
Measuring the Installability of Service Orchestrations Using the SQuaRE Method

Jörg Lenhard, Simon Harrer, and Guido Wirtz
Distributed Systems Group

University of Bamberg
Bamberg, Germany

{joerg.lenhard,simon.harrer,guido.wirtz}@uni-bamberg.de

Abstract—Service-oriented software consists of middleware,
such as application servers and runtime engines, into which
service applications are deployed. This middleware is often
complex and difficult to install. The deployment of services
requires the crafting of deployment descriptors and packaging
of applications. As a consequence, the installation of service-
oriented software systems can be a daunting task. Installability,
however, is an important influencer of the portability of
software. Portability in turn is one of the main goals of service
orchestration languages based on open standards. In this
paper, we investigate the installability of service orchestrations
based on the Systems and software Quality Requirements and
Evaluation (SQuaRE) method, the new series of software qual-
ity standards currently under development by the ISO/IEC.
We develop a measurement framework based on SQuaRE and
tailored to evaluating the installability of service orchestrations
and their runtimes. We validate the measurement framework
theoretically and show its applicability in a case study.

Keywords-SOA, SQuaRE, installability, metrics

I. INTRODUCTION

Service-oriented software systems are by definition client-
server systems [1]. One part of these systems, the service,
runs on server-sided middleware, such as an application
server. Application servers have long been used to provide
crosscutting concerns to the applications they host, while
also providing a balanced level of quality of service and
scaling. Especially at the enterprise-level, such software
packages are very complex. As a consequence of this com-
plexity, they are costly and installing them into the runtime
systems of an enterprise can constitute a considerable effort.

This cost in setup contradicts several of the goals of
service-oriented architectures; that is, intrinsic interoper-
ability of heterogeneous systems and flexibility through the
portability of applications [2,3]. This applies in particular to
service orchestrations, which are frequently implemented in
process languages that build on open standards, such as the
Web Services Business Process Execution Language (BPEL)
[4] or the Business Process Model and Notation (BPMN) [5].
For these standards, the portability of process definitions is
a fundamental goal. A high degree of portability and, as
a consequence, an easy installation is emphasized by the
advent of cloud-based services. The pricing models of cloud
environments increase the importance of the ability to easily
switch a runtime environment. In current environments,

however, services themselves must be tailored to run on
a cloud-platform through vendor-specific deployment infor-
mation [6]. This effectively locks-in cloud users to a cloud
vendor. One step towards fixing these issues of installability
is their investigation and quantification through metrics
which we address here. This can be useful for the service-
oriented computing community, as here flexibility and hence
portability, for which installability is a prerequisite, is of
particular interest [2,3].

Portability is also a top-level quality characteristic in
several software quality models [7]–[9]. Currently, the
ISO/IEC is working on the Systems and software Quality
Requirements and Evaluation (SQuaRE) method [8], a major
revision of its series of quality standards. In this context, the
ISO/IEC is redefining the metrics framework for measuring
characteristics such as portability or installability and des-
ignated standards [10] are still under development. In [8],
installability is defined as a subcharacteristic of portability,
and should therefore be measurable. In this paper, we mea-
sure the installability of a type of software where portability
is a central goal, being service orchestrations. In particular,
we are trying to answer the question:

How can the installability of service orchestrations and
their runtimes be measured?

To answer this question, we build a metrics framework
aligned with SQuaRE that takes into account the instal-
lability of service orchestrations from two viewpoints and
combines these for an overall judgment of installability. We
rely on existing metrics from previous quality standards
[11,12], apply them when reasonable, and suggest new
metrics suitable for this domain. More specifically, we also
take into account the effort of preparing applications for
deployment and putting them into production. We validate
the metrics theoretically using two validation frameworks
[13,14] and use them to evaluate a set of BPEL processes
and engines, thus demonstrating the applicability of the
metrics.

In the next section, we outline related work, followed by
the formal definition of our metrics framework. Thereafter,
we present the theoretical validation and practical evaluation
of the framework. Finally, we conclude the paper with a
summary and an outlook on future work.

