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Simulation of Group Agency – From Collective 
Intentions to Proto-Collective Actors 

Maximilian Noichl & Johannes Marx  

Abstract »Kollektive Intentionen und proto-kollektive Akteure«. This paper in-
vestigates the conditions under which cooperative team reasoning arises and 
stabilizes in complex social structures. Team reasoning is a theory that ex-
plains cooperative behavior in social settings of strategic choice, even in sit-
uations where classical game theory fails. By simulating the emergence of co-
operation via team reasoning, this paper analyzes the performance of team 
reasoners compared to classically rational agents and individual reasoners. 
Simulation results are provided regarding the efficacy of team reasoning in 
mixed-game settings. It is shown that cooperative team reasoning is viable 
and stabilizing under favorable conditions such as the share of coordination 
games played, but sensitive to the amount and abilities of their interacting 
counterparts. Finally, the paper provides first ideas on how the current frame-
work might be extended toward collective actors that gain further stability 
through processes of self-formalization and inner-organizational redistribu-
tion. 
Keywords: Team reasoning, collective agency, agent-based modelling, com-
puter simulation, game theory. 

 Introduction 

Team reasoning is a theory to explain cooperative behavior in social settings 
of strategic choice, even in situations where classical game theory fails. It 
takes its theoretical starting point in the well-documented discrepancy be-
tween, on the one hand, the empirically observed behaviors and judgments 
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of experimental subjects exposed to simple one-shot games and, on the other, 
the results that classical game theory would suggest for them (Bacharach 
1999, 2006; Colman, Pulford, and Lawrence 2014). Generally, the ability of 
real actors to coordinate themselves seems to exceed the coordination pre-
dicted in classical game theory like Stag Hunt or HiLo games by far. The the-
ory of circumspect team reasoning (Bacharach 2006) extends classical game the-
ory through a novel system for the determination of equilibria while making 
no drastic changes to its classical game theoretic foundations and without in-
troducing additional axioms. To model team reasoning, Bacharach intro-
duces the idea of a fictional coordinator (the “team planner”) that lets rational 
agents coordinate their actions to strategy profiles. In combination with an 
individual estimation of team reasoning probabilities by the actors, the the-
ory of Bacharach promises to provide solutions to games that both match our 
empirical observations and our theoretical demands for a solution in line 
with the standard rationality assumptions of game theory. Simply put, an ac-
tor engaged in team reasoning is not asking, what should I do in a particular 
situation, but what should we do in that situation and what is my part in making 
that happen. Addressing this question enables rational actors to solve coordi-
nation games and even social action dilemmas that are characterized by a 
tension between self-interests and a Pareto-efficient collective output. 

While team reasoning is well understood for classic games in simple set-
tings, the conditions under which it arises and stabilizes in more complex so-
cial structures remain largely unexplored. Analytical solutions to these ques-
tions are mainly focusing on simple interaction structures and concentrate 
primarily on single game-theoretic settings in the body of literature. There is 
some literature discussing the effects of the ludic ecology on the stability of 
team reasoning in evolutionary settings (for an overview, see Ade and Roy 
2023, in this special issue). It is at least questionable to what extent analytic 
solutions can be found at all due to the complexity of the interaction situation 
in large, connected groups playing a mix of games. At the same time, simula-
tional results on the emergence of stable team reasoning are rare and show 
no clear picture. If team reasoning is able to explain cooperation with fewer 
assumptions and in harder cases than alternative theories, it should be con-
sidered as a main driver for collective agency. Thus, the explanation of such 
complex collaborative situations presents a clear desideratum for political 
and social theory (Elsenbroich and Payette 2020; Newton 2017). To address 
this lacuna, we develop a model for the simulation of the emergence of team 
reasoning to analyze conditions for its stability, which allows us to compare 
the performance of team reasoners with that of classically rational agents and 
individual reasoners (see section 3 for a description of the characteristics of 
the agents). 

