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About SparQ...

SparQ is a toolbox for representing space and reasoning about space based on qualita-
tive spatial relations. Its development started within the R3-[Q-Shape] project of the
Spatial Cognition Research Center in Bremen, Germany in 2006. Financial support by
the the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledge. By now,
contributors have moved on and so has SparQ.

SparQ disseminates results from the qualitative spatial and temporal reasoning com-
munity which consists of researchers from a various disciplines including computer sci-
ence, artificial intelligence, geography, philosophy, psychology, and linguistics. So far, a
multitude of formal calculi over sets of spatial relations (like ‘overlaps’, ‘left-of’, ‘north-
of’) have been proposed, focusing on different aspects of space (mereotopology, orienta-
tion, distance, etc.) and dealing with different kinds of objects (points, line segments,
extended objects, etc.). SparQ aims at making these qualitative spatial calculi and the
developed reasoning techniques available in a single homogeneous framework that is re-
leased under the GPL license for freely available software and can easily be included into
applications. Our aim is providing a common toolbox spanning across all techniques of
qualitative reasoning, thereby providing a universal toolbox to the user. Currently, we
provide techniques for

• specifying qualitative formalisms and analyzing them

• interfacing the continuos domain with qualitative representations

• manipulating symbolical propositions

• reasoning with symbolical propositions, in particular checking consistency of qual-
itative information

• interfacing with other reasoning tools

SparQ is designed for the application designer or researcher working in a field other
than qualitative reasoning, offering access to reasoning techniques in an easy-to-use
manner. If you are new to qualitative spatial reasoning, see the following chapter for an
introduction to this field and the services it can offer to your field.

SparQ is also designed for the researcher working on qualitative spatial and temporal
reasoning (QSR). It provides an implementation toolbox of key techniques in QSR,
making experimental analysis easier. Furthermore, SparQ offers an easy format to specify
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new calculi. This eases distribution of new calculi and enables researches to more easily
compare different calculi, for example in an application context. In this manner SparQ
is a community effort: it provides a rich repertoire of qualitative calculi to application
designers. We would be happy to include your calculus! Last but not least, SparQ offers
tools for analyzing QSR calculi, thereby supporting the calculus designer.

This document provides answers to four topic areas:

• installation of SparQ

• brief introduction to the field of QSR

• reference of SparQ commands and calculi specification syntax

• brief description of provided calculi

For questions or feedback, please get in contact with us an e-mail to the address
below. We are always interested in suggestions for improvement and in hearing about
your experience with SparQ.

The SparQ team
qshape@sfbtr8.uni-bremen.de

License

SparQ is free software: you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

A copy of the GNU General Public License is provided in the COPYING file dis-
tributed with SparQ. If you can’t access it, visit http://www.gnu.org/licenses/.

As this software is being provided free of charge, warranty as stipulated in sections
11 and 12 shall be governed by the provisions of German civil law concerning gifts
(Schenkungsrecht).

5

qshape@sfbtr8.uni-bremen.de
http://www.gnu.org/licenses/


1. Installing SparQ

SparQ is built using several standard tools available for a variety of operating systems.
SparQ is written for POSIX systems. Its functionality is continuously tested on Linux,
Solaris, and Mac OS X, but it should work on any Unix system.

1.1. Requirements

SparQ is currently not available in binary versions. For installation some freely avail-
able standard tools are required. Besides its calculi specifications as plain text, SparQ
comprises a set of C libraries and a main program written in Lisp. For compilation we
rely on availability of these tools:

• Steel Bank Common Lisp (SBCL)1, version 0.9.10 or higher

• gcc and g++, version 2.95 or higher

• GNU libtool, version 1.4.3 or higher2

• LATEX for typesetting this manual

1.2. Building the Executable

To build a running version of SparQ, unpack the source code package, enter the newly
created SparQ directory (called sparq-<version>) and run

$ ./configure

followed by

$ make

The executable will be installed within the SparQ directory. Please note that you
have to recompile SparQ if you move the directory to another place.

If you encounter any problems during the build process, please contact the authors.

1http://sbcl.sourceforge.net/
2On Mac OS X a newer libtool version may be required, otherwise a manual patch may be necessary.

See INSTALL notes for details.
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2. Reasoning with Qualitative Spatial Relations

In this section, we provide a brief introduction on qualitative spatial reasoning and
explain the most important terms required when dealing with qualitative spatial calculi
in SparQ. For more in-depth introductions to the field, we refer to Cohn and Hazarika
(2001), Cohn (1997), Ladkin and Reinefeld (1992), Ladkin and Maddux (1994), Düntsch
(2005), and the references provided for particular calculi in Appendix A.

2.1. What is a Qualitative Spatial Calculus?

A qualitative calculus consists of a set of relations between objects from a certain domain
and operations defined on these relations. Let us start with an easy example: the spatial
version of the Point Algebra (PA) (Vilain et al., 1989). Imagine, we are being told about
a boat race on a river by a friend on the phone1. We can model the river as an oriented
line and the boats of the 5 participants A,B,C,D,E as points moving along the line (see
Fig. 2.1). Thus, our domain (the set of spatial objects considered) is the set of all 1D
points.

A

B

E

C

D

A B EC/D

Figure 2.1.: A possible situation in a boat race which can be modeled by 1D points on an
oriented line and be described by qualitative relations from the Point Algebra.

We now distinguish three relations between objects from our domain. A boat can be
ahead of another boat, behind it, or on the same level. These relations can be used to

1This example has been borrowed from Ligozat (2005).
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2. Reasoning with Qualitative Spatial Relations

formulate knowledge about the current situation in the race. For instance, our friend
tells us the following:

1. A is behind B

2. E is ahead of B

3. A is behind C

4. D is on the same level as C

5. A is ahead of D

From this information we are able to conclude that our friend must have made an
error, probably confusing the names of the participants: We know that A is behind C
(sentence 3) and D is behind A (conversion of sentence 5). From composing these two
facts it follows that C and D cannot be on the same level which contradicts sentence 4.

On the other hand, only taking the first three sentences into account, we can conclude
that E is also ahead of A by composing the facts A is behind B (sentence 1) and B is
behind E (conversion of sentence 2). However, this information is not sufficient to derive
the exact relation between C and E, as C can either be ahead, behind or on the same
level as E.

The calculus, in this case the PA, defines a set of base relations (ahead, behind, and
same) and provides the elementary reasoning steps in the form of operations defined over
the base relations. In our small example, the applied operations were conversion, which
given the operation between x and y returns the relation between y and x (thus the
converse of ahead is behind), and composition which takes the relations holding between
X & Y and Y & Z and returns the relation holding between X & Z (e.g. composition of
ahead and ahead is ahead).

Often the result of operations like the composition operation is not a single base
relation but the union of more than one. For instance, knowing that X is ahead of Y and
Y is behind Z yields the union of ahead, behind, and same. Because of this, the set of
relations considered in a spatial calculus is not just the set of base relations, but the set
of all unions of base relations including the empty set and the union of all base relations
(the universal relation). All operations of the calculus are then defined for all unions of
base relations: For example, we can apply conversion to the information that X is either
ahead or at the same level as Y to infer that Y is either behind or at the same level as
X.

2.2. Constraint Networks, Consistency, and Consistent Scenarios

A spatial configuration of a finite set of objects from the domain as given by sentences 1–
5 can be described as a constraint network as shown in Fig. 2.2. It consists of a variable
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2. Reasoning with Qualitative Spatial Relations

for each object represented by the nodes of the network and edges labeled with relations
from the considered calculus denoted as sets of base relations. For instance, sentence 1
is represented by the edge going from A to B labeled with {behind}. If no edge connects
two nodes, this corresponds to an edge labeled with the universal relation U (the union
of all base relations expressing complete ignorance), which is usually omitted.

C

D

A E

B
{ahead}{behind}

{behind}

{same}

{ahead}

Figure 2.2.: The situation described by sentences 1–5 as a constraint network.

As we have seen in our example, the information given in a constraint network can be
inconsistent. This means, no objects from the domain can be assigned to the variables
so that all the constraints given by the spatial relations annotated to the edges are
satisfied. If, on the other hand, such an assignment can be found, the constraint network
is said to be consistent or satisfiable or realizable. Determining whether a constraint
network is consistent is a fundamental problem of qualitative spatial reasoning. Special
techniques for determining consistency based on the operations of the calculus (especially
the composition operations) have been developed. However, it is important to note that
the soundness of these methods depends on the properties of the calculus at hand and
are often still subject of ongoing investigations. For more details on this issue, we refer
to Renz and Ligozat (2005) and the literature on individual calculi listed in Appendix
A.

A constraint network in which every constraint between two variables is a base relation
is called atomic or a scenario. This means all spatial relations between two objects are
completely determined with respect to the employed calculus and the remaining question
is if the network is consistent or not. However, if a constraint network contains relations
that are not base relations like in Fig. 2.3(a), we might also be interested in finding a
scenario that is a refinement of the original network (meaning it has been derived by
removing individual base relations from the sets annotated to the edges) and that is
consistent. Fig. 2.3(b) shows such a consistent scenario for the network in Fig. 2.3(a).
If such a consistent scenario can be found, we also know that the original network is
consistent. Otherwise, we know it is inconsistent. Of course, it is possible that more than
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2. Reasoning with Qualitative Spatial Relations

one consistent scenario exists for a given constraint network and we might be interested
in finding only one or all of these. An alternative consistent scenario is depicted in
Fig. 2.3(c).

C

A
{ahead,behind}

{behind}{behind}

B

(a)

C

A

{behind}{behind}

B
{ahead}

(b)

C

A

{behind}{behind}

B
{behind}

(c)

Figure 2.3.: A non-atomic constraint network (a) with possible consistent scenarios (b) and
(c).

The problems of determining consistency and finding consistent scenarios are sub-
sumed under the term constraint-based reasoning throughout this text.

2.3. Qualitative Constraint Calculi

After giving a rather intuitive introduction to qualitative spatial calculi, we want to give
a more formal definition of a spatial calculus and especially the operations a calculus
needs to define.

Definition 1 (qualitative calculus, base relations, arity). A qualitative calculus < B,Dn >

defines a finite, non-empty set B of n-ary qualitative base relations over some domain
D, i.e. B ⊆ 2D

n
. We call n the arity of the calculus.

For the purpose of constraint reasoning one usually requires that the set of base
relations partitions Dn.

Definition 2 (JEPD). A qualitative calculus < B,Dn > is called jointly exhaustive, if
the base relations cover Dn, i.e. ⋃B∈BB = Dn. The calculus is called pairwise disjoint
if no two base relations overlap, i.e. ∀B,B′ ∈ B ∶ B ∩ B′ = ∅. Jointly exhaustive and
pairwise disjoint calculi are commonly referred to as JEPD calculi.

In qualitative reasoning we consider a simple formal language that only allows relating
(unqualified) objects by qualitative relations. Here, a infix notation is commonly used.
For example, ArB stands for (A,B) ∈ r. Uncertainty can be modeled by using unions
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2. Reasoning with Qualitative Spatial Relations

of base relations, e.g., to express that some objects may either stand in some relation r
or s can be expressed by the relation r ∪ s, usually denoted {r, s}2.

Definition 3 (general relations). In a qualitative calculus < B,Dn > a general relation
B = {Bi1 ,Bi2 , . . . ,Bim}, where Bi1 ,Bi2 , . . . ,Bi2 ∈ B represents the relation ⋃j=1,2,...,nBij

obtained by uniting base relations. We will denote set of general relations obtained from
a set of base relations B by RB. Two special general relations are the empty relation ∅

and the universal relation U = ⋃B∈BB.

In this context the JEPD property is important in two regards:

1. It offers a normal form of representing knowledge

2. The empty relation corresponds to unsatisfiability

The latter is particular important for reasoning: the empty relation cannot be part of
any consistent scene description. Thus, deriving that no relation other than the empty
relation can hold between two objects, means that the scene description is contradictory.

2.3.1. Operations

Let us now turn to the operations a calculus needs to define. There are three groups of
operations:

• Set-theoretic operations on the level of general relations.

• Operations that represent a change of perspective

• Operations to integrate distinct propositions

2.3.2. Set-theoretic Operations

The set-theoretic operations on the level of general relations can be defined independent
of the calculus at hand. The following table lists the standard operations and their
corresponding SparQ operation names (R and S stand for general relations):

operation SparQ names definition

union union R ∪ S = { x ∣ x ∈ R ∨ x ∈ S }

intersection intersection, isec R ∩ S = { x ∣ x ∈ R ∧ x ∈ S }

complement complement, cmpl R = U ∖R = { x ∣ x ∈ U ∧ x /∈ R }

2The notation using sets like {r, s} can be misleading as it syntactically identifies sets of relations with
their unions. However, this notation is the established form.
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2. Reasoning with Qualitative Spatial Relations

2.3.3. Operations that Change Perspective

In the case of a binary (2-ary) calculus a change of perspective means that given we
know the relation ArB, we can infer the relation r′ such that B r′A.

Definition 4 (converse). In a binary calculus < B,D2 > the unary converse operation ⌣

is defined as follows:

r⌣ = {(A,B) ∣ (A,B) ∈ D
2
∧ (B,A) ∈ r}

Obviously, there are more ways to change perspectives in a general n-ary calculus for
n > 2. Currently, only ternary (3-ary) calculi are also important to QSR. For ternary
calculi 5 unary operations are commonly considered that are defined analogously to the
converse in binary calculi. The following table gives a complete overview:

operation SparQ names effect

binary calculi:
converse converse, cnv ArB ↝ B r⌣A

ternary calculi:
inverse inv, inverse A,B r C ↝ B,A inv(r) C
shortcut sc, shortcut A,B r C ↝ A,C sc(r) B
shortcut inverse sci, shortcuti A,B r C ↝ C,A sci(r) B
homing hm, homing A,B r C ↝ B,C hm(r) A
homing inverse hmi, homingi A,B r C ↝ C,B hmi(r) A

These operations may further be generalized for n-ary calculi. Given the unavailability
of calculi with arities higher than 3, SparQ currently implements the operations for
binary and ternary calculi only.

