Harbingers of climate change: The role of extreme weather experiences in perceiving and acting against climate change

Lukas Kroher

Rasmus Hoffmann

lukas.kroher@uni-bamberg.de

rasmus.hoffmann@uni-bamberg.de

1 Introduction

Background:

Extreme weather events such as floods will continue to become more frequent, because societies did not sufficiently reduce greenhouse gas emissions

 \rightarrow Two floods in Germany in 2024: 6000 evacuated persons, six billion Euro damage and six persons died

Motivation:

Scientific information about the life-threatening risks of climate change (CC) did not bring about sufficient changes

→ Are experiences of extreme weather events, instead, a potential driver of climate risk perception and behavioural change?

Research Objectives:

- 1. Identify the psychological mechanisms linking extreme weather experience to climate risk perception and action.
- 2. Investigate weather direct or indirect extreme weather experience (also see part 3) exerts a stronger effect on climate risk perception and action

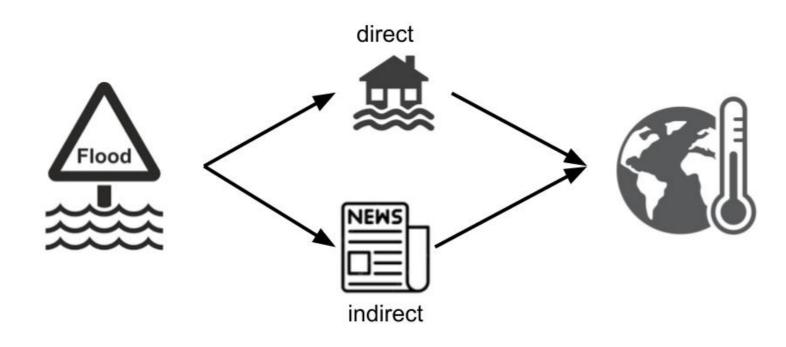


Figure 1: Direct and indirect extreme weather experience

2 Theorie

Mental processing mechanisms:

Awareness of dependence on nature: Perceived constant availability of natural goods reducing dependency awareness

- \rightarrow floods illustrating nature's potential impact
- → transformation of dependency feelings into climate risk perception

Affective path: Emotional impact arising from subjectively significant risk experiences (retrospective emotions $\hat{=}$ paralyzing effects; prospective emotions $\hat{=}$ transformative effects)

 \rightarrow feelings of fear or concern transform into motivation to act

Cognitive path: Increased risk relevance driving heightened information-seeking (compensating for information deficits)

 \rightarrow quantity and stability of knowledge enhancing motivation to act

Psychological distance:

Perceived psychological distance from a phenomenon shapes action (Figure 2)

- → High distance $\hat{=}$ value-based responses
- ⇒ Indirect flooding experiences with bigger psychological distance have stronger effect on climate risk perception and action

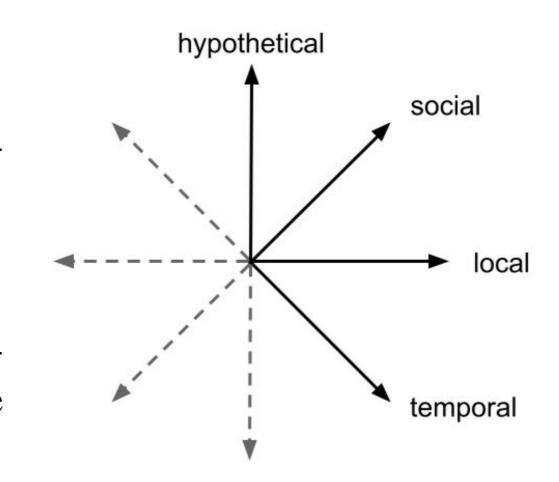


Figure 2: psychological distance

3 Data and Methods

Data:

Planetary health and action survey from November 2024

- \rightarrow German quota sample by age, gender and federal state (N = 1,130)
- \rightarrow 7.4% directly affected and 37.7% indirectly affected by flooding

Operationalisation:

A measurement model is used to capture the latent structure of the psychological concepts (see Table 1 for an overview). Direct and indirect experiences are distinguished as follows:

Direct experience: Personal exposure with flood impacts

Indirect experience: Media-based exposure without personal harm

Latent construct	\mathbf{R}^2	Latent construct	\mathbf{R}^2	Latent construct	\mathbf{R}^2
Dependence on nature	0.14	Ecological consumption	0.39	Mobility behaviour	0.07
CC – Risk perception	0.38	Longevity consumption	0.06	Nutrition behaviour	0.16
Emotional affectedness	0.43	Frequency of information	0.20	Climate enthusiasm	0.60

Table 1: Explained variance (R²) of latent constructs

Method:

Structural Equation Modelling (SEM) to test simultaneous paths and mediating mechanisms (Figure 3)

