
Thema | Name | Lehrstuhl für Betriebswirtschaftslehre, insb. Innovationsmanagement 1

A RISC-V Experience Report

Michael Engel (michael.engel@uni-bamberg.de)
Practical Computer Science, esp. Systems Programming
(SYSNAP) University of Bamberg, Germany
https://www.uni-bamberg.de/sysnap
Chair of the RISC-V academia & training SIG

Licensed under CC BY-SA 4.0
unless noted otherwise

mailto:michael.engel@uni-bamberg.de
https://www.uni-bamberg.de/sysnap

A RISC-V Experience Report | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 2

The RISC-V ecosystem

New processor architecture developed at UC Berkeley since 2010
• Krste Asanović and grad students Y. Lee and A. Waterman at the Parallel

Computing Lab, headed by David Patterson (one of the RISC inventors)
• Open standards (e.g. TCP/IP) and open source software (e.g. Linux) are

successful in the industry
• Why is the Instruction Set Architecture (ISA) proprietary?
• Patents prevent competing implementations of binary compatible

processors for the x86, ARM and MIPS ISAs
• Plan: aid both academic and industrial users with a new ISA design

• Innovation via competition from designers of open and proprietary
implementations of RISC-V compliant processors

• Shared open core designs: shorter time to market, lower cost from reuse,
fewer errors given many more eyeballs, and transparency that would
make it hard, e.g., for government agencies to add secret trap doors

• Processors becoming affordable for more devices, which helps expand
the Internet of Things (IoTs), which could cost as little as $1

A RISC-V Experience Report | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 3

Why a new ISA?

• Open ISA standards already existed [1,3]
• SPARC V8 – IEEE standard since 1994
• OpenRISC – Open source effort since 2000, 64 bit in 2011

Requirements for a new ISA
• Future-proof due to

• Extensible (base+extension) ISA
• Quad-precision (QP) as well as SP and DP floating point
• 128-bit addressing as well as 32-bit and 64-bit

• Scalable from tiny embedded to large applications
• Optional compact instruction set encoding for memory-

constrained devices, e.g. in IoT applications

 2!

• OpenRISC - This GNU open-source effort started in
2000, with the 64-bit ISA being completed in 2011.

• RISC-V - In 2010, partly inspired by ARM's IP res-
trictions together with the lack of 64-bit addresses
and overall baroqueness of ARM v7, we and our
grad students Andrew Waterman and Yunsup Lee
developed RISC-V6 (pronounced "RISC 5") for our
research and classes, and made it BSD open source.

As it takes years to get the details right—the gestation
period for OpenRISC was 11 years and RISC-V was 4
years—it seems wiser to start with an existing ISA than
to form committees and start from scratch. RISC ISAs
tend to be similar, so any one might be a good candidate.

Given ISAs can live for decades, let’s first project
the future IT landscape to see what features might be
important to help rank the choices. Three platforms will
likely dominate: 1) IoTs – billions of cheap devices with
IP addresses and Internet access; 2) Personal mobile
devices, such as smart phones and tablets today;
3) Warehouse-Scale Computers (WSCs). While we
could have distinct ISAs for each platform, life would be
simpler if we could use a single ISA design everywhere.

This landscape suggests four key requirements:
1. Base-plus-extension ISA.7 To improve efficiency and

to reduce costs, SoCs add custom application-specific
accelerators. To match the needs of SoCs while
maintaining a stable software base, a free, open ISA
should have: i) a small core set of instructions that
compilers and OS’s can depend upon; ii) standard
but optional extensions for common ISA additions to
help customize the SoC to the application; and
iii) space for entirely new opcodes to invoke the
application-specific accelerators.

2. Compact instruction set encoding. Smaller code is
desirable given the cost sensitivity of IoTs and the
resulting desire for smaller memory.

3. Quadruple-precision (QP) as well as SP and DP
floating point. Some applications running in WSCs
today process such large data sets that they already
rely on software libraries for QP arithmetic.

4. 128-bit addressing as well as 32-bit and 64-bit. The
limited memory size of IoTs means 32-bit addressing
will be important for decades to come, while 64-bit
addressing is the de facto standard in anything larger.
Although the WSC industry won’t need 2128 bytes,
it’s plausible that within a decade WSCs might need
more than 264 bytes (16 exabytes) to address all of
their solid-state non-volatile storage. As address size
is the one ISA mistake from which it is hard to
recover8, it’s wise to plan for bigger addresses now.

The table below scores the 3 free open ISAs using these
4 criteria, plus a listing of critical compiler and OS ports.