In the present contribution, we will accordingly give a sketch of the theo-
retical research on team reasoning, introduce the simulational framework, 
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argue for a series of theoretical choices that we have made in its set-up, and 
apply it to several game-theoretical standard situations. We find team reason-
ing to be somewhat viable and stabilizing under slightly favorable conditions, 
in line with some earlier literature (Angus and Newton 2015; Elsenbroich and 
Payette 2020), but sensitive to the amount and abilities of classical rational 
agents, as suggested by Paternotte (2018). We further provide simulation re-
sults regarding the efficacy of team reasoning in several mixed-game settings. 
Finally, we give some indications on how the current framework might be 
extended toward collective actors that gain further stability through self-for-
malization and redistribution. In doing so, we aim to contribute to shedding 
light on the role of team reasoning to the emergence of collective actors. 

 Team Reasoning and Open Questions 

One of the basic methodological assumptions in most parts of social science 
is that agency is located in individual actors (methodological individualism). 
This assumption includes that (i) institutionalized social groups are not 
treated as actors of their own right and that (ii) actors perform actions in line 
with their own intentions. Condition (i) demands that speaking of the behav-
ior of states, firms, organizations, or groups of actors can only be understood 
as a shortcut for a fully fleshed-out explanation. Such an explanation should 
explain the “behavior” of such collective bodies referring to the preferences 
and beliefs of the individual agents who are members of that social entity. 
Condition (ii) requires that actors behave on their own preferences and be-
liefs, i.e., it should be the preferences and beliefs of the actor herself who 
govern her actions. This condition does not exclude that the actors’ prefer-
ences are social or altruistic and refer to others. 

Team reasoning challenges both conditions.1 It allows for teams of agents 
to be understood as agents in their own right, and it relaxes the conditions 
that the (originally given) actor’s own preferences and beliefs should drive 
her actions.2 Team reasoning takes its origins from the observation that there 
are a number of game-theoretic puzzles in which conventional game theory 
both fails to predict the behavior of human players and even might predict 
things most humans find highly suspect. In the HiLo game (Fig. 4b), for ex-
ample, classical game theory finds two Nash equilibria – the reception of a 
payoff is after all conditional on the other player choosing the same option – 
but it seems rather intuitive that the option that promises the higher utility is 

 
1  Compare Radzvilas and Korpus (2021), who argue that team reasoning is compatible with on-

tological individualism. 
2  However, the actor will still act on her preferences, but the team preference will become her 

preference and the utility she is striving for is the team utility. Only in this weak sense, the actor 
is not acting on behalf of her “own” preferences.  
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the superior one. And unsurprisingly, experimental data shows that players 
can successfully coordinate their actions to Hi in the HiLo game. Further-
more, it is a well-documented observation that the proportion of players 
choosing cooperation is above 40 percent in a one-shot Prisoner’s Dilemma 
(Andreoni and Miller 1993; Camerer 2003; Heuer and Orland 2019). 

These empirical results would not be a problem for a theory of rational ac-
tion as long as the irrationality of the actors could explain that discrepancy. 
However, following Gold, it is “at least arguably rational” (Gold and Sugden 
2007, 117) to follow strategies that can lead to Pareto superior outcomes for 
the group of players. Of course, one can argue that every player performs in-
dividually better in a Prisoner’s Dilemma game if she defects. That is the rea-
son for characterizing the strategy as dominant. In that sense, “defection” 
would answer the reasoning process of a rational actor asking what she 
should do to perform best. However, with the same line of reasoning, one 
could argue that still, both players would perform better if they both cooper-
ate. If a player realizes this and stops asking what she should do to succeed 
and starts asking what they as a team should do to perform best, then mutual 
cooperation becomes admissible. Following this line of argumentation, it 
would be rational for a person to reason that cooperation would be the best 
thing to do. This change in the reference point for the actors’ reasoning pro-
cess is the core of the theory of team reasoning. 

The basic idea behind team reasoning is that a lot of simple coordination 
and strategic interaction problems can be solved easily enough by introduc-
ing a central coordinator who provides a team preference by ordering all out-
comes. This allows the team reasoners to determine the best outcome for the 
group (first rank of the team preference). This fictitious coordinator then can 
assign every agent the task they have to accomplish in order to obtain this 
result and the team members adopt the team preference as their own. This 
fictitious coordinator represents in the game theoretic model the perspective 
of team reasoners on the game. 