 \rightarrow Acceptable model fit: RMSEA = 0.066, SRMR = 0.086

4 Results

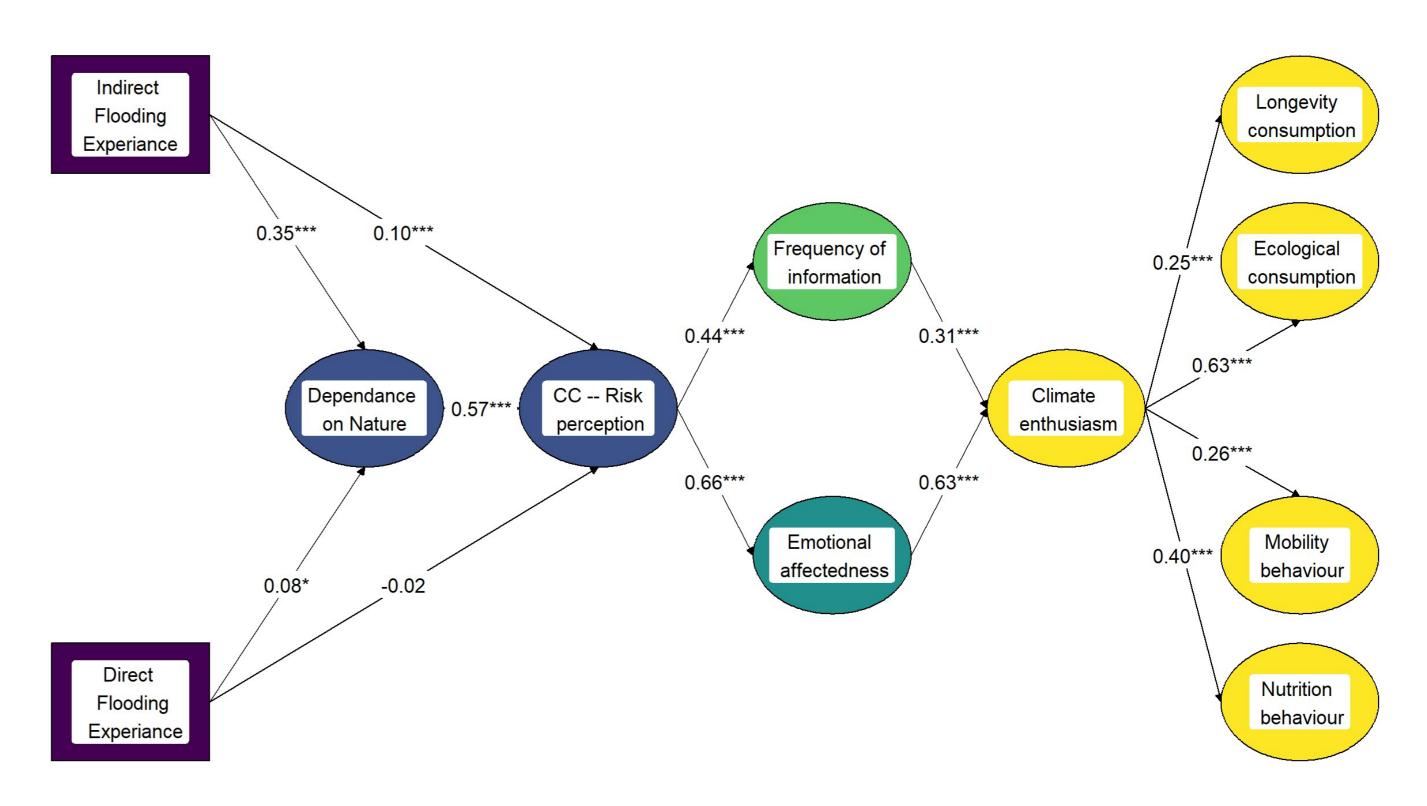


Figure 3: SEM Model of mental transformation of flooding experience

SEM (Figure 3):

Awareness of dependence on nature: Indirect exposure to flooding significantly increased perceived dependence on nature ($\beta = 0.38$), whereas direct exposure had only a weak effect ($\beta = 0.08$). Dependence on nature as major predictor of risk perception ($\beta = 0.57$), confirming its mediating role

Affective path: Strong evidence for the affective path: Risk perception with strong positive effect on emotional concern ($\beta = 0.66$). This again substantially increased motivation to engage with climate change ($\beta = 0.63$).