Address Software
ISA

Ba
se

+
Ex

t
C

om
pa

ct

C
od

e

Q
ua

d
FP

32
-b

it

64
-b

it

12
8-

bi
t

G
C

C

LL
VM

Li
nu

x

Q
EM

U

SPARC V8 ✓ ✓ ✓ ✓ ✓ ✓

OpenRISC ✓ ✓ ✓ ✓ ✓ ✓

RISC-V ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

The Case for RISC-V as the RISC Free, Open ISA
Our community should rally around a single ISA to

test whether a free, open ISA can work. Only RISC-V
meets all four requirements. RISC-V is also 10 to 20
years younger, so we had the chance to learn from and
fix the mistakes of previous RISC ISAs—e.g., SPARC
and OpenRISC have delayed branches—which is why
RISC-V is so simple and clean (see Tables 4 and 5 and
www.riscv.org). In addition to the other ISAs missing
most requirements, a concern is that the 64-bit address
version of SPARC (V9) is proprietary, and that
OpenRISC may have lost momentum.

RISC-V has plenty of momentum. Table 1 lists other
groups designing RISC-V SoCs. Thanks in part to the
highly productive, open-source hardware design system
Chisel9, Berkeley has 8 silicon chips already and more in
progress. Table 2 shows one 64-bit RISC-V core that is
half the area, half the power, and faster than a 32-bit
ARM core with a similar pipeline in the same process.

Although it’s hard to set aside biases, we believe that
RISC-V is the best and safest choice for a free, open
RISC ISA. Thus, we will hold workshops and tutorials10
to expand the RISC-V community and, inspired by
Table 3, plan to start a non-profit foundation to certify
implementations and to maintain and evolve the ISA.
Conclusion

The case is even clearer for an open ISA than for an
open OS, as ISAs change very slowly, whereas
algorithmic innovations and new application demands
force continual OS evolution. It is also an interface
standard like TCP/IP, thus simpler to maintain and
evolve than an OS.

Open ISAs have been tried before, but they never
became popular due to the lack of demand. The low cost
and power of IoTs, the desire for a WSC alternative to
the 80x86, and the fact that cores are a small but
ubiquitous fraction of all SoCs combine to supply that
missing demand. RISC-V is aimed at SoCs, with a base
that should never change given the longevity of the basic
RISC ideas; a standard set of optional extensions that
will evolve slowly; and unique instructions per SoC that
never need to be reused. While the first RISC-V
beachhead may be IoTs or perhaps WSCs, our goal is
grander: just as Linux has become the standard OS for
most computing devices, we envision RISC-V becoming
the standard ISA for all computing devices.

A RISC-V Experience Report | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 4

Open source vs. open ISA

RISC-V is an open specification
• Contrast to open source hardware or software

• RISC-V implementations can be closed or open source
• Open source (e.g. Linux) software always provides source code

• could also built on closed specifications

Open specifications → lots of variants
• More than 100 RISC-V implementations

(closed and open source) available
• Compliance tests ensure conformity [13]
Open source can also lead to variants
• One (official) Linux kernel source tree,

hundreds of different distributions Microsoft ad in Germany
by Jung v. Matt, 2000

A RISC-V Experience Report | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 5

Basic RISC-V ISA

32-bit (RV32) and 64-bit (RV64) versions
• Six instruction types (similar to MIPS)
• Immediate values

scattered all over
the instruction
word
(simpler decoding)

Opcode space reserved for extensibility
• Custom ISA

extensions defined
by RISC-V
international as
well as third parties

A RISC-V Experience Report | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 6

RISC-V instruction set extensions

Two base ISAs in 32 and 64 bit:
• RV32I – 32 bit integer instructions
• RV32E – small register set (only 16)
• RV64I – 64 bit integer instructions

Typical extensions
• M: multiplication and division
• F/D: single/double precision FP

Support for system software
• Zicsr: Control/status register access
• A: atomics

A RISC-V Experience Report | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 7

Base RISC-V ISA overview

A RISC-V Experience Report | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 8

RISC-V privilege architecture

RISC-V defines different privilege levels [5]
• Machine (M) – highest privilege full hardware access (firmware), e.g. interrupt

control and forwarding and system timer
• Supervisor (S) – restricted in terms of interactions with physical hardware, e.g.

physical memory and device interrupts, to support clean virtualization (OS kernel)
• User (U) – applications

Only machine mode is mandatory, M+S+U (common) and M+U are possible

• Optional: Hypervisor mode (H)
• Extension of S mode

with additional virtualization
capabilities

• Enables two-level virtual
address translation for
user processes

fro
m

 [4
]

A RISC-V Experience Report | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 9