One technical way to implement this line of reasoning in game theory is to 
model the team as a player of its own right in the game. Bacharach’s version 
of team reasoning, which we follow to a large extent in this contribution 
(Bacharach 1999), formally implements this idea by explicitly adding an ad-
ditional player (the “Team”) to each game. The payoff of the team as a player 
is determined by the average of the individual players’ payoffs. In its role as 
central coordinator, the “team” does not select individual actions but action 
profiles for all players – in the case of the Prisoner’s Dilemma for example, 
the combinations [𝐶𝐶, 𝐶𝐷, 𝐷𝐶, 𝐷𝐷]. A 2 × 2 game thus gets transformed into 
a 2 × 2 × 4 three-player game.  
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Figure 1  Illustration of the Team Equilibrium 

The two-player game gets transformed into a three-player game which includes the team. EU 
stands for expected utilities. In our case, the Nash-equilibrium in the large game lies in the CC-
assignment for the team, which therefore prescribes the strategy C to the team reasoner. This of 
course changes when omega falls below 0.333. 
 
Team reasoning now consists in finding the Nash equilibria in this novel 
game and in playing the team profile selected by them. One should note that 
the choice of the average of what the team members consider as team-payoff 
for the function generating the team utilities is not equivocal, and many other 
schemes could be considered (see Karpus and Gold 2016; Sugden 2000, 2015). 
However, this has no bearing on the actual payoffs they receive from the 
games they play. The actual payoffs which they receive in the simulation are 
drawn from the same games for individual and team reasoners. 

Of course, there are no such teams as real players alongside the individual 
players in situations of strategic choice. Rather the team player represents a 
particular perspective that individual players can follow. Bacharach and Stahl 
(2000) refer to the concept of frame theory to describe the transformational 
processes individual actors experience when they shift to this perspective. 
Actors who behave in line with the we-frame no longer ask what is best for 
them individually but instead what is the best result we as a team can receive. 
This shift includes an agency transformation – i.e., the agents identify with 
the team and there is common knowledge to what degree all actors identify 
with the team – and a payoff transformation – i.e., the payoff does not 
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represent the individual utility classical agents receive but the payoffs for the 
team. In this perspective, both of the basic assumptions of methodological 
individualism are challenged. There are various reasons why actors can 
switch from I-mode frames to we-mode frames, ranging from psychological 
processes to game-induced effects (in pure coordination games with one Pa-
reto efficient equilibrium).3 

Team reasoning seems to be useful to enable actors to cooperate in settings 
of strategic choice. However, team reasoners are rational, e.g., their willing-
ness to cooperate is not unconditional. Cooperation is risky and unlikely to 
occur as long as the individual agent perceives it as unlikely that their co-play-
ers will perform the same transformation to arrive at the best team outcome. 
To reflect this uncertainty, a parameter 𝜔, is introduced in the theory of team 
reasoning. In our simulation 𝜔 reflects for each agent their estimate of the 
probability that they are playing with another team reasoner. In the 2 × 2 × 4-
matrix, all utilities are then replaced by expected utilities, given a specific 𝜔. 
This theoretical move implies that in many games, for low values of 𝜔, the 
team equilibrium can remain in a non-cooperative state – team reasoning 
does not exhaust itself in mere altruistic cooperation. In Fig. 4 we show the 
relationship between different values for 𝜔, and the achievement of team-
play in more detail. 

We thus suggest that team reasoning might be a suitable theory of coopera-
tion in a number of domains, as it satisfies a demand for rational cooperation 
in one- or few-shot interactions and does so in an empirically plausible fash-
ion. But it is unclear whether this theoretical expectation really holds in sim-
ulations in a changing ludic environment with different shares of team rea-
soners and classical agents. The results in the research literature have so far 
been mixed in this regard (see Ade and Roy 2023, in this special issue for an 
overview). Amadae and Lempert (2015), for example, show that in an evolu-
tionary setting with agents playing a Prisoner’s Dilemma, team reasoning is 
inferior to other reasoning modes and becomes extinct. While on the other 
side in a slightly different setting, Newton (2017) finds evidence that team rea-
soning seems to be stable even in a Prisoner’s Dilemma setup. Furthermore, 
there is some evidence that team reasoning is evolutionarily stable in HiLo 
games. Nevertheless, it remains unclear to what extent the results are robust 
if the agents have to choose their interacting partners in different neighbor-
hoods. Finally, the extent to which team reasoning leads to stable cooperation 
in situations characterized by a mix of game types has mainly been investi-
gated by means of evolutionary game theory. We are particularly interested 
in whether these results can be replicated in computer simulations and to 
what extent the results are stable if we make classical rational agents slightly 

 
3  For example, see Gold and Sugden (2007) and Gold (2017) for different accounts of team rea-

soning. 
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more realistic and go beyond the fiction of the conventional homo economi-
cus. 