Cognitive path: Risk perception enhances information seeking (β = 0.44), which moderately increased motivation to engage with climate change (β = 0.31)

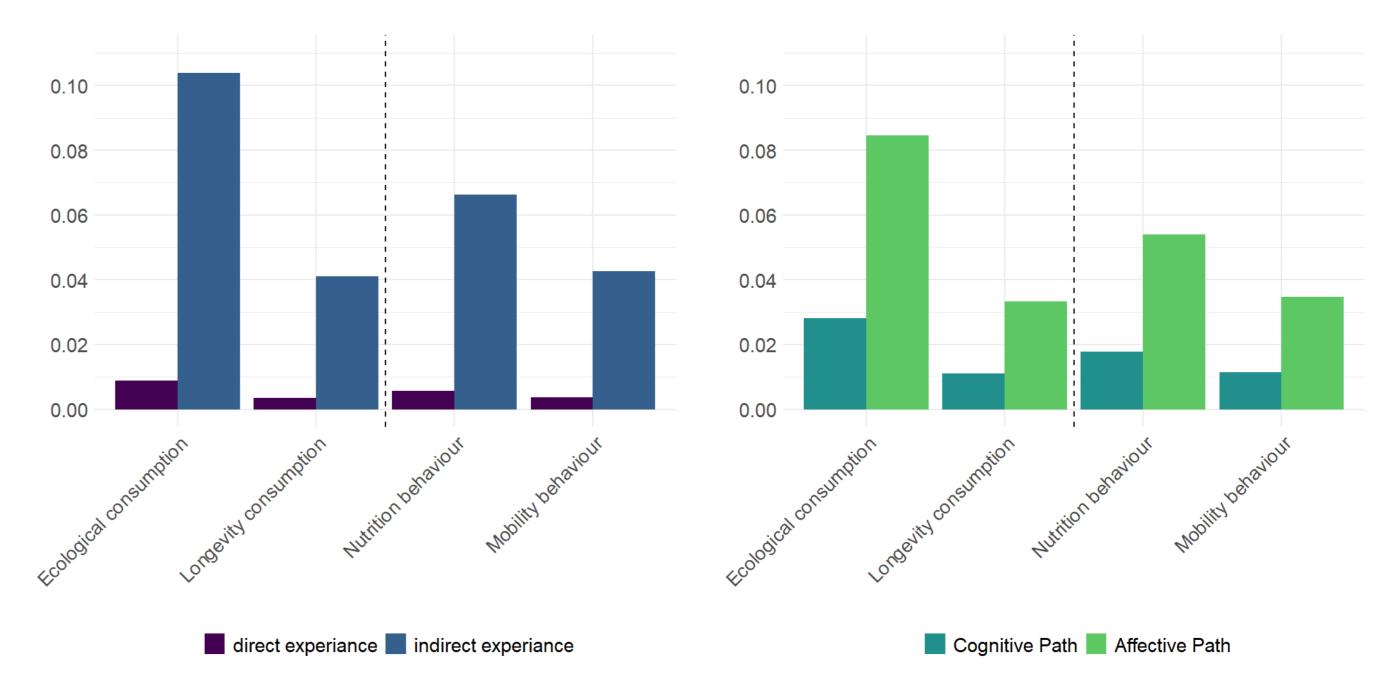


Figure 4: Direct vs. indirect experience

Figure 5: Affective vs. cognitive pathway

5 Conclusion

Takeaways:

- 1. Both affective and cognitive processing of flood experiences are important for behavioral activation
- → Affective path exerts three times stronger impact than the cognitive (Figure 5)
- 2. Media coverage plays a major role in linking natural disasters to climate change

 → Indirect flood experience has eight times stronger impact than direct (Figure 4)
- → Media framing facilitates the interpretation of flooding as symptom of climate change

Strengths:

- 1. Quasi-random exposure to direct flood experience as stimulus
- 2. Wide range of exact measures of relevant psychological variables to model the long pathway from exposure to reaction

Limitations:

- 1. Direct flooding exposure is (I) self reported and (II) infrequent
- 2. Limited causal interpretation, due to cross-sectional data

References

Ajzen, I. (1991), 'The theory of planned behavior', Organizational Behavior and Human Decision Processes 50(2), 179–211.

Griffin, R. J., Dunwoody, S. & Neuwirth, K. (1999), 'Proposed Model of the Relationship of Risk Information Seeking and Processing to the Development of Preventive Behaviors', *Environmental Research* **80**(2), S230–S245.

Jenny, M. A., Lehrer, L., Eitze, S., Sprengholz, P., Korn, L., Shamsrizi, P., Geiger, M., Hellmann, L., Mai, L., Maur, K. & Betsch, C. (2022), 'Accelerating climate protection by behavioural insights: The planetary health action survey (PACE)', *The Lancet Planetary Health* 6, S19. Lazarus, R. (1991), 'Progress on a Cognitive-Motivational-Relational Theory of Emotion', *The American psychologist* 46, 819–34.

Matthewman, S. (2015), Sociology and disasters, *in* S. Matthewman, ed., 'Disasters, Risks and Revelation', Palgrave Macmillan, Basingstoke, pp. 11–34.

Spence, A., Poortinga, W., Butler, C. & Pidgeon, N. F. (2011), 'Perceptions of climate change and willingness to save energy related to flood experience', *Nature Climate Change* **1**(1), 46–49.