2.3.4. Operations that Integrate

Admittingly the heading of this paragraph is misleading in that there is only one kind
operation defined that integrates relations, the composition operations, most notably the
binary composition ○.

Definition 5 (binary composition in binary calculi). In a binary calculus < B,D2 > the
composition operation ○ is defined as binary operator:

r ○ s ∶= {(A,C) ∈ D
2
∣ ∃B ∈ D ∶ (A,B) ∈ r ∧ (B,C) ∈ s}

Definition 6 (binary composition in ternary calculi). In a ternary calculus < B,D3 >

the composition operation ○ is defined as binary operator:

r ○ s ∶= {(A,B,D) ∈ D
3
∣ ∃C ∈ D ∶ (A,B,C) ∈ r ∧ (B,C,D) ∈ s}

12



2. Reasoning with Qualitative Spatial Relations

Other ways of composing two ternary relations can be expressed as a combination of
the unary permutation operations and the composition (Scivos and Nebel, 2001) and
thus do not have to be defined separately and are also not accessible individually in
SparQ.

Besides the definition of ternary composition employed in SparQ and by many oth-
ers, for example Freksa (1992a), ternary composition has also been defined as ternary
operator, more specifically a n-ary operator in an n-ary calculus Condotta et al. (2006).

Definition 7 (n-ary composition). In a n-ary calculus < B,Dn > the n-ary composition
operation ● is defined as follows:

●(r1, r2, . . . , rn) ∶= {(A1A2 . . .An) ∈ D
n
∣ ∃B ∈ D ∶ (A1,A2, . . . ,An−1,B) ∈ r1 ∧

(A1,A2, . . . ,An−2,B,An) ∈ r2 ∧ . . . ∧ (B,A2,A3 . . . ,An) ∈ rn}

2.3.5. Weak vs. Strong Operations

By definition of the operations it is not clear that for example the converse of a qualitative
(base) relation itself is a (base) relation too. In fact, this is not the case for some calculi.
It may even be the case that no finite set of relations exists that describes the results of
the operations. Take for example the aforementioned point calculus Vilain et al. (1989)
over the domain of natural numbers, i.e., < {

.
<,≐,

.
>},N2 >. Here, the composition

.
< ○

.
<

stands for the relation “larger by at least 2” which cannot be described as a union of base
relations provided by the point calculus. Extending the set of relation by the respective
relation—lets call it

.
<1—would only shift the problem since we would be facing a similar

problem considering the composition
.
<1 ○

.
<.

The framework of qualitative reasoning requires us to restrict ourselves to a finite set
of relations, the general relations. So when we cannot express the true relations obtained
by applying some operation we must use some form of approximation. An upper approx-
imation of the true operation is utilized to accomplish this, i.e., an approximation that
fully contains the true relation. Such upper approximations of operations are called weak
operations as opposed to the true or strong operations. Figure 2.4 gives an illustration.

In the case of the weak composition in a binary calculus < B,D2 > it is defined as:

r ○⋆ s ∶= {B ∈ B ∣ B ∩ (r ○ s) ≠ ∅}

Note that the use of an upper approximation of some operation still guarantees like
in the case of strong operations that the empty relation can only be the result of con-
tradicting information. However, the use of a weak operation can lead to situations in
which a set of not agreeable statements is not detected as such.

Given that from a syntactical point of view the difference between weak and strong
operations is not identifiable, SparQ does not differentiate strong and weak operations
syntactically.
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2. Reasoning with Qualitative Spatial Relations

D
n 

partioned by

base relations

subset that cannot be described

by base relations

upper approximation using

four base relations

Figure 2.4.: Illustration of a relation, i.e., a subset of Dn, represented as an upper approxi-
mation

2.4. Checking Consistency

Determining consistency of a constraint network in which the constraints are given as
qualitative spatial relations from a particular calculus, is a particular instance of a con-
straint satisfaction problem (CSP). Unfortunately, the domains of our variables are typ-
ically infinite (e.g. the set of all points in the plane) and thus backtracking over all the
values of the domain cannot be used to determine consistency.

The techniques developed for relational constraint problems are instead based on
weaker forms of consistency called local consistencies which can be tested or enforced
based on the operations of the calculus and which are under particular conditions suffi-
cient to decide consistency.

One important form of local consistency is path-consistency which (in binary CSPs)
means that for every triple of variables each consistent evaluation of the first two vari-
ables can be extended to the third variable in such a way that all constraints are satisfied.
In the best case, path-consistency decides consistency for a given calculus. This means,
that if we can make the network path-consistent by possibly removing some base re-
lations from the constraints without ending up with the empty relation, we know that
the original network is consistent. If this cannot be achieved, the network has to be
inconsistent. Unfortunately, it is usually not the case that path-consistency decides
consistency.

However, sometimes path-consistency is sufficient to decide consistency at least for
a subset S of the relations from R, for instance the set of base relations. On the one
hand, this means that whenever our constraint networks only contains labels which are
base relations, we again can use path-consistency as a criterion to decide consistency.
On the other hand, if the subset S exhaustively splits R (which means that every
relation from R can be expressed as a union of relations from S), this at least allows to
formulate a backtracking algorithm to determine consistency by recursively splitting the
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2. Reasoning with Qualitative Spatial Relations

constraints and using path-consistency as a decision procedure for the resulting CSPs
with constraints from S (Ladkin and Reinefeld, 1992).

To enforce path-consistency, syntactic procedures called algebraic closure algorithms
have been developed that are based on the operations of the calculus (the composition
operation in particular) and work in O(n3) time for binary calculi and O(n4) for ternary
calculi where n is the number of variables. But again, we have to note that these syntactic
procedures do not necessarily yield the correct results with respect to path-consistency
as defined above. Whether algebraic closure coincides with path-consistency needs be
investigated for each calculus individually and we again refer to the literature listed in
the individual calculus descriptions in Appendix A.
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3. Using SparQ

SparQ consists of a set of modules that logically structure the different services provided,
which will be explained below. The general architecture is visualized in Fig. 3.1. The
dashed parts are extensions planned for the future (see section 4.2).
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reasoning

reasoning

quantify
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Figure 3.1.: Module architecture of the SparQ toolbox.

The general syntax for using SparQ is

$ ./sparq ¡module¿ ¡calculus¿ ¡module specific parameters¿

where module designates the particular module to use, calculus refers to the qual-
itative calculus to use, and the remainder of the command line give command specific
arguments which will be explained in the following. SparQ can also be used in interactive
mode (see section 3.11) — the general syntax is the same though.
Example:

$ ./sparq compute-relation rcc-8 composition dc ntpp

computes the composition of the rcc-8 relations DC and NTPP . SparQ prints the re-
sult (dc ec po tpp ntpp) to the shell which stands for {DC,EC,PO,TPP,NTPP}.

SparQ provides the following modules:
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3. Using SparQ

qualify — transforms a quantitative geometric description of a spatial configuration into
a qualitative description based on one of the supported spatial calculi

quantify — complement to qualify, computes an exemplary geometric model

compute-relation — applies the operations defined in the calculi specifications (intersec-
tion, union, complement, converse, composition, etc.) to a set of spatial relations

constraint-reasoning — performs computations on constraint networks

neighborhood-reasoning — performs computations on constraint networks based on
conceptual neighborhoods

algebraic-reasoning — geometric reasoning using algebraic geometry

analyze-calculus — relation-algebraic analysis of calculus structures

We will take a closer look at each of these three modules in the next sections.

3.1. Command Line Options

Implemented switches:

-v verbose mode primarily used for debugging purposes

-i, --interactive interactive mode (see section 3.11)

-p <port>, --port in interactive mode listen for connection on TCP/IP port rather
using input from the shell

3.2. General Syntax

SparQ is case-insensitive, so the notation leftOf and Leftof denote the same identifier.
When printing, SparQ uses small letters for relations and capital letters for objects.
There are some characters that must not be used in specifiers for either relations or
objects, in particular parentheses ( (, )), punctuation ( ., ,, ;, :), and # are not
allowed. Nearly all other character sequences may be used—if in doubt, refer to the
ANSI Common Lisp standard on symbols or just try out.
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3. Using SparQ

3.2.1. Calculi Identifier

SparQ commands require specifying a calculus. For each calculus implemented in SparQ
an identifier has been defined (see the appendix for details on the calculi). Alternatively,
calculi may be specified by giving the path name of the calculus definition file.

Calculi may have specific parameters, for example the granularity parameter inOPRAm.
These parameters are appended with a ‘-’ after the calculus’ base identifier. opra-3 for
example refers to OPRA3.
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calculus identifier(s) calculus section page

allen, aia, ia Allen’s interval algebra (Allen,
1983)

A.1 54

block-algebra, ba 2D block-algebra (Güsgen, 1989) A.2 55

cardir Cardinal direction calculus
(Ligozat, 1998)

A.3 56

depcalc, dep Dependency calculus (Ragni and
Scivos, 2005)

A.5 59

dipole-coarse,

dra-24

Dipole calculus (Moratz et al., 2000) A.11 67

double-cross, dcc Double cross calculus (Freksa,
1992a) using the original tuple
naming scheme

A.7 61

alternative-double-

cross, adcc

Double cross calculus (Freksa,
1992a) using the alternative single
number naming scheme

A.7 61

flipflop, ffc, ff FlipFlop calculus (Ligozat, 1993) A.8 63

geomori, ori,

align

Geometric Orientation calculus A.10 66

point-calculus,

pc, point-algebra,

pa

Point algebra (Vilain et al., 1989) A.13 71

rcc-5 Region connection calculus (RCC-5)
(Randell et al., 1992)

A.4 58

rcc-8 Region connection calculus (RCC-8)
(Randell et al., 1992)

A.4 57

reldistcalculus Exemplary calculus from this man-
ual

3.13.1 36

single-cross, scc Single cross calculus (Freksa, 1992a) A.6 60

opra- Oriented point reasoning algebra
(OPRAm)(Moratz, 2006)

A.12 69
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qtc-b11 Qualitative trajectory calculus in
1D with distance (van de Weghe,
2004)

A.14 72

qtc-b12 Qualitative trajectory calculus in
1D with velocity (van de Weghe,
2004)

A.14 73

qtc-b21 Qualitative trajectory calculus in
2D with distance (van de Weghe,
2004)

A.14 74

qtc-b22 Qualitative trajectory calculus in
2D with distance and velocity
(van de Weghe, 2004)

A.14 74

qtc-c21 Qualitative trajectory calculus in
2D with distance and side (van de
Weghe, 2004)

A.14 75

qtc-c22 Qualitative trajectory calculus in
2D with distance, side, and velocity
(van de Weghe, 2004)

A.14 76

3.2.2. Denoting Relations

Relations are denoted using their name, as a disjunction using (, ), or by wild cards
* and ?.
Example using the RCC-8 calculus:

• nttp, Ntpp both stand for the relation nttp

• (nttp eq po) stands for the relation nttp ∪ eq ∪ po

• p? stands for all relations with a two-letter name starting with ’p’, i.e. po ∪ pp in
case of the RCC-8 calculus

• * stands for the universal relation

Please be aware, that if you pass arguments to SparQ via the command line, the shell
will perform some replacements, in particular if you are using parentheses or *. You
need to wrap quotes around your arguments, i.e. use "(po eq)" instead of (po eq), to
avoid unwanted replacements.
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3.2.3. Denoting Configurations

Configurations are static scene descriptions that interrelate named objects using quali-
tative relations of a particular calculus. Named objects are related by enclosing object
identifiers and relation by parentheses, e.g. (A po B), configurations are specified using
a list (enclosed in parentheses, no comma-separation), e.g. ((A (po eq) B) (B eq C)).

3.3. Qualify

The purpose of the qualify module is to turn a quantitative geometric scene description
into a qualitative scene description composed of base relations from a particular calcu-
lus. The calculus is specified via the calculus identifier that is passed with the call to
SparQ. Qualification is required for applications in which we want to perform qualitative
computations over objects whose geometric parameters are known.

A B
C

5

50

x

y

Figure 3.2.: An example configuration of three dipoles.

The qualify module reads a quantitative scene description and generates a qualitative
description. A quantitative scene description is a space-separated list of base object
descriptions enclosed in parentheses. Each base object description is a tuple consisting
of an object identifier and object parameters that depend on the type of the object.
For instance, let us say we are working with dipoles which are oriented line segments.
The object description of a dipole is of the form ‘(name xs ys xe ye)’, where name is
the identifier of this particular dipole object and the rest are the coordinates of start
and end point of the dipole. Let us consider the example in Fig. 3.2 which shows three
dipoles A, B, and C. The quantitative scene description for this situation would be:

( (A -2 0 8 0) (B 7 -2 2 5) (C 1 -1 4.5 4.5) )

Note: Coordinates may be specified as either integers (2; -3; ...), floats (3.2234; -1e-
07), or rational numbers (13/7; -4/2). Using rational numbers can help avoiding effects
of rounding errors. Depending on the basis entity (i.e., the domain of the qualitative
calculus), different values need to be supplied. This table gives an overview:
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basis entity format semantics

1d-point (id x) Real-valued position of the point
interval (id s e) Real-valued (closed) interval
2d-point (id x y) Real-valued coordinates
2d-oriented-point (id x y dx dy) Real-valued coordinates and direction of

the orientation
dipole (id xs ys xe ye) Directed line segment connecting the 2d

points (xs ys) and (xe ye)
2d-box (id x1 y1 x2 y2) Axis-aligned rectangle with bottom left

point (x1,y1) and top right point (x2,y2)
polygon (id x1 y1 ... xn yn) Polygon with vertices (x1,y1), (x2,y2), ...