 A Computational Framework to Model Team 
Reasoning 

To explore the theory of team reasoning, we develop a computational frame-
work that implements Bacharach’s basic model of unreliable team interac-
tions and integrates it into a full simulation environment consisting of multi-
ple types of actors, learning mechanisms, games, and social structures. The 
whole framework is implemented in Python and is designed to be easily 
adapted to different environments.4 This allows us to apply it to a variety of 
theoretical situations, as well as to fit it to empirically gathered parameters. 
Below we document the individual components of each simulation. 

3.1 Actors 

A central feature of Bacharach’s theory is to explain the situation in which 
agents need to coordinate with others who might or might not team reason. 
Therefore, in our simulations we distinguish between team reasoning agents 
(team reasoners), and agents that play strategies that would be considered 
optimal in conventional game theory (classical agents), i.e., if available they 
play dominant strategies or mixed strategies in games as HiLo. Team reason-
ers are modeled as actors who maximize expected utilities. Later we will in-
troduce an additional mixed-type, learning classical agents (individual rea-
soners). In the presented work, we run simulations consisting of 100 agents, 
which are placed on a von Neumann grid, as illustrated in Fig. 2. This scale 
allows for the emergence of small to medium-sized proto-collective actors, 
which could correspond to working groups, bands of hunter-gatherers, par-
liaments, international organizations, etc. 

We systematically vary the number of team reasoners to investigate at what 
point cooperative team reasoning becomes stable and more worthwhile than 
the standard game theory approach of classical agents. 
 

 

 
4  This model is integrated in one software package. It can be used for the simulation of team rea-

soning in complex social settings while allowing for variation, for example, in the games played 
by the agents, the number of agents, and the proportion of team reasoners and classically ra-
tional agents. 
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Figure 2 A Simulation Running on a Grid-Model (implemented in NetworkX, 
Hagberg et al. 2008)  

 
Each dot represents an agent, and their links represent potential interaction partners. We show 
several emergent clusters of team reasoners forming proto-collective actors visually tied together 
by contour lines, which are derived by interpolation of the omega values along the grid. In this 
particular simulation run, 70% of the agents were team reasoners, 30% were classically rational 
agents. The game-mixture consisted of 50 % HiLo, 50 % Prisoner’s Dilemma.  

3.2 Learning 

The two types of actors differ in the baseline simulation with respect to their 
ability to learn. Classical reasoners play the games as one-shot games. They 
have no information about the actors around them and the strategies played 
so far. Team reasoners, on the other hand, try to use this information. As we 
have discussed earlier, team reasoning agents have to learn an estimate of the 
team reasoning probability, 𝜔, of their co-players. Determining 𝜔 is quite a 
tricky problem. After all, 𝜔 is not simply a cooperation probability, because 
team reasoning co-players might arrive at a non-cooperative outcome while 



HSR 48 (2023) 3  │  64 

team reasoning. Also, as Fig. 4 makes quite transparent, team reasoning 
agents ought to learn different things from different games, as the threshold 
for cooperative or coordinated behavior both differ and signify different 
things: From the payoff in a single HiLo-game, an agent can, for example, 
learn nothing about the identity of their co-players, as every payoff could also 
be achieved through the actions of a classical agent playing a mixed strategy. 
In the Prisoner’s Dilemma, on the other hand, cooperation is an unambigu-
ous sign of the presence of a team reasoner. Importantly, although agents are 
placed at fixed points of their grids, and only play with their direct neighbors 
for the whole run of each simulation, they are not informed about which of 
their neighbors they played which round. This limits their ability to engage 
in tit-for-tat, or similar strategies, which would undercut the situations that 
necessitate team reasoning in the first place. 