II. BASICS AND RELATED WORK

In the following sections, we discuss (A) the underlying
quality model (B) work on metrics for service orchestrations,
and (C) alternative approaches for measuring installability
and deployability.

A. Quality Models for Installability

The ISO/IEC family of software quality standards builds
on several quality models [7,9] and is the basis for many
quality evaluations today. It is currently being revised in the
context of the SQuaRE method [8], which also forms the ba-
sis of the quality evaluation in this paper. The quality model
defines eight top-level quality characteristics of software,
each of which subdivides into several subcharacteristics that
can be measured independently. In this paper, the subcharac-
teristic installability of the top-level characteristic portability
is of relevance. At the time of writing, the specification that
is to contain concrete metrics [10] is still under development
and not yet open to public scrutiny. Hence, we consider
the metrics from preceding versions of the ISO/IEC quality
standards [11,12]. The quality model is rather general
and tailored to stand-alone software. Here, we discuss
the suitability of the metrics for service orchestrations and
extend the framework with a measurement of deployability.
We do not focus on metrics based on the observation of
human behaviour, which contrasts several of the metrics
proposed in [11,12]. Instead, we rely on metrics that can be
computed automatically or through code inspection, which
bears a benefit of cost efficiency and repeatability.

B. Work on Metrics for Service Orchestrations

Quality metrics for process models, which are also largely
applicable to service orchestrations, mostly build on classical
concepts such as coupling and cohesion [15] or focus on
process complexity [16]. When it comes to portability or
installability, relatively little work is available. In previous
work [17], we examine the direct portability of process
code among different runtime environments (i.e., the ability
to directly port code, without the need for replacement or
adaptation). A consideration of the installability of process
runtimes and applications, like the one in this paper, is
orthogonal to this. Even if process definitions can be directly
ported, the new runtime environment has to be installed.

C. Alternative Measurement Approaches

Installability can also be viewed as the question of
whether a set of applications can be installed next to each
other on the same machine [18]. Component-, or package-
based software systems, such as most Linux distributions,
are built from package repositories. Software that is installed
into the system might require several other packages in
particular versions to be installed as well. These package
versions can conflict with the versions required by other
software, resulting in a failure of the installation. This

property is also covered in the SQuaRE method, but there
it is denoted as co-existence [8, p. 11]. Installability, on the
other hand, refers to the cost or effort for the installation,
given an installation is possible to begin with.

Deployability of software can also be considered as the
cost of its deployment into a network of computers. Here,
the complexity of deployment relates to the amount of nodes
in the network on which an application has to be deployed to
function properly [19]. Our point of view on deployability
is different here. We do not consider the network-wide
deployment of a service, but instead the cost of deploying
an application on a single host. This view is orthogonal
to a network-wide deployment and our framework could be
combined with such an approach.

An alternative to automated measurement that has also
been used for measuring installability, deployability, and,
in particular, usability in different domains is a heuristic
evaluation or cognitive walkthrough [20]. In these methods,
a user steps through a procedure, such as an installation,
and judges its appropriateness for the task at hand. These
techniques are especially useful for the evaluation of user
interfaces [20]. In [21], they are used to analyze the instal-
lability and deployability of an application for anonymous
web browsing. Here, we also use heuristic evaluation to
quantify the complexity of an installation procedure, but we
evaluate installation scripts instead of user interfaces.

III. MEASURING INSTALLABILITY

We derive the measurement framework based on a case
study of a set of BPEL engines and processes running on
these engines. That way, all metrics are motivated practically
and we can ensure their applicability. In this section, we
define and explain the framework. A closer description
of the engines and processes follows in the context of the
practical evaluation in section IV-B.