(xn,yn)

The qualify module has one module specific parameter mode that needs to be specified.
It controls which relations are included into the qualitative scene description; there are
two settings:

all The relation between every object and every other object will be included. In the
case of a binary calculus SparQ prints out a configuration containing n2 relations,
if n is the total number of objects in the scene description.

first2all If mode is set to first2all only the relations between the first and all
other objects are computed in the binary case or between the first two objects and
all other objects in the ternary case.

The resulting qualitative scene description is a space-separated list of relation tuples
enclosed in parentheses. A relation tuple consists of an object identifier followed by a
relation name and another object identifier, meaning that the first object stands in this
particular relation with the second object. The command to produce the qualitative
scene description followed by the result is1:

$ ./sparq qualify dra-24 all ”((A -2 0 8 0) (B 7 -2 2 5) (C 1 -1 4.5 4.5))”
¿ ((A rllr B) (A rllr C) (B lrrl C))

If we had chosen ‘first2all’ as mode parameter the relation between B and C would
not have been included in the qualitative scene description.

3.4. Quantify

The quantify command complements the qualify in the sense that it computes an
exemplary geometric scene from a constraint network.

1In all the examples, input lines start with ‘$’. Output of SparQ is marked with ‘>’.

22



3. Using SparQ

$ ./sparq quantify allen ”((a b b) (a fi c))”
¿ ((C 1 2) (B 5 6) (A 3 4))

3.5. Compute-relation

The compute-relation module allows to compute with the operations defined in the
calculus specification. The module specific parameters are the operation that should be
conducted and one or more input relations depending on the arity of the operation. Let
us say we want to compute the converse of the llrl dipole relation. The corresponding
call to SparQ and the result are:

$ ./sparq compute-relation dra-24 converse llrl
¿ (rlll)

The result is always a list of relations as operations often yield a disjunction of base
relations. In this case, however, the disjunction only contains a single relation. The
composition of two relations requires one more relation as parameter because it is a
binary operation, e.g.:

$ ./sparq compute-relation dra-24 composition llrr rllr
¿ (lrrr llrr rlrr slsr lllr rllr rlll ells llll lrll)

Here the result is a disjunction of 10 base relations. It is also possible to have disjunc-
tions of base relations as input parameters. For instance, the following call computes
the intersection of two disjunctions:

$ ./sparq compute-relation dra-24 intersection ”(rrrr rrll rllr)” ”(llll rrll)”
¿ (rrll)

Note that you need to put relation specifications in quotes when giving them as argu-
ments on the command line. SparQ can also process nested computations if individual
parts are enclosed in parentheses, e.g., computing the complement of the converse of a
relation can be done as follows:

$ ./sparq compute-relation dra-24 ”(complement (converse (rr??)))”
¿ (ells errs eses lere llll lllr llrl lrll lrrl lsel rele rlll rllr rrll rrlr rrrl rser sese slsr srsl)

The following operations are currently implemented (see section 2.3.1):

spatial:
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composition, comp (r, s)↦ r ○ s

ternary-composition, tcomp(3) (r, s, t)↦ ●(r, s, t)
n-ary-composition, ncomp (r1, . . . , rn)↦ ●(r1, . . . , rn)

converse, cnv(2) r ↦ r⌣

homing, hm(3) r ↦ hm(r)

homingi, hmi(3) r ↦ inv(hm(r))

inverse, inv(3) r ↦ inv(r)

shortcut, sc(3) r ↦ sc(r)

shortcuti, sci(3) r ↦ inv(sc(r))

calculi-theoretic:
closure r1r2 . . . rn ↦ Cl(r1, r2, . . . , rn)

Cl denotes the minimal set of relations that is
closed under composition, converse, and inter-
section

base-closure Cl(br1, br2, . . . , brn)
Computes closure of the set of base relations

test-properties Tests whether a calculus meets relation algebra
axioms

set-theoretic:
complement, cmpl r ↦ rC

minus rs↦ r/s
union rs↦ r ∪ s
intersection, isec rs↦ r ∩ s

Commands marked (2)are valid for binary calculi only, commands marked (3)are valid for
ternary constraints only.
Note: The commands closure and base-closure are currently defined exclusively

for binary calculi. The closure of a set of relations may be very large and com-
putation may, consequently, take very long.

3.6. Constraint-reasoning

The constraint-reasoning module reads a description of a constraint network—which
is a qualitative scene description that may include disjunctions and may be inconsis-
tent and/or underspecified—and performs an operation on it, e.g., a particular kind of
consistency check:

constraint-reasoning <calculus> <operation> <constraint-network> ...
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Currently, operations are implemented for checking consistency of a constraint network
and propagating constraints (‘check-consistency’, ‘algebraic-closure’, ‘ternary-closure’,
‘scenario-consistency’), for manipulating constraint networks (‘refine’, ‘extend’, ‘update’)
and for correspondence between two networks (‘match’, ‘best-match’).

3.6.1. Constraint-based reasoning

Action ‘algebraic-closure’ causes the module to enforce path-consistency on the con-
straint network using a variant of Mackworth’s AC-3 algorithm (Mackworth, 1977). As
a result the constraint network obtained is returned. If during constraint propagation an
inconsistency is discovered, the inconsistency is reported and not netwrok is returned.
In case of ternary calculus the canonical extension of the AC-3 algorithm as described
in Dylla and Moratz (2004) is used. For ternary calculi there also exist the option to use
the more natural ternary composition operation (if defined for the respective calculus)
instead of the binary composition operation. Enforcing path-consistency using ternary
composition operation is invoked using ‘ternary-closure’.

Examples

We could for instance check if the scene description generated by the qualify module
in Section 3.3 is algebraically closed—which of course it is. To make it slightly more
interesting, we add the base relation ells to the constraint between A and C resulting
in a constraint network that is not algebraically closed:

$ ./sparq constraint-reasoning dra-24 algebraic-closure
”((A rllr B) (A (ells rllr) C) (B lrrl C))”
¿ Modified network.
¿ ( (B (lrrl) C) (A (rllr) C) (A (rllr) B) )

The result is an algebraically closed constraint network in which ells has been removed.
The output ‘Modified network’ indicates that the original network was not algebraically
closed and had to be changed. Otherwise, the result would have started with ‘Unmodified
network’. In the next example we remove the relation rllr from the disjunction between
A and C. This results in a constraint network for which algebraic closure detects an
inconsistency which means it is not globally consistent.

$ ./sparq constraint-reasoning dra-24 algebraic-closure
”((A rllr B) (A ells C) (B lrrl C))”
¿ Not consistent.
¿ ((B (lrrl) C) (A () C) (A (rllr) B))

SparQ correctly determines that the network is inconsistent and returns the constraint
network in the state in which the inconsistency showed up (indicated by the empty
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relation () between A and C).
In a last example for algebraic-closure we use the ternary double cross calculus:

$ ./sparq constraint-reasoning dcc algebraic-closure
”((A B (7 3 6 3) C) (B C (7 3 6 3 5 3) D) (A B (3 6 3 7) D))”
¿ Not consistent.
¿ ((A B (3 6 3 7) D)(A B () C)(B C (5 3 6 3 7 3) D)(D C (0 4 1 5 2 5 3 5 3 6 3 7 4 4
5 3 6 3 7 3 b 4) A))

If ‘scenario-consistency’ is provided as argument, the constraint-reasoning module
checks if an algebraically closed scenario exists for the given network. It uses a back-
tracking algorithm to generate all possible scenarios and checks them via algebraic closure
as described above. Knowledge about tractable sets, if defined for the calculus at hand,
are exploited too. A second module specific parameter determines what is returned as
the result of the search:

return — This parameter determines what is returned in case of a constraint network for
which path-consistent scenarios can be found. It can take the values ‘first’ which
returns the first path-consistent scenario, ‘all’ which returns all path-consistent
scenarios, and ‘interactive’ which returns one solution and queries whether the
search shall be continued. Finally, ‘check’ instructs SparQ to only check existence
of an algebraically closed scenario which, in some cases, can be much faster than
actually computing a solution.

While computing scenario-consistency, algebraic closure is also used as a forward-
checking method during the search to make it more efficient. For certain calculi, the
existence of an algebraically closed scenario implies consistency. However, this again has
to be investigated for each calculus (cmp. Section 2.4).

In the following example, we use ‘first’ as additional parameter so that only the first
solution found is returned:

$ ./sparq constraint-reasoning dra-24 scenario-consistency first
”((A rele C) (A ells B) (C errs B) (D srsl C) (A rser D) (D rrrl B))”
¿ ((B (rlrr) D) (C (slsr) D) (C (errs) B) (A (rser) D) (A (ells) B) (A (rele) C))

In case of an inconsistent constraint network, SparQ returns ‘Not consistent.’ as in
the following example:

$ ./sparq constraint-reasoning dra-24 scenario-consistency first
”((A rele C) (A ells B) (C errs B) (D srsl C) (A rser D) (D rllr B))”
¿ Not consistent.

26



3. Using SparQ

For calculi which define tractable subsets the consistent scenarios may be printed in
a condensed form by giving disjunctions of base relations such that all combinations
determine a consistent scenario, e.g.

$ ./sparq constraint-reasoning rcc8 scenario-consistency all
”((a po b) (b ntpp c))”
¿ ((B (ntpp) C)(A (ntpp po tpp) C)(A (po) B))
¿ 3 scenarios found, no further scenarios exist.

In this example, any of the relations ntpp, po, tpp holding between A and C describes
a consistent scenario, thus there are three scenarios in total.

3.6.2. Manipulating constraint networks

Constraint network manipulation is realized by operations which compute the conjunc-
tion of two constraint networks. With qualitative calculi it is natural to assume that
a constraint network that does not define a constraint between two objects (or which
does not even involve the objects) implicitly declares the universal relation as constraint.
This allows manipulation with three simple operations.

The action ’refine’ returns the conjunction of two constraint networks. Analogously,
’extend’ returns the disjunction:

$ ./sparq constraint-reasoning dra-24 refine ”((A (rele errs) B))” ”((A errs B))”
¿ ((A errs B))

$ ./sparq constraint-reasoning dra-24 extend ”((A rele B))” ”((A errs B))”
¿ ((A (rele errs) B))

Finally, operation ‘update’ allows constraints to be overwritten:

$ ./sparq constraint-reasoning dra-24 update ”((A rele B) (B eses C))” ”((B llrr C))”
¿ ((B (LLRR) C) (A (RELE) B))

Overview of commands operating on constraints:

consistency checking:

check-consistency decides consistency using calculus-specific consistency
check

algebraic-closure,
a-closure,
path-consistency

Enforces path-consistency — since this is a purely syn-
tactical operation on the level of qualitative relations
the term “algebraic closure” is more adequate. How-
ever, since “path-consistency” is widely used in this
meaning, this name is supported too.
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scenario-consistency Computes algebraically closed networks containing
base-relations only

ternary-closure Computes algebraically closed networks using ternary
composition with ternary calculi

match Computes possible correspondence (isomorphy and
joint consistence)

manipulating constraint networks:
refine Merges two networks by intersecting corresponding

constraints

extend Merges two networks by uniting corresponding
constraints

update Merges two networks by overwriting corresponding
constraints

3.7. Algebraic reasoning

SparQ includes a module for reasoning about real-valued domain using techniques of al-
gebraic geometry. Spatial reasoning problems get posed as algebraic problems of solving
systems of equations. The techniques implemented in SparQ are based on Gröbner bases
(see e.g., Cox et al. (1998)). The main service offered by the algebraic reasoning module
is to provide a consistency checking mechanism for constraint networsk that is based on
the relation semantics only. This means, algebraic reasoning can be used to compute
or to verify operation tables such as e.g., used for specifying the composition operation.
Furthermore, algebraic reasoning can be used to analyze certain calculi properties.

3.7.1. Consistency checking

The algebraic reasoning module provided consistency analysis of constraint networks
using the same syntax as constraint based consistency analysis (see Sec. 3.6). In contrast
to constraint based reasoning, algebraic reasoning only makes use of an algebraic relation
specification.

$ ./sparq a-reasoning ¡calculus¿ consistency ¡network¿

Networks are denoted as defined in the context of the constraint based reasoning
module. Possible results:

SATISFIABLE The network is proven to be satisfiable.

NOT SATISFIABLE. The network is proven to be unsatisfiable.
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CANNOT DECIDE. Neither one of the above proofs succeeded.

Currently, the implementation of the algebraic reasoning module aims at proving
inconsistency of constraint networks, thus the answer “satisfiable” appears only rarely.
Making algebraic reasoning a more powerful tool is ongoing research.
Example:

$ sparq -v a-reasoning ff consistency ”((A B l C) (B C l D) (A B f D))”

By turning on the verbose mode (command line option “ -v”), the proof generated by
SparQ is printed to the console. Algebraic reasoning as implemented in SparQ is based on
analyzing Gröbner bases. Computing Gröbner bases is a computationally very expensive
process and a time limit is implemented into SparQ to prevent hangs. Currently, the
time limit is hard wired to approx. 17 minutes. To abort an ongoing computation, use
Control-C to stop SparQ. Currently, the time limit is a compile-time option, hence, to
increase time limit, your need to change the source parameter declaration *timeout*

in the beginning of Source/polysolver.lisp. Note that the unit size is ms here.
Due to the computational demands of algebraic reasoning we advice users to utilize

this method only for analyzing small constraint networks. The most useful application
of this module is for computing calculus operations.