To solve this problem, in our proposed framework we let agents directly 
optimize their payoffs. To do so, we model them as a function of the 𝜔-values 
through a Gaussian Process that has both a time component, which detects 
shifting trends, and synchronic functions that relate current omega-values to 
their expected payoffs. The agents build, maintain, and exploit this model 
through a process of adaptive Bayesian optimization, which we have adapted 
from Nyikosa, Osborne, and Roberts (2018).5 Adaptive Bayesian optimization 
has been proposed as a method for the estimation of the minima of tempo-
rally shifting objective functions with costly evaluation.6 

At each step, team reasoners can decide to either explore a new 𝜔-value, or 
to exploit what they have so far learned as the current optimum value for a 
maximal payoff. To ensure that agents are able to dynamically react to 
changes in their environment, we also introduce a window parameter (usu-
ally set to 12 steps). Only results that lie within the window are considered for 
the model-fit and in the optimization process. If, for example, an agent has 
made the experience that a high 𝜔-value is not worth the risk in the current 
environment, they might at a later point re-examine that decision. A demon-
stration of how this can look like is given in Fig. 3. 

It is important to note that agents here are neither trying to approximate 
the true relationship between estimates of the amount of team reasoners and 
payoffs, nor are they necessarily trying to get at the true value of 𝜔. As learn-
ing about the parts of the distribution which are less than optimal is costly (as 
the agents might get dealt the sucker payoff in a Prisoner’s Dilemma), they 
avoid doing so as much as possible and are in some situations quite content 
with a picture that is incomplete but good enough for their decision-making. 
Further, this implies that agents can in principle give up their best estimates 
in favor of inexact but productive ones. 

 
5  See also Snoek, Larochelle, and Adams (2012). 
6  It has been suggested that Bayesian optimization also yields an empirically adequate account 

of human exploration dynamics (Borji and Itti 2013). 



HSR 48 (2023) 3  │  65 

Figure 3 Demonstration of How Actors May Evaluate Risk 

a) Example of the learning process of an individual agent 

 
b) Aggregated learning functions of all team reasoners in one simulation 

 
c) Best predictions of all team reasoners in one simulation 

 
(a) A single agent’s determination after 30 iterations of the simulation. After exploring several low 
values, in this simulation, the agent learned to expect high levels of cooperation, and now mainly 
exploits high ω-values. (b) The aggregated models behind the learning mechanisms of all team 
reasoning agents in one example run of the simulation. In the presented case, the agents quickly 
settle on a medium value for ω, around which they oscillate while considering both higher and 
lower alternatives collectively at different stages. This pattern becomes more visible in the 
aggregated predictions for the optimal ω-values the agents hold over time (c). 
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3.3 Games 

Our current framework allows for the in-cooperation of arbitrary 2 × 2 2-
player-games. The behavior of classical agents is modeled in line with ortho-
dox game theory, i.e., classical agents will choose the dominant strategy as 
available or play mixed strategies in HiLo and Stag Hunt games. The case is 
different for team reasoners who maximize expected utilities. Because the 
computation of Nash equilibria in the altered games at different 𝜔-values is 
computationally expensive, we precompute a number of solutions (repre-
sented by the dots in Fig. 4), making use of NashPy (Knight and Campbell 
2018) and Gambit (McKelvey, McLennan, and Turocy 2006). As team reason-
ers do not need to know the exactly expected utilities associated with their 
current 𝜔-value, but only which profile a certain value selects, it suffices to 
check at each step whether the closest precomputed 𝜔-values agree on the 
course of action. Only in the edge cases in which they do not, like, e.g., around 
⅓ in the Prisoner’s Dilemma, we have to compute an additional Nash equilib-
rium at runtime.  

In the reported simulations, agents encounter the three seminal games 
HiLo, Stag Hunt, and the Prisoner’s Dilemma in a variety of ratios. The 
switching points, at which team reasoners begin to cooperate in the Pris-
oner’s Dilemma or eliminate an equilibrium in HiLo or Stag Hunt are re-
ported in Fig. 4. 
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Figure 4 The Expected Utilities or a Team Reasoner at the Equilibria in the 
Prisoner’s Dilemma (a), HiLo (b), and Stag Hunt (c) 

a) Prisoner’s Dilemma 

 
b) HiLo 

 
c) Stag Hunt 

 
In the exemplar Prisoner’s Dilemma, the team reasoning agent switches to cooperation at 𝜔 = 0.3. 
In HiLo they play a mixed strategy until an 𝜔 of 0.5, when settling on “high” becomes more 
effective. Below that value, the chance of being paired with an agent that does not team reason, 
and thus plays randomly, is too high. The same is true for Stag Hunt, but here the agents 
coordinate already at a lower threshold. 
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 The Conditions for Stable Teams 

The results of a range of simulations run under these settings are illustrated 
in Fig. 5.  

