…

Porting the xv6 OS to the Nezha D1 RISC-V Board 4

xv6 Overview
• Kernel: written in C + some assembler

• Monolithic kernel
• ~5500 lines of C, 330 lines assembler
• Multicore support
• Subset of typical Unix system calls
• No concept of users/permissions

• User land: a few typical Unix utilities
• Support for ELF format binaries
• init, sh, ls, grep, ln, rm, wc, cat, echo
• Very minimal libc implementation

• xv6 is intentionally minimal to enable
students to extend the system functionality

System call Description

int fork() Create a process, return child’s PID.
int exit(int status) Terminate the current process; status reported to wait(). No return.
int wait(int *status) Wait for a child to exit; exit status in *status; returns child PID.
int kill(int pid) Terminate process PID. Returns 0, or -1 for error.
int getpid() Return the current process’s PID.
int sleep(int n) Pause for n clock ticks.
int exec(char *file, char *argv[]) Load a file and execute it with arguments; only returns if error.
char *sbrk(int n) Grow process’s memory by n bytes. Returns start of new memory.
int open(char *file, int flags) Open a file; flags indicate read/write; returns an fd (file descriptor).
int write(int fd, char *buf, int n) Write n bytes from buf to file descriptor fd; returns n.
int read(int fd, char *buf, int n) Read n bytes into buf; returns number read; or 0 if end of file.
int close(int fd) Release open file fd.
int dup(int fd) Return a new file descriptor referring to the same file as fd.
int pipe(int p[]) Create a pipe, put read/write file descriptors in p[0] and p[1].
int chdir(char *dir) Change the current directory.
int mkdir(char *dir) Create a new directory.
int mknod(char *file, int, int) Create a device file.
int fstat(int fd, struct stat *st) Place info about an open file into *st.
int stat(char *file, struct stat *st) Place info about a named file into *st.
int link(char *file1, char *file2) Create another name (file2) for the file file1.
int unlink(char *file) Remove a file.

Figure 1.2: Xv6 system calls. If not otherwise stated, these calls return 0 for no error, and -1 if
there’s an error.

pid = wait((int *) 0);
printf("child %d is done\n", pid);

} else if(pid == 0){
printf("child: exiting\n");
exit(0);

} else {
printf("fork error\n");

}

The exit system call causes the calling process to stop executing and to release resources such as
memory and open files. Exit takes an integer status argument, conventionally 0 to indicate success
and 1 to indicate failure. The wait system call returns the PID of an exited (or killed) child of
the current process and copies the exit status of the child to the address passed to wait; if none of
the caller’s children has exited, wait waits for one to do so. If the caller has no children, wait
immediately returns -1. If the parent doesn’t care about the exit status of a child, it can pass a 0
address to wait.

In the example, the output lines

11

Porting the xv6 OS to the Nezha D1 RISC-V Board 5

Status of xv6
• RV64 version stable and used in many courses
• x86 version working, but no longer maintained
• The xv6 companion book [2] gives many details on the structure

and implementation as well as on RISC-V
• Read it together with the RISC-V specs and RISC-V Reader

• Officially supported platforms:
• x86 (32 bit) in qemu emulator and on real hardware
• RISC-V (64 bit) in qemu

• Unofficial ports: [3]
• Raspberry Pi 1/2 (32 bit ArmV7 BCM2835/2837 SoC)
• RISC-V 32 bit platform in qemu
• Kendryte K210 RISC-V SoC

Porting the xv6 OS to the Nezha D1 RISC-V Board 6

xv6 port to real hardware
Kendryte K210 port
• K210 SoC: Dual Core RV64GC
• 8 MB on-chip SRAM
Advantages
• Widely available, small embedded platform
• Many typical peripherals (i2c, spi, uart…)
• Inexpensive boards available (from $15)
Problems and limitations
• Outdated hardware – privileged spec 1.9.1 (2016)

• e.g. different MMU configuration
• K210 documentation is lacking many details
• xv6 port still has some stability problems