Example: computing calculus operations

Suppose, you are about to introduce a new qualitative calculus and have designed the set
of base relations. In order to do any constraint based reasoning with this new calculus,
permutation operations (converse, inverse, shortcut, etc.) and the composition operation
need to be defined. Determining composition operation tables is a demanding process:
all 3-consistent constraint networks involving k + 1 base objects need to be computed
whereby k denotes the arity of the calculus. In such situations algebraic reasoning can
be effectively applied to rule out inconsistent networks. Consider again the example
from above, analyzing the constraint network

((A B l C) (B C l D) (A B f D))

in context of the FlipFlop base relations (see A.8) SparQ will come up with the reply
that the given network is not consistent. Therefore, the relation “f” (front) is not a
possible result of the composition of “l” and “l” (left). To automate operation analysis
an additional command is implemented.

3.7.2. Operation analysis

This command applies algebraic reasoning to check operations as explained in the pre-
vious section.
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$ sparq a-reasoning ¡calculus¿ analyze-operation ¡operation¿

The command iterates over all base relations to analyze the given operation (e.g.,
composition, shortcut, etc.) and prints out a table summarizing the results. The table
for an unary operation looks like this:

progress. r analysis

......... r1 Verified.

......... r2 CANNOT INCLUDE: (r1)

......... r3 could not prove non-membership of : (r1 r2)

......... r4 could not prove membership of : (r2)

......... r5 ALSO INCLUDES: (r1)

The dots in the progress column are printed to show the progress of the verification,
the column labeled “r” lists the relation examined. The column analysis lists the result
which is one of the following:

Verified The entry of the operation table as given in the calculus specification has
been verified.

CANNOT INCLUDE (r1 r2 ...) The reported base relations are listed in the operation
table but they cannot be the result of applying the operation. This is an error in
the operation table - remove the conflicting relations.

ALSO INCLUDES: (r1 r2 ...) The reported base relations have been proved to be
missing in the operation table - add them.

could not prove membership of: (r1 r2 ...) The reported base relations are listed
in the operation table, but no proof could be generated to show that these relations
can be the result of applying the operation to r. This does not indicate an error
in the operation table.

could not prove non-membership of: (r1 r2 ...) The reported base relations
are not listed in the operation table, but no proof could be generated to show that
these relations cannot be the result of applying the operation to r. This does not
indicate an error in the operation table.

3.7.3. Qualification

When an algebraic calculus specification is provided, it can be used in qualification too.
This means, a scenario can be qualified without supplied an designated qualification
function.

$ ./sparq a-reasoning ¡calculus¿ qualify ¡option¿ ¡scenario¿
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Syntax and options are the same as for the qualification module described in Sec. 3.3.

3.8. Analyzing Calculi

SparQ involves a set of commands that aim to aid researchers to analyze qualitative
calculi. These commands are summarized in the module analyze-calculus and are
named as follows:

test-algebra Using this command one can check whether a calculus definition meets
the axioms that define a relation algebra in the sense of Tarski. The command is
also helpful to identify potential errors in operation tables of newly added calculi—
if SparQ only reports very few violations of an axiom, these violations may be
caused my en erroneous entry in an operation table

test-property This command allows specific properties or axioms to be tested for
a specific calculus. Essentially, SparQ checks a single statement as usable with
the compute-relation-command with quantified variables. We illustrate this
by an example, checking whether rrc5 has an idempotent converse operation:

$ ./sparq analyze-calculus rcc5 test-property ”(forall r baserel) (equals r (converse (converse
r)))”

Here, r is a variable ranging over all base relations of the RCC-5 calculus. Note
that the quotes are necessary to prevent a Unix shell from interpreting parenthesis
expressions. It is possible to use quantifiers exists and forall, ranging over
either base relations ( baserel) or all general relations ( rel). Special opera-
tors for comparing relations that are likely used with this command are equal,

covers, coverseq (either equal or covers hold), coveredBy, coveredByEq.

algebra-stats Operation tables of calculi often differ in their information content,
e.g., how often a universal relation occurs as the result of applying a composition
operation. This command determines the information content of applying k steps
of composition, an additional parameter determines the time in seconds to spend
on analyzing the calculus.

3.9. Neighborhood-Based Reasoning

The aim of this module is to provide tools for reasoning based on the notion of conceptual
neighborhood (Freksa, 1992b) that can be used for addressing spatial change over time
as well as constraint relaxation.

TBD
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neighborhood-reasoning ¡CALCULUS¿ ¡NEIGHBORHOOD¿ ...
similarity OP <CSP> <CSP> computes similarity of two constraint-

networks, using OP as distance accumulation
operation

neighbors <REL> gives the conceptual neighbors of a relation
merge OP OP <CSP> <CSP merges two constraint networks, using OP as

distance accumulation operation
relax <RELATION> coarsens relation by including all conceptual

neighbors of a relation
neighborhood-distance <REL> <REL> distance in the neighborhood graph

Table 3.4.: Summary of commands for neighborhood-based reasoning

3.10. Interfaces

Currently, SparQ provides only means for exporting calculi specification to formats used
in other reasoners, the syntax is as follows:

$ ./sparq export ¡calculus¿ ¡type¿ ¡filename¿

where type is one of

qat QAT is a toolkit for qualitative spatial and temporal reasoning written in Java
(Condotta et al., 2006) that uses an xml format for calculi specifications. Currently,
only binary calculi can be exported into this format. For more information see:
http://www.cril.univ-artois.fr/~saade/QAT

gqr GQR is a generic constraint reasoner for binary calculi, i.e., it provides an alterna-
tive implementation of SparQ’s constraint-reasoning module but limited to binary
calculi. For more information see:
https://sfbtr8.informatik.uni-freiburg.de/R4LogoSpace/Resources/GQR

By invoking the export command, SparQ creates a file <filename> (two in the case
of GQR export) in SparQ’s main directory.

3.11. Interactive Mode

SparQ can be started in interactive mode to process commands repeatedly. This greatly
reduces overhead of loading the program or calculi definitions. Interactive mode is
activated by the command line option -i (or --interactive). The command syntax
is identical to the standard mode of operation, there are some additional commands
though:
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command description

quit exits SparQ
help prints short help message
load-calculus CALC loads a specified calculus into memory
* used as calculus specifier in commands, * stands for

the calculus recently loaded into memory. This avoids
overhead of reloading a calculus

let VAR = EXP binds expression/result of command to variable
let (VAR1 ... VARN) = EXP bind multiple variables to commands providing multi-

ple return values
print $VAR print value bound to variable

3.11.1. Variables

In the interactive mode, SparQ provides simple variables to reduce typing effort – or
network traffic, if SparQ is interfaced using sockets. Variables are set using the let

command; print allows values to be printed out. As some commands return multiple
values, let allows multiple variables to be bound at once, the special name _ (under-
score sign) can be used to ignore a value. When used in commands, variables are marked
by a leading dollar sign. Note that names are case insensitive. Here is an example on
using variables:

SparQ¿ let myScene = qualify pc all ((a 1) (b 2) (c 1/4))
¿ ((A ¡ B) (A ¿ C) (B ¿ C))

SparQ¿ let myNeWScene = constraint-reasoning pc extend $myscene ((a ¡ d))
¿ ((A (¡) B) (A (¿) C) (A (¡) D) (B (¿) C))

SparQ¿ let ( closedNet) = constraint-reasoning pc a-closure $myNewScene
Modified network. ;; ignore first return value
((B (¿) C)(D (¿) C)(D (¡ = ¿) B)(A (¿) C)(A (¡) B)(A (¡) D))

SparQ¿ constraint-reasoning pc scenario-consistency first $myNewScen
((D (¿) A)(C (¡) A)(C (¡) D)(B (¿) A)(B (¿) D)(B (¿) C))

SparQ¿ print $myScene
¿ ((A ¡ B) (A ¿ C) (B ¿ C))

3.12. Including SparQ Into own Applications

In interactive mode, SparQ can be used as server that can easily be integrated into
own applications. We have chosen a client/server approach as it allows for straightfor-
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ward integration independent of the programming language used for implementing the
application.

When run in server mode, SparQ uses a TCP/IP connection as input/output and
interacts with the client via simple plain-text line-based communication. This means
the client sends commands just like if using SparQ in interactive mode, and can then
read the results from the TCP/IP stream.

SparQ is started in server mode by providing the command line option --interactive

(-i), optionally followed by --port (-p) to specify the port.

$ ./sparq –interactive –port 4443

If no port is given, SparQ interacts with standard-input and standard-output, i.e., it
can be used interactively from the shell.

import socket ,sys ,time

CRLF = "\r\n" # Define line endings

def readline ():

"Read a line from the server. Strip trailing CR and/or LF."

input = sockfile.readline ()

if not input:

raise EOFError

if input [-2:] == CRLF: # strip line endings

input = input [:-2]

elif input [-1:] in CRLF:

input = input [:-1]

if len(input) == 0:

return readline ()

if input [0] == ";": # ignore comments

return readline ()

else:

return input

def sendline(line): # send a line to SparQ

sock.send(line + CRLF) # unbuffered write

def removePrompt( line ): # remove "sparq >" prompt

return line[line.find(’>’)+7:]

# create a socket and connect

sock = socket.socket(socket.AF_INET , socket.SOCK_STREAM)

sock.connect((’localhost ’, 4443))

sockfile = sock.makefile(’rw ’)

# qualify a geometrical scenario with DRA-24

sendline(’qualify dra-24 first2all ((A 4 6 9 0.5) (B -5 5 0 2) (C -4 5 ¿

⇢6 0))’)

scene = removePrompt( readline () )
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print scene

# add an additional network ((B 4_1 C))

sendline("constraint-reasoning dra-24 refine " + scene + ’ ((B eses C)) ’)

scene2 = removePrompt( readline( ) )

print scene2

# check the new scenario for consistency

sendline(’constraint-reasoning dra-24 algebraic-closure ’ + scene2)

consistent = removePrompt( readline () )

print consistent

if consistent != "Not consistent.": # ... read resulting CSP

net = readline ()

print net

sendline("quit")

sock.close ()

An example of client/server communication with SparQ is given in Listing ?? which
shows a small Python script that opens a connection to the server and performs some
simple computations (qualification, adding another relation, enforcing algebraic closure).
It produces the following output:

> ((A rrll B) (A rrll C))
¿ ((A rrll B) (A rrll C) (B eses C))
¿ Not consistent.
¿ ((B (eses) C) (A (rrll) B) (A () B))

Special care may be given to line endings, depending on the operating system. The
example code defines a function to strip line endings from the result lines. Furthermore,
comment lines beginning with a semicolon have to be ignored. Also note that every
first return line after a command comes with a preceeding sparq prompt, so the first six
characters are stripped of the result. This behavior is due to compatibility reasons and
will definitely change in later versions of SparQ (downward compatibility, however, will
be granted).

3.13. Adding new Calculi

For most calculi it should be rather easy to include them into SparQ. Adding a new
calculus consists of two steps:

1. Provide a calculus specification and store it in SparQ’s subdirectory Calculi

2. Register your calculus in the calculus registry Calculi/calculus-registry.lisp
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SparQ also allows loading calculi from an arbitrary file (by supplying the path name as
calculus argument), so calculi are not required to be registered permanently. Example:

$ ./sparq compute-relation /path/to/my/calculus.lisp converse someRel

3.13.1. Calculus Specification

Let us start by giving an example for a simple calculus for reasoning about distances
between three point objects that distinguishes only the three relations ‘closer’, ‘farther’,
and ‘same’. Following the intuition, AB closerC holds if and only if A and B are
closer to one another than A is to C. Farther and same are defined analogously. Listing
3.1 shows the specification which is done in Lisp-like syntax.

The arity of the calculus, the base relations, the identity relation and the different
operations have to be specified, using lists enclosed in parentheses (e.g. when an operation
returns a disjunction of base relations). In this example, the shortcut operation applied
to ‘same’ yields ‘same’ and composing ‘closer’ and ‘same’ results in the universal relation
written as the disjunction of all base relations. It is not required to specify the inverse
shortcut and inverse homing operations (cmp. Section 2.3.1) as these can be computed
by applying the other operations (e.g., inverse of shortcut yields inverse shortcut). It is,
principally, possible to leave more operations unspecified. However, this may mean that
certain computations cannot be performed for this calculus.

In addition to the calculus specification, one could provide the implementation of a
qualifier function which for a n-ary calculus takes n geometric objects of the correspond-
ing base type as input and returns the relation holding between these objects. The
qualifier function encapsulates the methods for computing the qualitative relations from
quantitative geometric descriptions. If it is not provided, the qualify module will not
work for this calculus.

For some calculi, it is not possible to provide operations in form of simple tables as
in the example. For instance, OPRAm has an additional parameter that specifies the
granularity and influences the number of base relations. Thus, the operations can only
be provided in procedural form, meaning the result of the operations are computed from
the input relations when they are required. For these cases, SparQ allows to provide
the operations as implemented functions and uses a caching mechanism to store often
required results.

3.13.2. Specification Reference

Any specification must be in the form

(def-calculus <NAME>

{<SLOT-AND-OPTIONS>}* )
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Listing 3.1: Specification of a simple ternary calculus for reasoning about distances.

;;; RELDISTCALCULUS

;;;

(def-calculus "Relative distance calculus (reldistcalculus)"

:arity :ternary

:identity-relation same

:basis-entity :point

:qualifier #’(lambda (p1 p2 p3)

(let ((d12 (point-distance2 p1 p2))

(d13 (point-distance2 p1 p3)))

(cond ((< d12 d13) ’closer)

((> d12 d13) ’farther)

(t ’same))))

:base-relations (same closer farther)

:inverse-operation ((same (same closer farther))

(closer (same closer farther))

(farther (same closer farther)))

:shortcut-operation ((same same)

(closer farther)

(farther closer))

:homing-operation ((same (same closer farther))

(closer (same closer farther))

(farther (same closer farther)))

:composition-operation ((same same (same closer farther))

(same closer (same closer farther))

(same farther (same closer farther))

(closer same (same closer farther))

(closer closer (same closer farther))

(closer farther (same closer farther))

(farther same (same closer farther))

(farther closer (same closer farther))

(farther farther (same closer farther))))
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where <NAME> is a textual description of the calculus enclosed in double quotes.
<SLOT-AND-OPTIONS> refers to a collection of calculus properties (in no particular order)
that consists of pairs of a so-called slot specifier (always starting with a colon) and slot-
specific options. Table 3.6 gives an overview. The abbreviations SRC and LIB stand
for source code specification and library link which are explained thereafter.