Figure 5 Results of a Range of Simulations in which Team Reasoners Play on a 
Grid with Classical Agents 

The rows and diagonals of the large triangle represent the mixture of games that are played in the 
simulations, with the corners identifying simulations in which only one type of game was played. 
Each small bar chart reports the mean payoffs of team reasoners (violet, right) and classical agents 
(turquoise, left), under various shares of team reasoners, in each small graphic from top to bottom. 
We note that in all simulations (except the one in which only HiLo is played) a higher share of team 
reasoners is beneficial to all players. Further, a higher share of Prisoner’s Dilemma among the 
played games reduces team reasoners’ payoffs in comparison to that of classical agents, while a 
higher share of Stag Hunt and HiLo increases it.  
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We note that a higher probability to play Prisoner’s Dilemma, as opposed to 
HiLo or Stag Hunt games, favors the classical agents in terms of received pay-
off, as they, in contrast to the team reasoners, never expose themselves to the 
possibility of being defected on. The team reasoners’ advantage, on the other 
hand, mainly seems to lie in the exploitation of conditions in which HiLo 
makes coordination of efforts necessary. This configuration is not surprising: 
Even when team reasoners find themselves in a situation in which stable co-
operation in the Prisoner’s Dilemma becomes possible, non-team reasoners 
will reliably gain by defecting on them. The exact points at which the payoffs 
of both groups reach parity, of course, hinges on the payoff structures of the 
games. A Prisoner’s Dilemma with a more drastic “sucker-payoff” will in-
crease the burden on team reasoners, while HiLo and Stag Hunt games with 
a higher reward for coordination will serve to jump-start more cooperation. 
Overall, the total sum of all payoffs rises the more team reasoners are present 
in the simulation. Also, team reasoners always do better the more of them are 
present in the simulation. Non-team reasoners, correspondingly, also tend to 
do better in scenarios in which more team reasoners are present, as long as 
the agents do not purely play HiLo, profiting from the cooperation benefits 
in Stag Hunt and from defecting on team reasoners in the Prisoner’s Di-
lemma. These results are largely in line with those of Amadae and Lempert 
(2015). 

 A Complication: Learning Individual Reasoners 

However, the way we have set up the previous simulation does seem to 
slightly favor the team reasoners: While they are not able to punish individual 
defectors or engage in complex communication through games, they are able 
to trace the general conditions and adapt their strategies to them – something 
that individual reasoners arguably also ought to be able to do. In the baseline 
simulation, the classical agents did not use that kind of information. Conven-
iently, team reasoning also gives us an apparatus to calculate the actions of 
individual reasoners who are aware that team reasoners are present in their 
population, namely by simply constructing the three-player game of the team 
and the two individuals and then not choosing the team’s strategy, but their 
own. For the Prisoner’s Dilemma, this leaves things unchanged, as it remains 
rational for individual reasoners to defect even, especially, in the presence of 
team reasoners. In HiLo and Stag Hunt games, on the other hand, the play of 
the individual reasoners becomes identical to team reasoners. We have pro-
duced the results of a range of simulations under these assumptions in Fig. 6. 
The learning individual reasoners are now imbued with an 𝜔-value in the 
same way the team reasoners are; they just differ in the conclusions they 
draw from it. We note that the advantage of team reasoners has disappeared 
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under these conditions. The effect, that while at least some Prisoner’s Dilem-
mas are present, a higher share of team reasoners leads to higher average 
payoffs for all agents does remain though. This suggests that in an evolution-
ary investigation of team reasoning close attention should be paid to the 
mechanism of selection. Those selection mechanisms that reward the payoff 
achieved relative to co-players will likely favor individual reasoners, while 
threshold-based selection will, under some configurations, favor team rea-
soners as the global payoff that is achieved commonly rises with the share of 
team reasoners, which makes it more likely that selection thresholds are met. 