The RISC-V open HW/SW ecosystem

• Processor cores (examples, list at [6])
• Academia: BOOM, PULP, PicoRV, FemtoRV, SERV, …
• Industry: WD SweRV, XuanTie C/E90x, …

• Firmware
• OpenSBI, coreboot, oreboot, u-boot

• Operating systems and hypervisors
• Linux, seL4, FreeRTOS, Zephyr, Haiku, Plan 9/Inferno, Oberon
• Xen, KVM (work in progress)

• Compilers and development tools
• C/C++: gcc and clang/LLVM
• Go, Rust, Java
• Debugging: gdb, lldb, OpenOCD

• Simulation and emulation
• qemu, tinyemu, SystemC models, …

A RISC-V Experience Report | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 10

RISC-V challenge: hardware availability

Which RISC-V hardware is available?
• ASICs

• Microcontrollers – RV32I(MA), M mode only, little memory
• SiFive FE310, GigaDevice GD32VF103, WCH CH32V307

• High performance SoCs – special applications (wireless radio, audio)
• Espressif ESP32-C, Bouffalo Labs BL602/4, Kendryte K210/510

• Desktop/server – Linux-capable, M+S+U mode, MMU
• Allwinner D1, SiFive U740

• Accelerators – custom highly parallel systems, e.g. for machine learning
• Esperanto ET-SoC-1 1088-core RV64-based AI Inference Accelerator

• FPGA soft cores
• Closed source commercial cores – SiFive, Andes, codasip, SemiDynamics, IQonIC
• Open source commercial cores – T-Head E/C9xx (Allwinner D1), WD SweRV
• Numerous open source projects – some of very high quality

• very special implementations such as the space-efficient bit-serial SERV
• FPGA hard core

• Microchip PolarFire FPGA (4+1 core RV64)

A RISC-V Experience Report | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 11

Available RISC-V hardware

• SiFive FE310
• RV32IMAC, 150 MHz, 16 KB Instruction Cache, 16 KB Data

Scratchpad, external flash
• GPIO, UART, SPI, PWM

• Available on the Dr Who inventor kit
• WiFi & BT via external

espressif ESP32 module
• Light, acceleration sensor,

compass, pushputtons
• Color LED matrix (6x8)

A RISC-V Experience Report | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 12

Available RISC-V hardware

GigaDevice
GD32VF103

WCH
CH32V307

Bouffalo Labs
BL602/604

Espressif
ESP32-C3

Kendryte
K210

Core
 speed

RV32IMAC
108 MHz

RV32IMAC
144 MHz

RV32IMAC
192 MHz

RV32IMAC
160 MHz

dual RV64GC
400 MHz

Flash
 RAM

128 kB
32 kB

256 kB
64 kB

0-4 MB
277 kB

–
400 kB

– (external)
8 MB

Periphe
rals

USB, GPIO, UART,
IIC, SPI, I2S, PWM

USB, GPIO,
UART, IIC, SPI,

I2S, PWM

USB, GPIO,
UART, IIC, SPI,

I2S, PWM

GPIO, UART, IIC,
SPI, I2S, PWM

USB, GPIO, UART,
IIC, SPI, I2S, PWM

Radio /
network

–
1 Gbps MAC
10 Mbps PHY
2 x CAN 2.0B

WiFi 802.11b/g/n
BT5 (LE)

WiFi 802.11b/g/n
BT5 (LE) –

Special
I/O – – – – Camera,

mic. array

Other – – – – MMU
Neural accel.

A RISC-V Experience Report | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 13

Linux-capable RISC-V hardware

Nezha and LicheeRV boards based on Allwinner D1 SoC
https://linux-sunxi.org/D1 – $99 vs. $25
• Single-core 1 GHz 64-bit RV64GC, 512 MB–2 GB RAM
• Peripherals: USB, Wifi/BT, Ethernet, audio, multiple GPIO
• Our xv6 OS port running "bare metal" on D1 platforms:

https://github.com/michaelengel/xv6-d1

https://linux-sunxi.org/D1
https://github.com/michaelengel/xv6-d1

A RISC-V Experience Report | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 14

Desktop-class RISC-V hardware

SiFive HiFive Unmatched
• SiFive Freedom U740 SoC (quad core RV64GC, 1.5 GHz)
• 16 GB DDR4 RAM
• Gigabit Ethernet
• 4x USB 3.2 Gen 1 Type A
• PCIe Gen 3 x16

Expansion Slot (8 lanes
useable)

• M.2 M-Key Slot
(PCIe Gen 3 x4) for
NVME 2280 SSD Module

• M.2 E-Key Slot
(PCIe Gen 3 x1) for
Wi-Fi / Bluetooth Module

A RISC-V Experience Report | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 15