3.13.3. Operation Specification

Calculi comprise the definition of operations like converse or composition for which
SparQ provides three principles ways of specification:

1. Tabular form (suits most standard calculi)

2. Lisp source code

3. Reference to C function in external library

The tabular form is straight-forward. In the case of a unary operation (such as e.g.,
converse) it is simply a space-separated list of lists that give a relation and the respective
outcome when applying the operation. Note that the operation needs only to be defined
for base relations! In the case of the binary composition operation the tabular form is a
list of lists that give the result for any combination of two base relations.

The last two options of operation specification are particular relevant for defining a
quantifier or defining parametrical calculi, i.e., calculi that are instantiated by some
parameter(s). In SparQ, these calculi use identifiers that end with a minus “ -”, e.g.,
opra-.

Lisp source operation specification

Definitions may be supplied as Lisp function which then will be compiled by SparQ. Lisp
functions need to be denoted as lambda expressions. Here is an (slightly silly) example
for specifying base relations by a Lisp function:

:base-relations #’(lambda () (list ’closer ’farther ’same))

As can be observed, relations are simply returned as lists of relations and symbols are
used to represent base relations. When specifying an operation that requires an input
parameter to the function (e.g., converse, composition), then these are the arguments
passed to the provided function. If a parametric calculus is defined, then the parameter
will be accessible in by the globally visible parameter calculi:*calculus-parameter*.

Altogether, the exemplary specification from above is equivalent to

:base-relations (closer farther same)
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Table 3.6.: Overview of the slots in calculi definitions and their options
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Note: Though you must use lambda expressions to specify lisp functions, you may
define additional functions or parameters in the calculus definition. As the Lisp pro-
grammer would expect, the calculus definition is processed by the Lisp compiler and
def-calculus is a (quite complex) compiler macro.

Lisp source qualifier specification

Providing a lisp source definition for qualifiers is similar to specifying operations. In
the case of a binary calculus you need to provide a 2-argument function, in the case
of a ternary calculus a 3-argument function. These arguments are exactly those of the
command qualify but without the object identifier, i.e., a qualifier for the point-based
calculus (e.g., cardinal directions) requested by the command ”qualify cardir ((A 2 3)
(B 1 3) (C -3 2))” will lead to calls passing the lists (2 3), (1 3), or (-3 2) as
arguments. Supplied functions are not required to do any error checking, as this is taken
care of already.

External operation libraries

All operations may be specified by giving a reference to an external library by writing
(external-lib LIBNAME C_FUNC). Hereby, LIBNAME must be a string (delimited by dou-
ble quotes) referring to a shared library inside SparQ’s subdirectory Lib/bin, C_FUNC
(a string too) gives the name of the corresponding C function to call. In principal, any
programming language can be used as long as it allows for building a shared library that
provides functions that follow the C calling convention. The signature of the C function
for unary operations must be

const char* C_FUNC( const char* param, const char* relation)

When called by SparQ, C_FUNC is passed the currently active calculus parameters
(ignore, if your calculus does not use parameters), i.e., all characters that are appended
to the last “-” in the calculus name. As second argument, the relation is passed. The
function needs to return the result in the same form SparQ uses as print form for
relations. In case of returning disjunctions, this means a space-separated list enclosed
in parentheses.

When defining a binary operation (composition), the signature looks as follows:

const char* C_FUNC( const char* param, const char* r1, const char* r2)

Obviously, two relations need to be passed to the composition operation.
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External qualifier libraries

Similar as with operation specification, external libraries can be used for defining a
qualifier module for SparQ. The signature of the external functions is as follows:

const char* C_FUNC( const char* param, double P1, double P2, ...)

Put differently, SparQ passes (besides the calculus parameter) all spatial information
as double precision floats to the function. The amount of parameters depends on:

• the arity of the calculus

• the dimension of the calculus’ basis entities

Let a denote the arity of a calculus (either a = 2 or a = 3) and let d denote the
dimension of the basis entity, then a ⋅ d double parameters are passed. Dimensions of
currently supported basis entities are as follows:

basis entity d

1d-point 1
interval 2
2d-point 2
dipole 4
2d-oriented-point 4
2d-box (axis aligned rectangle) 4
polygon 2× number of vertices

Limitations: Passing coordinates as fixed precision floating point numbers can in-
troduce difficulties that arise due to rounding in computer arithmetics. If no special
care is taken then it can easily happen that the relation between A and B obtained
by qualification is not the converse of the relation obtained by qualifying the relation
between B and A.

To avoid this issue SparQ can use precise (rational) arithmetics and qualifiers imple-
mented in Lisp source code take advantage of this too. For external C functions this is
not possible though.

3.13.4. Algebraic Relation Specification

An algebraic calculus specification builds the basis for algebraic reasoning. Base relations
need to be specified by systems of polynomial equations over a real-valued domain Rn.
Such specification is possible to a wide range of spatio-temporal calculi, but it is, for
example, not possible to specify relations in an arbitrary topological space as considered
as domain of the RCC calculus family.

41



3. Using SparQ

In a first step, the base objects of a qualitative calculus need to be represented alge-
braically. Objects involved in a constrained network (e.g., represented by variables A, B,
C, etc.) are represented by tuples of real-valued variables. Currently, SparQ supports
the following base entities:

basis entity algebraic representation variable representation of A, B, C

1d-point x ax; bx; cx

interval a, b a1, a2; b1,b2

2d-point x, y ax, ay; bx, by; cx, cy

2d-oriented-point x, y, dx, dy ax, ay, adx, ady; bx,by, bdx,

bdy; cx,cy,cdx,cdy

dipole sx, sy, ex, ey sax, say, eax, eay; sbx, aby,

. . .
2d-box x1, y1, x2, y2 ablx, ably, atrx, atry, bblx,

bbly, . . . (bl: bottom left, tr: top
right)

In case of representing oriented points (see Sec. A.12), the variables dx, dy give a
direction vector. In contrast, specification of a dipole (see Sec. A.11) is based on the
start point sx, sy and the end point ex, ey. Note that the algebraic representation of basis
entities corresponds to the form of specifying scenarios to processed by the quantifier
module.

The variable representation is used when specifying qualitative relations. To specify
a qualitative relation r(A,B), a set of multivariate polynomial equations need to be
provided such that

pr,1(x1, x2, . . . , xk) < 0

pr,2(x1, x2, . . . , xk) < 0

⋮

pr,i(x1, x2, . . . , xk) = 0

pr,i+1(x1, x2, . . . , xk) = 0

⋮

pr,j(x1, x2, . . . , xk) > 0

⋮

pr,k(x1, x2, . . . , xk) > 0

is satisfied if and only if r(A,B) holds whereby x1, . . . xk stand for the variable repre-
sentation introduced above.
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Polynomials are denoted in a list based syntax, for example:
(0 = (1 ((ax 1))) (-1 ((bx 1)))) stands for 0 = 1 ⋅ ax1 − 1 ⋅ bx1.

3.14. Extending SparQ

Beyond adding new calculi, SparQ offers a simple mechanism to introduce new tools.
The aim of this method is to provide means for adding additional methods, either specific
to a certain calculus, or general ones. At startup, SparQ will evaluate the contents of
the file Lib/extensions.lisp inside the SparQ directory in which tool declarations
are expected. Tools declared in Lib/extensions.lisp are in all regards equivalent to
the tools internally provided by SparQ.

Tool declaration is based on a simple macro def-tool in which argument syntax and
the call to the actual tool code are declared. Here’s the syntax:

( def-tool (argument∗)
:documentation "brief description "

[ :requires file∣list-of-files]
code)

Tool code inside def-tool needs to be written in Lisp, but of course it can just be
used to call some external non-Lisp code.

• Please refer to the SBCL manual on how to invoke external C/C++ code residing
in shared libraries—it’s easy!

• The SBCL manual also explains all details of invoking external programs and
obtaining the output

SparQ involves a complex type system which shapes the way tool arguments are
declared. This is covered in Section 4 and we only give some examples here sufficient
declaring simple tools:

(def-tool ("translate" (c (calculus allen)) (csp constraint-network c) ¿

⇢"point-caluclus")

:documentation "converts CSP with Allen relations to point-calculus"

:requires "translators/my-allen- >pc-translator.lisp"

(do-the-work csp))

This command would declare a tool “translate” that would take as input two parameters,
c which is a calculus and csp, which is a constraint-network. More precisely, c must
be a calculus of type “allen” which, is satisfied by Allen’s interval algebra. Additionally,
the constraint-network must be defined over the calculus c, i.e., it must only involve
Allen relations. If matching parameters are supplied, the function do-the-work is

43



3. Using SparQ

invoked which is assumed to reside in the file specified by :requires. With command
declarations, overloading a tool similar to object-oriented programming is possible.

(def-tool ("list-directory" (which symbol))

:documentation "retrieves contents of a directory"

(with-output-to-string (dir)

(run-program "/bin/ls" (list (symbol-name which)) :output dir)))

This tool shows a simple way of invoking an external program (here: the Unix ls tool)
and retrieving the output generated. The only argument to this command, which,
is declared to be of type symbol, the Lisp type corresponding to identifiers in other
programming languages.2

2Lisp programmers may wonder about case-(in)sensitivity here: SparQ uses a case-sensitive read-table
for parsing user input. Later, case information is stripped away for identifiers. Thus, symbol-name
as used here will yield a string preserving cases.
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This section provides some information about the internals of SparQ together with
planned extensions. SparQ is under current development in the project R3-[Q-Shape]. If
you have any questions, additions, or recommendations we’d be glad getting into contact.

4.1. Implementation Details

(to be supplemented)

4.1.1. SparQ type systen

SparQ takes a conflicting approach to data types. On the one hand side, there exists a
sophisticated type system that is used to declare tools and to select appropriate methods,
but on the other hand side SparQ aims at stripping away any type information to
facilitate fast bit bang operations when it comes to reasoning. In what follows, we
explain the sophisticated type system as this is exhibited through the extension facility
of SparQ. Keep in mind that internal functions are often designed to operate on other
types of data though.

The type system used in SparQ comprises the full type system of Lisp, both object-
oriented types/classes and regular types. The most important use of types is declaring
new commands for SparQ. We start by a practical example:

(def-tool ("check-matches" (c (calculus rcc8)) (csp constraint-network ¿

⇢c) (timeout real) (option (member first all)) (p (sparq:list-of ¿

⇢simple-polygon)))

:documentation "Checks whether a csp with RCC-8 relations matches ¿

⇢quantitative input data given as polygonals"

:requires "some/external/code.lisp"

(do-the-check c csp timeout option p))

This imaginary tool could be invoked as follows:

SparQ> check-matches rcc8 ((A (po eq) B) (A ntpp C)) all ((A (1.0 2.3

29.2 4.0 23.0 1.0)) (B (1.0 1.0 2.0 2.0 3.1 2.0)) (B (-1.0 1.0

2.0 3.0 3.4 4.0)))

Our tool declaration makes use of several facets of the type system:
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"check-matches" Though not precisely a type specifier, string arguments are intro-
duced as short-hand notations for types that only consists of a single object (the
string given) and for which no argument will be defined.

(calculus rcc8) Denotes a SparQ built-in type specialized to rcc8 (see next section
on implementation details). This roughly corresponds to Lisp’s type specializers
such as, for example integer vs. (integer 0 10).

constraint-network c declares a type constraint-network which additionally de-
pends on the argument c in the command’s lambda-list. The argument c

of type (calculus rcc8) will be supplied to the parser dedicated to the type
constraint- network—see next section for details. SparQ automatically deter-
mines a suitable order in which to parse arguments.

real a simple real number (which may be either an integer or fractional number type)

(member first all) the argument option is declared as a standard Lisp type using
the type constructor member to declare a type that exclusively consists of the two
symbols first and all. Similarly, all other Lisp type constructors can be used.

(sparq:list-of simple-polygon) combines a SparQ-specific list type specialized to
the type simple-polygon, i.e., all members of the list are declared to be of the
type simple-polygon.

SparQ primitive class

New types (in particularly those used in the user/tool interface) are declared as classes
inheriting from the class sparq:primitive, which is defined in the file “commands”.
There are some methods defined for the purpose of interfacing with the user:

parse-primitive — method dedicated to parsing user input

initialize-primitive — method for post-parsing object initialization. This method
exists to enable delaying costly object initialization until all parsing has been com-
pleted successfully

describe-primitive — writing a textual description to be used with SparQ help
command

In order to develop a new type, declare an appropriate class and specialize the parse-
primitive method using an EQL-specializer.

(defclass my-type (sparq:primitive)

;; slot-definitions

)

46



4. Internals

(defmethod sparq:parse-primitive ((x (eql ’my-type)) expression &rest ¿

⇢extra)

;; dedicated parsing code goes here

;; return (cons :FAIL "error-msg ") if parsing fails

)

(defmethod sparq:initialize-primitive ((x my-type))

;; any additional initialization code would go here

)

(defmethod sparq:describe-primitive ((x my-type) stream)

;; print type description to stream

)

(defmethod print-object ((x my-type) stream)

;; specialized printing code

)

The method parse-primitive needs a closer look: in order to parse dependent types
and type parameters such as, for example, (calculus allen), SparQ will invoke the
parse-primitive method of the appropriate type (here: calculus) and supply the
specifiers as &rest parameters. It is the duty of parse-primitive to check that any
additional specializers are satisfied.