Porting the xv6 OS to the Nezha D1 RISC-V Board 7

Nezha/D1 hardware
• Hardware

• Raspberry Pi form factor
• Allwinner D1 SoC @ 1 GHz
• 0.5 GB, 1 GB or 2 GB DDR3 RAM
• 256 MB NAND Flash
• Separate Wifi+Bluetooth

chip – XRadioTech XR829
• D1 SoC [4]

• Single Core RV64GCV
• HiFi4 DSP
• Display/video engine
• Numerous peripherals

(many similar to Allwinner ARM SoCs)

Porting the xv6 OS to the Nezha D1 RISC-V Board 8

Nezha/D1 CPU
• T-Head XuanTie C906 CPU core [4]

Porting the xv6 OS to the Nezha D1 RISC-V Board 9

Nezha/D1 software
• Standard system boot

• OpenSBI firmware in M-mode
• U-Boot in S-mode

• Tip: stop boot with "S" key!
• Linux

• from NAND flash (TinaLinux) or SD card
• Alternative: bare metal boot via USB-C

• Press FEL button at power-on and use xfel tool
• Bare metal code examples help getting started [5]

Image adapted from https://riscv.org/wp-content/uploads/2019/12/Summit_bootflow.pdf

https://riscv.org/wp-content/uploads/2019/12/Summit_bootflow.pdf

Porting the xv6 OS to the Nezha D1 RISC-V Board 10

xv6 port to Nezha/D1 [6]

• Booting via OpenSBI + U-Boot
• OS kernel is started in Supervisor mode
• xv6 was built to start in Machine mode

• e.g. timer interrupt handling relies on this
• xv6 port to K210 uses OpenSBI + U-Boot

• could also be adapted for the Nezha
• problem: OpenSBI for Nezha not well documented

• Booting bare metal – this is what is implemented
• Use FEL boot loader and xfel tool
• Disadvantage: kernel has to initialize all hardware

• DDR RAM timing calibration
• Clocks and PLLs

Porting the xv6 OS to the Nezha D1 RISC-V Board 11

xv6 development flow
Use xfel to
• init DDR3 timing

xfel ddr ddr3
• load the xv6 kernel

to RAM
xfel write 0x40000000 \
 kernel.bin

• start the xv6 kernel
xfel exec 0x40000000

• Connect to serial console
• screen, minicom, …

• …find bugs, fix them,
compile new kernel,
start again… 😀

DRAM init output

xv6 is running!

Porting the xv6 OS to the Nezha D1 RISC-V Board 12

Challenges of porting to the D1
• Clock/PLL init – adapted from bare metal examples for now
• DRAM init – currently using the DDR3 init code from xfel
• PMP – xv6 patch was required to configure physical memory protection

• This was not emulated in qemu until very recently!
• Effect: kernel hangs when switching to S-mode – hard to debug

• MMU configuration
• C906 MMU requires A (access) and D (dirty) bits set for PT entries
• Otherwise, system will hang after enabling VM by writing to satp CSR

• Interrupt handling: very different from the interrupt model qemu emulates
• Peripheral/Device driver complexity much higher than qemu’s virtio

emulation
• Debugging – printf for now, JTAG would be nice!
• CPU data sheet

• SoC data book: very comprehensive, English
• C906 core data book only in Chinese…

Porting the xv6 OS to the Nezha D1 RISC-V Board 13

Current status of the xv6 port
• xv6 compiles (cross-compilation possible on Linux, macOS,

Windows 10 WSL), boots to a shell and runs stable
• uptime tested > 24 hours

• Supported features:
• Clock/PLL init (from bare metal examples)
• SV39 MMU
• CLINT/PLIC interrupt controllers
• 16550-compatible UART console
• RAM disk containing the root file system

• Unsupported:
• Everything else 🙂 – i.e., most of the peripherals
• xv6 uses neither the Xuantie instruction extensions nor

memory attribute extensions

Porting the xv6 OS to the Nezha D1 RISC-V Board 14

Use in education
• Course in OS engineering:

• Learn about the internals of an OS kernel
• Interaction of hardware and software

• Interrupts, Virtual memory management, DMA, …
• Implement new OS features for xv6

• Recreate some defining features of Unix evolution as well as
some new ideas from research papers

• Low-level programming:
• Assembler and C bare-metal programming for RISC-V
• Linux device driver development
• Nezha was not available in time for the course

• uses Raspberry Pi 4’s for now
• Computer architecture:

• Explore performance evaluation, cache effects, power/energy…

Porting the xv6 OS to the Nezha D1 RISC-V Board 15

Work in progress
• More drivers

• SD card
• future work: Ethernet, video, USB

• Better debugging facilities
• JTAG/openocd

• Porting additional resource-aware operating systems
• Project Oberon [7], Plan 9, Inferno

• Explore hardware/software co-design
• Open source Verilog code for

C906/C910 cores available [8]
• SystemC models for generic

RISC-V CPUs [9]
• useful e.g. to explore new

approaches for virtual memory
management

Project Oberon on RV32

xv6 on SystemC RISC-V model

Porting the xv6 OS to the Nezha D1 RISC-V Board 16

1. John Lions, Lions’ Commentary on UNIX 6th Edition,
Peer to Peer Communications, ISBN: 1-57398-013-7; 1st edition (June 14, 2000).
Online version of Lions’ Commentary: http://www.lemis.com/grog/Documentation/Lions/
Online version of the 6th Edition Unix source code: http://v6.cuzuco.com/

2. Russ Cox, Frans Kaashoek, Robert Morris, xv6: a simple, Unix-like teaching operating system
First RISC-V version: https://github.com/mit-pdos/xv6-riscv-book
Book LaTeX source code: https://github.com/mit-pdos/xv6-riscv-book

3. xv6 ports:
Raspberry Pi 1: https://github.com/zhiyihuang/xv6_rpi_port
Raspberry Pi 2: https://github.com/zhiyihuang/xv6_rpi_port
Kendryte K210: https://github.com/HUST-OS/xv6-k210
RISC-V RV32: https://github.com/michaelengel/xv6-rv32

4. D1 documentation: https://linux-sunxi.org/D1
5. Nezha D1 bare metal examples: https://github.com/bigmagic123/d1-nezha-baremeta
6. xv6 port to the Nezha/D1: https://github.com/michaelengel/xv6-d1
7. Project Oberon port to RISC-V: https://github.com/solbjorg/oberon-riscv
8. T-Head processor core source code (C906, C910, E902, E906): https://github.com/T-head-Semi

C910 processor core paper: https://ieeexplore.ieee.org/document/9138983
9. SystemC RV32/RV64 models:

http://www.informatik.uni-bremen.de/agra/systemc-verification/riscv-vp.html
Paper: http://www.informatik.uni-bremen.de/agra/doc/konf/2018FDL_RISCV_VP.pdf

References

http://www.lemis.com/grog/Documentation/Lions/
http://v6.cuzuco.com/
https://github.com/mit-pdos/xv6-riscv-book
https://github.com/mit-pdos/xv6-riscv-book
https://github.com/zhiyihuang/xv6_rpi_port
https://github.com/zhiyihuang/xv6_rpi_port
https://github.com/HUST-OS/xv6-k210
https://github.com/michaelengel/xv6-rv32
https://linux-sunxi.org/D1
https://github.com/bigmagic123/d1-nezha-baremeta
https://github.com/michaelengel/xv6-d1
https://github.com/solbjorg/oberon-riscv
https://github.com/T-head-Semi
https://ieeexplore.ieee.org/document/9138983
http://www.informatik.uni-bremen.de/agra/systemc-verification/riscv-vp.html
http://www.informatik.uni-bremen.de/agra/doc/konf/2018FDL_RISCV_VP.pdf