Research-oriented teaching @ SYSNAP

Operating system projects (at NTNU and now Uni Bamberg)
• Enable students to learn about the HW/SW interface of RISC-V

by porting small real-world operating systems
• Plan 9 and Inferno (WiP) on RV64GC [11,12]
• Oberon (https://github.com/solbjorg/oberon-riscv) on RV32IM
• f9 microkernel on ESP32-C3 (RV32IM) [10]

• Enable students to explore RISC-V ISA extensions
• Rust-based hypervisor using the H extension

• Operating systems engineering course (at Uni Bamberg)
• Design and implement ideas from OS research papers in xv6

• e.g. virtual memory and virtualization, efficient syscalls…
• RISC-V platform: Allwinner D1 RV64GC
• Uses emulation (qemu) and real hardware (D1 Nezha boards)

https://github.com/solbjorg/oberon-riscv

A RISC-V Experience Report | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 16

Current research @ SYSNAP

New virtual memory approaches for persistent main memories
• Provide flexible page sizes and object protection to enable object

management in persistent main memory
• Revisit ideas from Liedtke’s guarded page tables (GPT [8])

in a RISC-V core with software-based TLB management
• Ensure data consistency via SW transactional memory (STM [7]) or

HW transactional memory extensions to RISC-V

Distributed operating system environments for IoT applications
• Fill the gap between small microcontrollers and Linux-capable processors
• Provide a secure OS built for a distributed heterogeneous environment

• Microkernel-based OS + Plan 9/Inferno user space as IoT OS basis [9]
• Current projects:

• Run Inferno OS on top of the f9 microkernel (MPU only system)
• Code size reduction of Inferno

A RISC-V Experience Report | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 17

RISC-V challenge: tooling

• Many different RISC-V implementations
→ several different languages and tools used to develop cores

• Chisel used to design the first RISC-V cores at Berkeley is a
Scala-based hardware design language

"The Chisel hardware construction language used to design many
RISC-V processors was also developed in the [UCB] Par Lab"

• Today, RISC-V implementations exist [4] written in
• Chisel, Clash, PyMTL, nMigen, Bluespec, SpinalHDL, CDL
• …as well as in traditional HDLs VHDL and (System)Verilog

A RISC-V Experience Report | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 18

RISC-V challenge: binary compatibility

• Opcodes with different meanings as RV32 and RV64 instructions
• RISC-V started as 64-bit ISA, 32-bit was an afterthought

• Programs compiled for RV32I can work on a RV64I machine
• It will run without generating an illegal instruction exception
• but the result will most probably be wrong
• opcodes are almost all completely legal, but semantics differ

• Example:

results in t0 == 0 for RV32 and t0 == 232 in RV64/128

• So far, no cores support both RV32 and RV64 modes

addi t0, x0, 1
slli t0, t0, 16
slli t0, t0, 16

A RISC-V Experience Report | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 19

RISC-V challenge: code models

RISC-V minimizes one of the largest costs in implementing complex ISAs:
addressing modes

• RISC-V only has three addressing modes
using aggressive linker relaxation to reduce the code size:

• Absolute "medlow": restricts code to be linked around address 0
• uses lui instruction (though arguably this is just x0-offset)

• PC-relative "medany": allows the code to be linked at any address
• uses auipc, jal and br* instructions
• can have an appreciable performance effect

• Both restrict the generated code to being linked within a 2 GB window
• Register-offset:

• uses jalr, addi and all memory instructions

• Specifically problematic for system software implementation
• Requires understanding the linker behavior to debug errors

A RISC-V Experience Report | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 20

RISC-V challenge: emulation

RISC-V enforces the activation of physical memory protection (PMP)
in systems implementing S/U mode
• Memory regions have to explicitly enabled for non M-mode code

However, PMP was not enforced in emulation (qemu < 7.0)
• Result: hard to debug error
• Enabling virtual memory via satp and returning from M→S via the
mret instruction without configured PMP caused an exception in
the OS on real HW (D1)

• This worked perfectly in qemu…
• The exception handler ran into the same condition and called itself

again…

A RISC-V Experience Report | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 21

RISC-V challenge: extension compatibility

Opcode ranges reserved for extensions are not protected
• Each core designer can implement proprietary extensions
• So far, no registration for opcode extensions

Possible problem:
• One opcode → different instructions depending on vendor
• Binary compatibility can become difficult
• Confusion as to compiler options required to

support specific
set of extensions

A RISC-V Experience Report | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 22