In case of dependent types, additional information will also be supplied as &rest/&key

parameter. Consider the following tool declaration:

(def-tool ("constraint-reasoning" (c calculus) "refine" (cn ¿

⇢constraint-network c) (cn2 constraint-network c))

...)

Here, the constraint-networks cn and cn2 both depend on the calculus c. When
parsing the arguments cn and cn2, SparQ will supply the calculus parameter c

as &key argument to parse-primitive EQL-specialized to constraint-network;
parsing then roughly looks like this:

(defmethod parse-primitive ((x (eql ’constraint-network)) expression ¿

⇢&key calculus)

;; step 1: check that "expression" is a proper CSP

;; step 2: check that only relations from "calculus" are used

...)

Please bear in mind that deriving new classes from primitive is only required when
defining complex data types—the Lisp type system is usually powerful enough to declare
what you need and providing you the data in a friendly, list-based format. In this case,
no parsing etc. needs to be implemented.
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4.2. Outlook — Planned Extensions

Besides extending the set of supported qualitative calculi, the following extensions are
currently planned for the future:

tool integration — we are planning to provide further interfaces to exchange calculus
specifications and reasoning with other reasoners

Further goals are to continue the optimization of the algorithms employed in SparQ, for
instance by applying maximal tractable subsets for the constraint reasoning part, and to
include new results from the QSR community as they become available, in particular with
respect to constraint reasoning techniques for calculi for which the standard algebraic
closure algorithms are insufficient to decide consistency.

Again, please feel free to contact us if you have any ideas or wishes concerning the
extension or improvement of SparQ.
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P. Balbiani, J. Condotta, and L. Fariñas del Cerro. Tractability results in the block
algebra. J. Log. Comput., 12(5):885–909, 2002.

A G Cohn, B Bennett, J M Gooday, and N Gotts. RCC: A calculus for region based
qualitative spatial reasoning. GeoInformatica, 1:275–316, 1997.

Anthony G. Cohn. Qualitative spatial representation and reasoning techniques. In
Gerhard Brewka, Christopher Habel, and Bernhard Nebel, editors, KI-97: Advances
in Artificial Intelligence, 21st Annual German Conference on Artificial Intelligence,
Freiburg, Germany, September 9-12, 1997, Proceedings, volume 1303 of Lecture Notes
in Computer Science, pages 1–30, Berlin, 1997. Springer.

Anthony G. Cohn and Shyamanta M. Hazarika. Qualitative spatial representation and
reasoning: An overview. Fundamenta Informaticae, 46(1-2):1–29, 2001.

Jean-Francois Condotta, Gérard Ligozat, and Mahmoud Saade. A generic toolkit for
n-ary qualitative temporal and spatial calculi. In Proceedings of the 13th Interna-
tional Symposium on Temporal Representation and Reasoning (TIME’06), Budapest,
Hungary, 2006.

D. A. Cox, J. B. Little, and D. O’Shea. Using Algebraic Geometry, volume 185 of
Graduate Texts in Mathematics. Springer, NY, 1998.

Ivo Düntsch. Relation algebras and their application in temporal and spatial reasoning.
Artificial Intelligence Review, 23(4):315–357, 2005.

Frank Dylla. An Agent Control Perspective on Qualitative Spatial Reasoning, volume
320 of DISKI. Akademische Verlagsgesellschaft Aka GmbH (IOS Press), Heidelberg,
Germany, 2008. ISBN 978-3-89838-320-2. Doctoral thesis (Universitty of Bremen).

Frank Dylla and Jae Hee Lee. A combined calculus on orientation with composition
based on geometric properties. In ECAI-10, 2010.

49



Bibliography

Frank Dylla and Reinhard Moratz. Empirical complexity issues of practical qualita-
tive spatial reasoning about relative position. In Workshop on Spatial and Temporal
Reasoning at ECAI 2004, Valencia, Spain, August 2004.

Frank Dylla and Reinhard Moratz. Exploiting qualitative spatial neighborhoods in the
situation calculus. In Freksa et al. (2005), pages 304–322.

Andrew Frank. Qualitative spatial reasoning about cardinal directions. In Proceedings of
the American Congress on Surveying and Mapping (ACSM-ASPRS), pages 148–167,
Baltimore, Maryland, USA, 1991.

Christian Freksa. Using orientation information for qualitative spatial reasoning. In
A. U. Frank, I. Campari, and U. Formentini, editors, Theories and methods of spatio-
temporal reasoning in geographic space, pages 162–178. Springer, Berlin, 1992a.

Christian Freksa. Temporal reasoning based on semi-intervals. Artificial Intelligence, 1
(54):199–227, 1992b.

Christian Freksa, Markus Knauff, Bernd Krieg-Brückner, Bernhard Nebel, and Thomas
Barkowsky, editors. Spatial Cognition IV. Reasoning, Action, Interaction: Interna-
tional Conference Spatial Cognition 2004, volume 3343. Springer, Berlin, Heidelberg,
2005.

Hans W. Güsgen. Spatial reasoning based on Allen’s temporal logic. Technical Report
TR-89-049, International Computer Science Institute, Berkeley, 1989.

Amar Isli and Anthony G. Cohn. An algebra for cyclic ordering of 2d orientations. In
AAAI/IAAI, pages 643–649, Madison, WI, 1998.

Amar Isli and Anthony G. Cohn. A new approach to cyclic ordering of 2d orientations
using ternary relation algebras. Artificial Intelligence., 122(1-2):137–187, 2000.

P. Ladkin and R. Maddux. On binary constraint problems. Journal of the Association
for Computing Machinery, 41(3):435–469, 1994.

Peter Ladkin and Alexander Reinefeld. Effective solution of qualitative constraint prob-
lems. Artificial Intelligence, 57:105–124, 1992.

G. Ligozat. Reasoning about cardinal directions. Journal of Visual Languages and
Computing, 9:23–44, 1998.

Gerard Ligozat. Qualitative triangulation for spatial reasoning. In Andrew U. Frank
and Irene Campari, editors, Spatial Information Theory: A Theoretical Basis for GIS,
(COSIT’93), Marciana Marina, Elba Island, Italy, volume 716 of Lecture Notes in
Computer Science, pages 54–68. Springer, 1993. ISBN 3-540-57207-4.

50



Bibliography

Gérard Ligozat. Categorical methods in qualitative reasoning: The case for weak repre-
sentations. In Spatial Information Theory: Cognitive and Computational Foundations,
Proceedings of COSIT’05, 2005.

A. K Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99–118,
1977.

Reinhard Moratz. Representing relative direction as binary relation of oriented points. In
Proceedings of the 17th European Conference on Artificial Intelligence (ECAI 2006),
Riva del Garda, Italy, August 2006.

Reinhard Moratz, Jochen Renz, and Diedrich Wolter. Qualitative spatial reasoning about
line segments. In W. Horn, editor, Proceedings of the 14th European Conference on
Artificial Intelligence (ECAI), Berlin, Germany, 2000. IOS Press.

Reinhard Moratz, Frank Dylla, and Lutz Frommberger. A relative orientation algebra
with adjustable granularity. In Proceedings of the Workshop on Agents in Real-Time
and Dynamic Environments (IJCAI 05), Edinburgh, Scotland, July 2005.

Marco Ragni and Alexander Scivos. Dependency calculus reasoning in a general point
relation algebra. In Leslie Pack Kaelbling and Alessandro Saffiotti, editors, IJCAI-05,
Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence,
Edinburgh, Scotland, UK, July 30-August 5, 2005, pages 1577–1578. Professional Book
Center, 2005.

David A. Randell, Zhan Cui, and Anthony Cohn. A spatial logic based on regions
and connection. In Bernhard Nebel, Charles Rich, and William Swartout, editors,
Principles of Knowledge Representation and Reasoning: Proceedings of the Third In-
ternational Conference (KR’92), pages 165–176. Morgan Kaufmann, San Mateo, CA,
1992.

Jochen Renz and Gérard Ligozat. Weak composition for qualitative spatial and temporal
reasoning. In Peter van Beek, editor, Proceedings of the 11th International Conference
on Principles and Practice of Constraint Programming (CP 2005), volume 3709 of
LNCS, pages 534–548. Springer, October 2005.

Christoph Schlieder. Reasoning about ordering. In Proceedings of COSIT’95, volume 988
of Lecture Notes in Computer Science, pages 341–349. Springer, Berlin, Heidelberg,
1995.

Alexander Scivos and Bernhard Nebel. Double-crossing: Decidability and computational
complexity of a qualitative calculus for navigation. In Proceedings of COSIT’01, Berlin,
2001. Springer.

51



Bibliography

Alexander Scivos and Bernhard Nebel. The finest of its class: The practical natural
point-based ternary calculus LR for qualitative spatial reasoning. In Freksa et al.
(2005), pages 283–303.

Nico van de Weghe. Representing and Reasoning about Moving Objects: A Qualitative
Approach. PhD thesis, Ghent University, 2004.

M. B. Vilain, H. A. Kautz, and P. G. van Beek. Constraint propagation algorithms for
temporal reasoning: A revised report. In Readings in Qualitative Reasoning about
Physical Systems. Morgan Kaufmann, San Mateo, CA, 1989.

52



A. Implemented Calculi

In this section, we briefly describe the spatial calculi currently supported by SparQ.
Some calculi are actually calculi families for which a set of calculus parameters needs
to be specified in order to obtain a particular calculus instance. For instance, for the
OPRAm calculus the granularity (number of partitioning lines) has to be specified as a
calculus parameter.

Each calculi description in this section starts with a box summarizing the main charac-
teristics of the considered calculus. The meaning of the entries in the box are explained
below:

short name — the name used in SparQ to refer to this calculus

calculus parameters — the parameters that need to be specified whenever using this
calculus

arity — the arity of the relations of this calculus (binary or ternary)

entity type — the spatial entities related in this calculus (2D points, oriented 2D points,
line segments dipoles, etc.)

description — a short description of the calculus

base relations — a naming scheme or list of the base relations of the calculus

references — references to literature about this calculus

remarks — special remarks concerning the calculus
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A.1. Allen’s Interval Algebra (IA)

Allen’s Interval Algebra overview

calculus identifier allen, aia, ia

calculus parameters none

arity binary

entity type intervals (defined by a start and end-point) on a unidirectional
time line

description describes the mereotopological relation between two intervals

base relations b (before), bi (before inverse), m (meets), mi (meets inverse),
o (overlaps), oi (overlaps inverse), s (starts), si (starts inverse),
d (during), di (during inverse), f (finishes), fi (finishes inverse),
eq (equals)

references Allen (1983)

Allen’s interval algebra (IA) (Allen, 1983) relates pairs of time intervals. Time in-
terval x is represented as a tuple of a starting point xs and end point xe with xs < xe
using real numbers, e.g., (life-of-Bach 1685 1750). Altogether 13 base relations are
distinguished by comparing the start and end points of the intervals.

relation term example definition

b x before y xxx xe < ys
bi y after x yyy

m x meets y xxxx xe = ys
mi y met-by x yyyy

o x overlaps y xxxxx xs < ys < xe∧
oi y overlapped-by x yyyyy xe < ye
d x during y xxx xs > ys∧
di y includes x yyyyyyy xe < ye
s x starts y xxx xs = ys∧
si y started-by x yyyyyyy xe < ye
f x finishes y xxx xe = ye∧
fi y finished-by x yyyyyyy xs > ys
eq x equals y xxxxxxx xs = ys∧

yyyyyyy xe = ye
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A.2. Block-Algebra (BA)

Block Algebra overview

calculus identifier block-algebra,ba

calculus parameter none

arity binary

entity tape axis-aligned boxes, (xmin, ymin, xmax, ymax)

description describes spatial arrangement of boxes by independently pro-
jecting to x- and y-axis intervals and applying Allen’s Interval
Algebra (see Section sec:allen) to both dimensions (see Figure
fig:block-algebra)

base relations relations r s, whereby r, s are Allen relations which yields 13 ⋅
13 = 169 base relations

references Güsgen (1989), Balbiani et al. (2002)
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Figure A.1.: Example relation o di in the block algebra
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A.3. Cardinal Direction Calculus

Cardinal Direction Calculus overview

calculus identifier cardir

calculus parameters none

arity binary

entity type 2D points

description describes the orientation of two point regarding and absolute
orientation

base relations N, NE, E, SE, S, SW, W, NW, EQ

references Frank (1991), Ligozat (1998)

Frank (1991) introduced the cardinal direction calculus.1 The euclidian plane P is
partitioned into regions with respect to a reference point R and a global west-east/south-
north reference frame. Any point P ∈ P belongs to one of the nine basic relations: North,
NorthEast, East, SouthEast, South, SouthWest, West, NorthWest, or Equal. The
model is depicted in Figure A.2.

N

S

NE

E

SE

NW

W

SW

EQ

Figure A.2.: Base relations of the cardinal direction calculus.

1Frank introduced two different variants, called projection-based and cone-based. This calculus defini-
tion implements the projection-based variant.
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A.4. The Region Connection Calculus family (RCC)

The calculi from the RCC family (RCC-8 and RCC-5) allow mereotopological reasoning
(reasoning about connection and part-of relationships) about simple regions in the plane.
Other domains involving regions can also be considered in the context of RCC, e.g. 3D
regions, or non-simple regions in the plane, which can affect the correctness of the
constraint-based reasoning algorithms. Since so far no qualifier for RCC is available in
SparQ, the exact domain is actually still not determined. However, we will assume the
case of simple regions in the plane in the following.