Figure 6 Results of a Range of Simulations in which Team Reasoners Play with 
More Sophisticated Individual Reasoners 

 
These individual reasoners are able to solve coordination problems and learn about the presence 
of team reasoners. Here, the advantage of team reasoners vanishes. 
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 Prospects: From Stable Teams to Proto-Collective 
Actors 

With the previous simulations, we can show under which conditions teams 
of actors that are willing to cooperate emerge and develop stable we-inten-
tions. Now, we go one step further and discuss under which conditions 
groups of actors who have stable we-intentions may be understood as collec-
tive actors in a more “formal” sense. We thus link to the sociological literature 
in the tradition of Coleman (1974; see also Vanberg 1982), which understands 
collective actors as organizations (see Gehring and Marx 2023, in this special 
issue). 

There are several lines of demarcation proposed between collective actors 
and mere collections. One of the most general approaches might be the one 
that treats collective agents as analogous – and therefore committed to the 
same definitorial demands – to individuals in the biological realm, which 
have to be distinguished from mere environmental occurrences (Lewis-Mar-
tin 2022). This view suggests that actors ought to exist over extended periods 
of time and are to be understood as self-stabilizing systems (see Meincke 
2019). These authors stress that biological individuals, and by extension col-
lective actors, can be understood as operationally closed systems: “Thus, if 
process A sustains process B, which sustains process C, which sustains pro-
cess A, then the system ABC is operationally closed” (Lewis-Martin 2022, 283). 
Importantly, these processes are precarious, which here means that these 
processes are essential for the survival of the system: “in the absence of the 
enabling relations established by the operationally closed network, a process 
belonging to the network will stop or run down” (Paolo and Thompson 2014, 
72). At the same time, collective actors are characterized by the fact that these 
mechanisms contribute to the stabilization of the system, even when individ-
ual parts of the system are replaced, cease to exist, or become dysfunctional. 
Even different configurations at the micro level with different individual 
agents as members are possible while maintaining the collective actor. In this 
sense, the collective actors supervene over groups of stably cooperating team 
reasoners (see Gehring 2023, in this special issue). 

Our simulations currently seem to exhibit exactly this kind of self-stabiliz-
ing behavior of team reasoners. When a set of agents interacts persistently, 
they mutually stabilize their expectations that cooperation is worthwhile (we 
illustrate this in Fig. 2). Even single agents of that group can drop out while 
the system as a whole will be maintained. Only if these confirmations start to 
systematically fall away will the system become endangered.  

The patterns in our simulations therefore can be sensibly considered to 
model the minimal conditions for collective actors. However, collective ac-
tors in the social world typically exhibit further characteristics than the 
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emergence of collective intentions (see Gehring and Marx 2023; Gilbert 2023, 
both in this special issue). The collective actors considered by political sci-
ence and economics, for example, are typically formally constituted. They 
often come into being through a deliberate, rational decision. One way this 
can happen is through the transfer of resources. This can include not only 
material resources but also decision-making powers that are transferred to 
the collective actor to be created. In social science terms, such actors can be 
understood as organizations. In our present simulations, we do not model 
such processes of the emergence of formally organized collective agents. Im-
plementing transfer mechanisms within self-determined groupings between 
agents, and observing the interaction of these mechanisms with team reason-
ing, will be one of the central forthcoming challenges. 

 Conclusion 

To summarize, we have argued that the theory of team reasoning merits more 
extensive consideration, as it (1) solves several important problems in con-
ventional game theory in an elegant way and (2) provides insights into the 
emergence and stability of collective actors. 

We then have taken a first step toward a clearer understanding of the limits 
and applications of cooperative team reasoning by implementing it in a sim-
ulation framework that contrasts the agents of orthodox game theory with 
team reasoners. By simulating environments that are gradually more or less 
amenable to cooperation, we shed light on the relative performance of team 
reasoners and show how and under what conditions they outperform classi-
cal agents in a range of situations. However, this is only true as long as classi-
cal reasoners are not enabled to learn about their game partners. As soon as 
the individual reasoners come into play, the advantage of team reasoning dis-
appears. Note, however, that the higher the proportion of team reasoners in 
cooperation settings, the higher the total payoff. In this perspective, team rea-
soning may not necessarily be beneficial for the individual team reasoner but 
commonly so for populations that contain groups of team reasoners in them. 
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