RISC-V challenge: standards conformance

Hardware vendors implement features based on draft
specifications

• Example: RISC-V vector instruction extension
• Version 1.0 only ratified in December 2021
• C906 / Allwinner D1 implements version 0.7.1 since late 2020
• Incompatible differences

• Example: RISC-V privileged instruction set
• Kendryte K210 implements 2017 version of RISC-V privileged

specification
• Adaptations to Linux required to support virtual memory

A RISC-V Experience Report | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 23

RISC-V challenge: peripherals

Positive: Standard interrupt controllers defined early on
• Core-local interrupt controller CLINT
• Platform-level interrupt controller PLIC

This took ARM 20 years – vendor-specific interrupt controllers for ARM
cores (up to ARM11) complicated porting of system code

However, there is no standard for peripherals defined

Example: 16550 UART problem on Allwinner D1 SoC
• Standard 16550 serial driver goes into an infinite loop when interrupts

are enabled
• The reason is a residual "busy detect" interrupt generated on the used

16550 IP implementation not available on regular 16550 cores
• Fixes for Linux, Xen, xv6… required!

A RISC-V Experience Report | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 24

Vision: the 100% open source computer

Commercial hardware has hidden/undocumented features, e.g.
• Intel management engine
• GPU instruction sets

Open source hardware tries to provide
completely open source (and spec) systems
• MNT Reform laptop (https://mntre.com)
• Purism Librem 5 smartphone (https://puri.sm)

Additional bonus: Repairability and sustainability

Can RISC-V support these efforts?
• Open source and spec SoCs slowly become available
• Open GPGPU in development

Also: Open source tooling for IC design
• Verilog/VHDL simulation and synthesis toolchains

MNT Reform ARM-based laptop
https://mntre.com

Purism Librem 5 smartphone
https://puri.sm

http://mntre.com
https://puri.sm
http://mntre.com
https://puri.sm

A RISC-V Experience Report | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 25

Conclusion

RISC-V shows a lot of promises…
• Mature base specifications and software tooling
• Many extensions recently ratified or still in development
• Scalable from microcontroller to high-performance accelerator

• Many different implementations available
• Lots of choice, but also compatibility problems due to extensions
• Verification of base ISA and standard extensions

• Numerous small problems remain
• Not insurmountable, but can be roadblocks for developers

• Vision: a completely open source computer
• Can it benefit teaching, research and industrial projects?

A RISC-V Experience Report | Michael Engel | Lehrstuhl für Praktische Informatik, insb. Systemnahe Programmierung 26

References

[1] Krste Asanović, Instruction Sets Should be Free: The Case for RISC-V,
 U.C. Berkeley Technical Reports, 2016, Regents of the University of California
[2] David Patterson and Andrew Waterman, The RISC-V Reader: An Open Architecture Atlas,
 Strawberry Canyon, 2017, ISBN-13: 978-0999249116
[3] Andrew Waterman, Design of the RISC-V Instruction Set Architecture,
 UCB Tech Report No. UCB/EECS-2016-1, 2016
[4] Daniel Mangum, RISC-V Bytes: Privilege levels,
 https://danielmangum.com/posts/risc-v-bytes-privilege-levels/
[5] Andrew Waterman, Krste Asanović and John Hauser, The RISC-V Instruction Set Manual
 Volume II: Privileged Architecture Document, Version 20211203
 https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
[6] https://github.com/riscvarchive/riscv-cores-list
[7] Jochen Liedtke, On the realization of huge sparsely occupied and fine grained address spaces,
 Oldenbourg, München & Wien 1996, ISBN 3-486-24185-0
[8] Tim Harris, James Larus and Ravi Rajwar, Transactional Memory, 2nd edition, Synthesis Lectures
 on Computer Architecture, Morgan-Claypool 2010, ISBN-13 : 978-1608452354
[9] Yoshihide Sato and Katsumi Maruyama, LP49: Embedded system OS based on L4 and Plan 9,
 Proceedings of the 4th International Workshop on Plan 9, 2006
[10] https://github.com/f9micro/f9-kernel
[11] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson, H. Trickey, and P. Winterbottom,
 Plan 9 from Bell Labs, Computing systems, 8(3), 221-254, 1995
[12] S. Dorward, R. Pike, D. Presotto, D. Ritchie, H. Trickey, P. Winterbottom,
 The Inferno operating system, Bell Labs Technical Journal, 2(1), 5-18, 1997
[13] https://github.com/riscv-non-isa/riscv-arch-test

https://danielmangum.com/posts/risc-v-bytes-privilege-levels/
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://github.com/riscvarchive/riscv-cores-list
https://github.com/f9micro/f9-kernel
https://github.com/riscv-non-isa/riscv-arch-test