RCC-8

Region Connection Calculus 8 (RCC-8) overview

calculus identifier rcc-8

calculus parameters none

arity binary

entity type simple regions in the plane

description describes the mereotopological relation between two regions

base relations dc (disconnected), ec (externally connected), po (partially over-
lapping), eq (equal), tpp (tangential proper part), ntpp (non-
tangential proper part), tppi (tangential proper part inverse),
ntppi (non-tangential proper part inverse)

references Randell et al. (1992), Cohn et al. (1997)

remarks no qualifier is available for this calculus yet

RCC-8 is the more fine-grained variant of RCC calculi. It distinguishes the eight base
relations dc (disconnected), ec (externally connected), po (partially overlapping), eq
(equal), tpp (tangential proper part), ntpp (non-tangential proper part), tppi (tangential
proper part inverse), and nttpi (non-tangential proper part inverse) which are illustrated
in Fig. A.3.
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Figure A.3.: The RCC-8 base relations.

RCC-5

Region Connection Calculus 5 (RCC-5) overview

calculus identifier rcc-5

calculus parameters none

arity binary

entity type simple regions in the plane

description describes the mereotopological relation between two regions

base relations dr (discrete from), po (partially overlapping), eq (equal), pp
(proper part), ppi (proper part inverse)

references Cohn et al. (1997)

remarks no qualifier is available for this calculus yet

RCC-5 is a coarser version of RCC-8. The RCC-8 relations dc and ec are combined
into one relation called dr. Similarly, ntpp and tpp are combined into pp and ntppi and
tppi into ppi.
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A.5. Dependency Calculus

Dependency Calculus overview

calculus identifier depcalc, dep

calculus parameters none

arity binary

entity type -

description describes the order between nodes in a network

base relations <, =, >, ˆ, ∼

references Ragni and Scivos (2005), ?

remarks no qualifier is available for this calculus yet

The Dependency Calculus (DC) represents pairs of points regarding their dependen-
cies in a partial ordered structure. Therefore, it meets all requirements to describe
dependencies in networks. If x, y are points in a partial order ⟨T,≤⟩ the base relations
are defined as follows (Ragni and Scivos, 2005):

x < y iff x ≤ y and not y ≤ x.

x = y iff x ≤ y and y ≤ x.

x > y iff y ≤ x and not x ≤ y.

x ˆ y iff ∃z z ≤ y ∧ z ≤ x and neither x ≤ y nor y ≤ x.

x ∼ y iff neither ∃z z ≤ y ∧ z ≤ x nor x ≤ y nor y ≤ x.
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A.6. Singlecross Calculus (SCC)

Singlecross calculus (SCC) overview

calculus identifier scc

calculus parameters none

arity ternary

entity type 2D points

description relates the referent c relative to the line between origin a and
relatum b and the orthogonal line thru b, resulting in 11 base
relations

base relations 0..7 and b (for b=c), dou, tri

references Freksa (1992a)

The single cross calculus is a ternary calculus that describes the direction of a point C
(the referent) with respect to a point B (the relatum) as seen from a third point A (the
origin). It has originally been proposed in Freksa (1992a). The plane is partitioned into
regions by the line going through A and B and the perpendicular at B. This results in
eight possible directions for C as illustrated in Fig. A.4. We denote these base relations
by numbers from 0 to 7 instead of using linguistic prepositions, e.g. 2 instead of left,
as originally done in Freksa (1992a). Relations 0, 2, 4, 6 are linear ones, while relations
1, 3, 5, 7 are planar. In addition, three special relations exist for the cases A ≠ B = C
(b), A = B ≠ C (dou), and A = B = C (tri). A single cross relation relSCC is written as
A,B relSCC C, e.g. A,B 4 C or A,B dou C. The relation depicted in Fig. A.4 is the
relation A,B 5 C.
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Figure A.4.: The Single Cross Reference System
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A.7. Doublecross Calculus (DCC)

Doublecross calculus (DCC) overview

calculus identifier dcc, double-cross

calculus parameters none

arity ternary

entity type 2D points

description relates the referent C relative to the line between origin A and
relatum B and the orthogonal lines through A and B, resulting
in 17 base relations

base relations 0 4, 1 5, 2 5, 3 5, 3 6, 3 7, 4 0, 5 1, 5 2, 5 3, 6 3, 7 3,
4 4, b 4, 4 a, dou, tri

references Freksa (1992a)

The double cross calculus (Freksa, 1992a) can be seen as an extension of the single
cross calculus adding another perpendicular, this time at A (see Fig. A.5 (right)). It can
also be interpreted as the combination of two single cross relations, the first describing
the position of C with respect to B as seen from A and the second with respect to A
as seen from B (cf. Fig. A.5 (left)). The resulting partition distinguishes 13 relations (7
linear and 6 planar) denoted by tuples derived from the two underlying SCC reference
frames and four special cases, A = C ≠ B (4 a), A ≠ B = C (b 4), A = B ≠ C (dou), and
A = B = C (tri), resulting in 17 base relations overall. In Fig. A.5 (right) the relation
A,B 5 3 C is depicted.
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Figure A.5.: The two Single Cross reference frames resulting in the overall Double Cross
Calculus reference frame
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Alternative Doublecross Calculus (DCC) overview

calculus identifier adcc, alternative-double-cross

calculus parameters none

arity ternary

entity type 2D points

description relates the referent C relative to the line between origin A and
relatum B and the orthogonal lines through A and B, resulting
in 17 base relations

base relations 0-12, a, b, dou, tri

references Freksa (1992a)

In the literature also a single numbered notation can be found. We refer to this
nomenclatur as the Alternative Doublecross Calculus. Apart from relations b 4, 4 a the
mapping between tuple notation and alternative notation is given in Figure A.6. b 4
corresponds to b and 4 a to a. dou and tri are defined as above.

2

1

B

A

3

4

5 6 7

8

9

10

11

12
C

2_5 B

A3_6

3_7 4_0 5_1

5_2

6_3

7_3

C

00_41_5

3_5 4_4 5_3

Figure A.6.: Schematic overview of Doublecross base relation names in tuple notation and the
alternative notation.
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A.8. FlipFlop Calculus With LR Refinement

FlipFlop calculus (FFC) overview

calculus identifier ffc, ff, flipflop

calculus parameters none

arity ternary

entity type 2D points

description relates the referent C relative to the line segment starting at
origin A and ending at relatum B resulting in nine base relations

base relations l (left), r (right), f (front), b (back), i (inside), s (start), e
(end), dou, tri

references Ligozat (1993), Scivos and Nebel (2005)

remark SparQ uses the LR refinement in its implementation of the
FFC

The FlipFlop calculus proposed in Ligozat (1993) describes the position of a point C
(the referent) in the plane with respect to two other points A (the origin) and B (the
relatum) as illustrated in Fig. A.7. It can for instance be used to describe the spatial
relation of C to B as seen from A. For configurations with A ≠ B the following base
relations are distinguished: C can be to the left or to the right of the oriented line going
through A and B, or C can be placed on the line resulting in one of the five relations
inside, front, back, start (C = A) or end (C = B) (cp. Fig. A.7). Relations for the
case where A and B coincide were not included in Ligozat’s original definition (Ligozat,
1993). This was done with the LR refinement (Scivos and Nebel, 2005) that introduces
the relations dou (A = B ≠ C) and tri (A = B = C) as additional relations, resulting in
9 base relations overall. A LR relation relLR is written as A,B relLR C, e.g. A,B r C
as depicted in Fig. A.7.

l

A B
C

r

es

Figure A.7.: The reference frame for the LR calculus, an enhanced version of the FlipFlop
Calculus
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A.9. Cycord Family

Cycord calculi (Isli and Cohn, 1998) are based on oriented line segments, either defined by
a direction directly, or start and end point (cf. dipoles in A.11). The relations between
two line segments X and Y can take one of the four values: e (equal alignment), l
(oriented left, i.e. the angle α between X and Y is α ∈ (0, π), o (opposite, i.e. α = π, or
r (oriented right, i.e. α ∈ (π,2π). The binary case, where two oriented line segments are
related, is equivalent to the alignment calculus (Section A.10). In the ternary case three
line segments are considered and the relation consists of a three tuple (rXY , rXZ , rY Z)

with rXY denoting the binary relation between X and Y , rXZ between X and Z, and
rY Z) between Y and Z. Out of the 64 possible only 24 are valid, i.e. only 24 are consistent
in terms of the binary Cycord definition.

Binary CyCord

Binary Cycord calculus overview

calculus identifier cycord2, cc2

calculus parameters none

arity binary

entity type dipoles in the plane (oriented line segments)

description relates two dipoles regarding their relative orientation (align-
ment)

base relations e, l, o, r

references Isli and Cohn (1998), Isli and Cohn (2000)

X
Y

Figure A.8.: A binary Cycord relation: l
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Ternary CyCord

Ternary Cycord calculus overview

calculus identifier cycord3, cc3

calculus parameters none

arity ternary

entity type dipoles in the plane (oriented line segments)

description relates two dipoles regarding their relative orientation (align-
ment)

base relations eee, ell, eoo, err, lel, lll, llo, llr, lor, lre, lrl, lrr, oeo, olr, ooe,
orl, rer, rle, rll, rlr, rol, rrl, rro, rrr

references Isli and Cohn (1998), Isli and Cohn (2000)

X

Y

Z

Figure A.9.: A ternary Cycord relation: llr
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A.10. The Geometric Orientation (Alignment) Calculus

The Geometric Orientation (Alignment) Calculus overview

calculus identifier geomori, ori, align

calculus parameters none

arity binary

entity type dipole

description describes the alignment of two oriented line segments

base relations P , +, O, −

references Dylla (2008), Dylla and Lee (2010)

remarks no qualifier is available for this calculus yet;
conceptually equivalent to Binary Cycord (see Appendix A.9)

The Geometric Orientation Calculus, also called Geometric Alignment Calculus, re-
lates the alignment of two oriented line segments. The alignment is derived by shifting
both points of the second dipole such that the starting points of dipole A and B coin-
cide. Dipole B may point in the same direction as A (parallel), in opposite direction as
A (opposite-parallel), somewhere to the left of dipole A (mathematically positive), or
somewhere to the right of dipole A (mathematically negative). An example with two
dipoles which are aligned positively is depicted in Figure A.10. The alignment of dipoles
is part of the development of the fine grained Dipole Relation Algebra with paralellism
in (Dylla and Moratz, 2005).

s

sA

sB

eB

eAe′B

Figure A.10.: Example of two dipoles which are aligned positively.
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A.11. Dipole Calculus Family

A dipole is an oriented line segment as e.g. determined by a start and an end point. We
will write d⃗AB for a dipole defined by start point A and end point B. The idea of using
dipoles was first introduced by Schlieder (1995) and extended resulting in the coarse-
grained Dipole Relation Algebra DRAc (Moratz et al., 2000). Later, a fine-grained
version of the dipole calculus (DRAf ) has been proposed (Dylla and Moratz, 2005)
and which has further been extended to DRAfp (Dylla and Moratz, 2005). In SparQ,
currently only the coarse-grained version DRAc is available.

Coarse-grained Dipole Relation Algebra (DRAc)

Coarse-grained dipole calculus (DRAc) overview

calculus identifier dra-24, dipole-coarse

calculus parameters none

arity binary

entity type dipoles in the plane (oriented line segments)

description relates two dipoles using the FlipFlop relations between the
start and end point of one dipole and the other dipole

base relations 4-symbol words where each symbol can be either l (left), r
(right), s (start), or e (end) (not all combinations are possible)

references Moratz et al. (2000)

A B

C

D

Figure A.11.: A dipole configuration: d⃗AB rlll d⃗CD in the coarse-grained dipole relation algebra
(DRAc).

The coarse-grained dipole calculus variant (DRAc) describes the orientation relation
between two dipoles d⃗AB and d⃗CD with the preliminary of A, B, C, and D being in
general position, i.e. no three disjoint points are collinear. Each base relation is a 4-
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tuple (r1, r2, r3, r4) of FlipFlop relations relating a point from one of the dipoles with
the other dipole. r1 describes the relation of C with respect to the dipole d⃗AB, r2 of D
with respect to d⃗AB, r3 of A with respect to d⃗CD, and r4 of B with respect to d⃗CD. The
distinguished FlipFlop relations are left, right, start, and end (see Fig. A.7). Dipole
relations are usually written without commas and parentheses, e.g. rrll. Thus, the
example in Fig. A.11 shows the relation d⃗AB rlll d⃗CD. Since the underlying points for
a DRAc relation need to be in general position, ri can only take the values left, right,
start, or end resulting in 24 base relations.
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A.12. Oriented Point Reasoning Algebra With Granularity m
(OPRAm)

Oriented Point Relation Algebra (OPRAm) overview

calculus identifier opra-

calculus parameters granularity - number of partitioning lines (= number of planar
relations / 2), must be > 0

arity binary

entity type oriented 2D points

description relates two oriented points a and b with respect to granularity
m

base relations [i, j] with i, j ∈ {0, ..,4m−1}, if a and b have different positions;
[i] with i ∈ {0, ..,4m − 1} if they have the same position

references Moratz et al. (2005), Moratz (2006)

The domain of the Oriented Point Relation Algebra (OPRAm) (Moratz et al., 2005,
Moratz, 2006) is the set of oriented points (points in the plane with an additional direc-
tion parameter). The calculus relates two oriented points with respect to their relative
orientation towards each other. An oriented point O⃗ can be described by its Cartesian
coordinates xO, yO ∈ R and a direction φO⃗ ∈ [0,2π] with respect to an absolute reference
direction and thus D = R2 × [0,2π].

The OPRAm calculus is suited for dealing with objects that have an intrinsic front
or move in a particular direction and can be abstracted as points. The exact set of base
relations distinguished in OPRAm depends on the granularity parameter m ∈ N. For
each of the two related oriented points, m lines are used to partition the plane into 2m
planar and 2m linear regions. Fig. A.12 shows the partitions for the cases m = 2 (a) and
m = 4 (b). The orientation of the two points is depicted by the arrows starting at A⃗ and
B⃗, respectively. The regions are numbered from 0 to 4m − 1; region 0 always coincides
with the orientation of the point. An OPRAm base relation relOPRAm consists of a pair
(i, j) where i is the number of the region of A⃗ which contains B⃗, while j is the number
of the region of B⃗ that contains A⃗. These relations are usually written as A⃗ m∠

j
i B⃗

with i, j ∈ Z4m
2. Thus, the examples in Fig. A.12 depict the relations A⃗ 2∠1

7 B⃗ and
A⃗ 4∠3

13 B⃗. Additional base relations called same relations describe situations in which
the positions of both oriented points coincide. In these cases, the relation is determined

2
Z4m defines a cyclic group with 4m elements.
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(c) case where A⃗ and B⃗ coincide:
A⃗ 2∠1 B⃗

Figure A.12.: Two oriented points related at different granularities.

by the number s of the region of A⃗ into which the orientation arrow of B⃗ falls (as
illustrated in Fig. A.12(c)). These relations are written as A⃗ 2∠s B⃗ (A⃗ 2∠1 B⃗ in the
example).

The complete set R of OPRAm relations is the power set of the base relations de-
scribed above.
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A.13. Point Calculus (Point Algebra)

Point Calculus (Point Algebra) overview

calculus identifier point-calculus, pc, point-algebra, pa

calculus parameters none

arity binary

entity type 1D points

description describes the order between two 1D points (values)

base relations <, =, >

references Vilain et al. (1989)

The Point Calculus (PC) (Vilain et al., 1989) relates pairs of 1D points, represented
by real-valued numbers. Pairs of values are categorized using the three base relations
less than (<), equal (=), or greater than (>).
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A.14. Qualitative Trajectory Calculus Family

van de Weghe (2004) developed a family of trajectory calculi on the basis of relative
trajectories of two moving objects. He investigates representation where he combined
subsets of the three different features: change in distance, change to the side, and relative
velocity. He also investigated differences in representations based on one dimensional
(1D) and two dimensional (2D) entities. The most basic calculus is QTCB11 dealing
with change in distance in 1D, enhanced with velocity in QTCB12. The extensions
to 2D entities is given in QTCB21 and QTCB22. QTCC21 (QTCC22) extends QTCB21

(QTCB22) by relative velocity.

QTC in 1D With Distance

Qualitative Trajectory Calculus in 1D (QTC-B11)

calculus identifier qtc-b11

calculus parameters none

arity binary

entity type interval (1D trajectory positions at two different time points)

description describes the relative orientation between two trajectory seg-
ments

base relations3 ++, +-, +O, -+, - -, -O, O+, O-, OO

references van de Weghe (2004)

remarks no qualifier is available for this calculus yet

QTCB11 represents the relative distance change of two moving objects A and B at
timepoints ti and ti+1 . Intuitively, the first character denotes whether A moves towards
the starting position of B (−), moves away (+, or the distance stays the same (O). With
dist(x, y) denoting the distance between two positions and Ai denotes the position of ob-
ject A at time point ti moving towards means dist(Ai+1,Bi) < dist(Ai,Bi), moving away
means dist(Ai+1,Bi) > dist(Ai,Bi), and equidistant means dist(Ai+1,Bi) = dist(Ai,Bi)

The second character represents the change in distance regarding B wrt. A. This results
in nine base relations.

3For avoiding the necessity to quote every single relation such that leading zeros are not ignored we
realized the implementation with O’s instead of zeros.
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QTC in 1D With Distance and Velocity

Qualitative Trajectory Calculus in 1D with velocity (QTC-B12)

calculus identifier qtc-b12

calculus parameters none

arity binary

entity type -

description describes the relative orientation between two trajectory seg-
ments

base relations +++, ++-, ++O, +-+, +- -, +-O, +O+, -++, -+-, -+O, -
-+, - - -, - -O, -O+, O+-, O- -, OOO

references van de Weghe (2004)

remarks no qualifier is available for this calculus yet

The first two characters of QTCB12 represent the same as QTCB11. The third char-
acter represents the relative velocitiy between A and B, i.e. whether object A is slower
than B (−), is faster (+), or both have the same velocity (O). Because the conditions of
the three characters interfere in 1D only 17 out of 27 potential relations are feasible.
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QTC in 2D With Distance

Qualitative Trajectory Calculus in 2D (QTC-B21)

calculus identifier qtc-b21

calculus parameters none

arity binary

entity type dipole (2D trajectory positions at two different time points)

description describes the relative orientation between two trajectory seg-
ments

base relations ++, +-, +O, -+, - -, -O, O+, O-, OO

references van de Weghe (2004)

remarks no qualifier is available for this calculus yet

QTCB21 is similar to QTCB11 except dealing with trajectories in 2D instead of only
1D.

QTC in 2D With Distance and Velocity

Qualitative Trajectory Calculus in 2D with velocity (QTC-B22)

calculus identifier qtc-b22

calculus parameters none

arity binary

entity type -

description describes the relative orientation between two trajectory seg-
ments

base relations {+,O,−} × {+,O,−} × {+,O,−}

references van de Weghe (2004)

remarks no qualifier is available for this calculus yet

QTCB22 is similar to QTCB12 except dealing with trajectories in 2D instead of only
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1D. In contrast to QTCB12 in 2D all 27 potential relations are feasible.

QTC in 2D With Distance and Side

Qualitative Trajectory Calculus in 2D (QTC-C21)

calculus identifier qtc-c21

calculus parameters none

arity binary

entity type dipole (2D trajectory positions at two different time points)

description describes the relative orientation between two trajectory seg-
ments

base relations {+,O,−} × {+,O,−} × {+,O,−} × {+,O,−}

references van de Weghe (2004)

remarks no qualifier is available for this calculus yet

QTCC21 relations are given by a four character tuple. The first two characters rep-
resent the same as a QTCB21 relation. The third character denotes whether A moves
to the left (−), to the right (+), or on the reference line (O) spanned between A and B
at ti. The fourth character represents the change of B wrt. to this reference line. This
results in 34 = 81 base relations.
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QTC in 2D With Distance, Side, and Velocity

Qualitative Trajectory Calculus in 2D with velocity (QTC-C22)

calculus identifier qtc-c22

calculus parameters none

arity binary

entity type -

description describes the relative orientation between two trajectory seg-
ments

base relations {+,O,−} × {+,O,−} × {+,O,−} × {+,O,−} × {+,O,−}

references van de Weghe (2004)

remarks no qualifier is available for this calculus yet

QTCC22 relations are given by a five character tuple. The first four directly map onto
QTCC21 relations. The fifth character represents the relative velocity between objects
A and B. − denotes A being slower than B , + is faster, and O if both move at the same
speed.
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B.1. Command Summary

compute-relation c op arg-1 {arg-i}
Applies operation op of calculus c to arguments. Operations:

spatial:

composition, comp rs↦ r ○ s

converse, cnv(2) r ↦ r⌣

homing, hm(3) r ↦ hm(r)

homingi, hmi(3) r ↦ inv(hm(r))

inverse, inv(3) r ↦ inv(r)

shortcut, sc(3) r ↦ sc(r)

shortcuti, sci(3) r ↦ inv(sc(r))

calculi-theoretic:
closure r1r2 . . . rn ↦ Cl(r1, r2, . . . , rn)

Cl denotes the minimal set of relations that is closed under
composition, converse, and intersection

base-closure Cl(br1, br2, . . . , brn)
Computes closure of the set of base relations

set-theoretic:
complement, cmpl r ↦ rC

minus rs↦ r/s
union rs↦ r ∪ s
intersection, isec rs↦ r ∩ s

For complex operations a Lisp-style prefix syntax can be used, i.e., nested expres-
sion enclosed by parantheses, e.g., (composition rel1 (inverse (homing rel2)))

computes rel1○ inv(hom(rel2))

77



B. Quick Reference

analyze-calculus c op

Determines relation-algebraic properties

c calculus

op operation:

analyze-calculus c test-algebra checks which axioms are met by the
algebraic structure of the calculus

analyze-calculus c test-property prop checks whether axiom prop is sat-
isfied by the calculus

qualify c opt scene

Determines qualitative configuration from quantitative scene description.

c calculus

opt either first2all or all, sets which objects to relate

scene list of lists containing objects id and coordinates, e.g. ((Point-A 12.2 34.8)

(Point-B -2.3 28.8))

constraint-reasoning c op conf1 [conf2]

Performs operation op on qualitative configuration with respect to calculus c:

consistency checking:

algebraic-closure,
a-closure,
path-consistency

Enforces path-consistency — since this is a purely syn-
tactical operation on the level of qualitative relations
the term “algebraic closure” is more adequate. How-
ever, since “path-consistency” is widely used in this
meaning, this name is supported too.

scenario-consistency Computes consistent networks containing base-
relations only

ternary-closure Computes algebraically closed networks using ternary
composition with ternary calculi

manipulating constraint networks:
refine Merges two networks by intersecting corresponding

constraints
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extend Merges two networks by uniting corresponding con-
straints

update Merges two networks by overwriting corresponding
constraints

a-reasoning c cmd args

Algebraic reasoning commands (see Sec. 3.7 starting on page 28), c designates calculus
to use, command cmd and arguments are args:

command arguments decription

consistency constraint-nework tests network for satisfiability, answers:

SATISFIABLE. network proven to be
consistent

NOT SATISFIABLE. network proven to
be inconsistent

CANNOT DECIDE. neither of the above

analyze-operation operation Verifies operation table; operation is e.g.,
composition, converse, inverse,
shortcut, . . .

qualify scene opt qualification, arguments as for the qual-
ify model (see above) but based purely
on the algebraic specification

export c format

Exports calculus definition of c in format:

qat XML specification for QAT toolkit

gqr specification for GQR constraint reasoner

B.2. Interactive Mode

Using SparQin the interactive mode (i.e., invoking it with the “-i” command line option)
some additional commands are available:
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command description

quit exits SparQ
help prints short help message
load-calculus CALC loads a specified calculus into memory
* used as calculus specifier in commands, * stands for the

calculus recently loaded into memory. This avoids overhead
of reloading a calculus

B.3. List of Calculi

calculus identifier(s) calculus section page

allen, aia, ia Allen’s interval algebra (Allen,
1983)

A.1 54

block-algebra, ba 2D block algebra (Güsgen, 1989) A.2 55

cardir Cardinal direction calculus
(Ligozat, 1998)

A.3 56

depcalc, dep Dependency calculus (Ragni and
Scivos, 2005)

A.5 59

dipole-coarse,

dra-24

Dipole calculus (Moratz et al., 2000) A.11 67

double-cross, dcc Double cross calculus (Freksa,
1992a) using the original tuple
naming scheme

A.7 61

alternative-double-

cross, adcc

Double cross calculus (Freksa,
1992a) using the alternative single
number naming scheme

A.7 61

flipflop, ffc, ff FlipFlop calculus (Ligozat, 1993) A.8 63

geomori, ori,

align

Geometric Orientation calculus A.10 66

point-calculus,

pc, point-algebra,

pa

Point algebra (Vilain et al., 1989) A.13 71
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rcc-5 Region connection calculus (RCC-5)
(Randell et al., 1992)

A.4 58

rcc-8 Region connection calculus (RCC-8)
(Randell et al., 1992)

A.4 57

reldistcalculus Exemplary calculus from this man-
ual

3.13.1 36

single-cross, scc Single cross calculus (Freksa, 1992a) A.6 60

opra- Oriented point reasoning algebra
(OPRAm)(Moratz, 2006)

A.12 69

qtc-b11 Qualitative trajectory calculus in
1D with distance (van de Weghe,
2004)

A.14 72

qtc-b12 Qualitative trajectory calculus in
1D with velocity (van de Weghe,
2004)

A.14 73

qtc-b21 Qualitative trajectory calculus in
2D with distance (van de Weghe,
2004)

A.14 74

qtc-b22 Qualitative trajectory calculus in
2D with distance and velocity
(van de Weghe, 2004)

A.14 74

qtc-c21 Qualitative trajectory calculus in
2D with distance and side (van de
Weghe, 2004)

A.14 75

qtc-c22 Qualitative trajectory calculus in
2D with distance, side, and velocity
(van de Weghe, 2004)

A.14 76

81


	Installing SparQ
	Requirements
	Building the Executable

	Reasoning with Qualitative Spatial Relations
	What is a Qualitative Spatial Calculus?
	Constraint Networks, Consistency, and Consistent Scenarios
	Qualitative Constraint Calculi
	Operations
	Set-theoretic Operations
	Operations that Change Perspective
	Operations that Integrate
	Weak vs. Strong Operations

	Checking Consistency

	Using SparQ
	Command Line Options
	General Syntax
	Calculi Identifier
	Denoting Relations
	Denoting Configurations

	Qualify
	Quantify
	Compute-relation
	Constraint-reasoning
	Constraint-based reasoning
	Manipulating constraint networks

	Algebraic reasoning
	Consistency checking
	Operation analysis
	Qualification

	Analyzing Calculi
	Neighborhood-Based Reasoning
	Interfaces
	Interactive Mode
	Variables

	Including SparQ Into own Applications
	Adding new Calculi
	Calculus Specification
	Specification Reference
	Operation Specification
	Algebraic Relation Specification

	Extending SparQ

	Internals
	Implementation Details
	SparQ type systen

	Outlook — Planned Extensions

	Implemented Calculi
	Allen's Interval Algebra (IA)
	Block-Algebra (BA)
	Cardinal Direction Calculus
	The Region Connection Calculus family (RCC)
	Dependency Calculus
	Singlecross Calculus (SCC)
	Doublecross Calculus (DCC)
	FlipFlop Calculus With LR Refinement
	Cycord Family
	The Geometric Orientation (Alignment) Calculus
	Dipole Calculus Family
	Oriented Point Reasoning Algebra With Granularity m (OPRAm)
	Point Calculus (Point Algebra)
	Qualitative Trajectory Calculus Family

	Quick Reference
	Command Summary
	Interactive Mode
	List of Calculi