Installability is defined as the “degree of effectiveness and
efficiency with which a product or system can be successfully
installed and/or uninstalled in a specified environment” [8,
p. 15]. When it comes to quantifying installability, only
few metrics are available and in [11] all of them are marked
as experimental. Furthermore, several metrics effectively
measure the same thing. For instance, the metrics effortless
installation, installation ease, and ease of users manual
installation operation [11, p. 64] all measure the extent
to which user actions are needed during installation. This
translates to the notion of installation effort here. The metric
operational installation effort reduction [11, p. 64] is used to
measure effort reduction in the case of procedural changes.
As we do not focus on procedural changes, the metric is of
no relevance here. Installation flexibility [12, p. 37] relates
the number of customizations implemented for the installa-
tion process, such as installation paths or port numbers, to
the number of customizations required. The larger the extent
to which customizations can be implemented, the better. In

our case study (cf. section IV-B), we could implement all
customizations needed in all cases. As a consequence, this
metric does not bear a benefit here, and thus we exclude it
from our framework. The remaining metrics relevant to the
evaluation here are installation effort and ease of setup retry
[12, p. 37]. In the following, we discuss the applicability
of these metrics, and define new ones.

A. Overview of the Measurement Framework

Figure 1. The framework for measuring installability. Ellipses denote
quality attributes to be measured, rectangles denote direct metrics obtained
through code analysis and benchmarking, and rounded dashed rectangles
depict aggregated metrics that are computed by the combination of direct
metrics using the functions displayed in circles.

Fig. 1 outlines the model we use for measuring installa-
bility. The quality attribute installability is subdivided into
the subattributes server installability and deployability. This
distinction is necessary as the focus here is not a standalone
software product, but a service orchestration. Each of
the subattributes can be measured by a set of direct and
aggregated metrics. Direct metrics can be computed directly
from source code artifacts or log files, whereas aggregated
metrics are formed by the combination of direct metrics.
The metrics ease of setup retry (ESR) and installation effort
(IE) stem from [11,12]. We extended installation effort to
also consider average time complexity (AIT) and not only
the number of distinct steps (NDS) required for the instal-
lation. When it comes to deployability, no corresponding
metrics are available in [11,12], so we develop a new set.
This set consists of deployment effort (DE) which considers
deployment descriptor sizes (DDS) and the effort of package
construction (EPC), next to deployment flexibility (DF).
The deployability metrics DDS, EPC, and DE are internal
(i.e., they relate to static properties of the software), and the
remaining metrics are external (i.e., they relate to dynamic
properties and can be verified during execution) [8, p. 27].

B. Measuring Server Installability

Ease of setup retry (ESR) is intended to measure how
easy it is to successfully repeat an installation [12, p. 37].
It relates the number of successful installations of the same

piece of software s (Nsucc) to the number of attempted
installations in total (Ntotal). That is:

ESR(s) =
Nsucc

Ntotal
(1)

[12] refers to manual installations, but the metric is just
as applicable to an automated installation process. If this
process is completely deterministic, then those numbers will
be identical and ESR(s) equal to one. If it is not free of
bugs, installations may fail, resulting in a lower ESR value.

Installation effort (IE) is intended to provide a notion of
the difficulty of the installation process. [12, p. 37] suggests
to measure it as the relation of automatable installation steps
in relation to the total amount of prescribed steps. In our
case, the server installation process can be automated fully,
so such a definition would, like installation flexibility, be
of little help. Still, the servers in the case study do differ
in the amount of steps they require for the installation.
What is more, they do require a vastly different amount
of time for the installation, which can vary in orders of
magnitude when comparing certain servers. For that reason,
we deviate in the measurement of installation effort from
[12] and instead measure it through a combination of two
direct metrics: The total number of distinct steps (NDS)
and the average installation time (AIT). The first is identical
to the number of steps that need to be automated, and
thereby partly corresponds to the metric defined in [12]. It
further corresponds to a quality measure element from the
SQuaRE series [22, p. 21]. NDS includes every operation
that needs to be performed for the installation, such as the
copying of files and creation of directories or changes in the
configuration of certain files, and can be determined by a
heuristic evaluation. In the case study, we took the server
distributions as provided by a vendor and automated the
process of setting up the distribution in our environment.
The heuristic evaluation counts each step in our installation
script. An example of these steps looks as follows:

1) Create or clean the installation directory
2) Unpack the distribution to the installation directory
3) Unpack the server core
4) Copy the BPEL runtime to the server core
5) Copy the SOAP runtime to the server core

The average installation time can be computed by perform-
ing the distinct steps required, identified by NDS, a suitable
amount of times and measuring execution times. This is an
effort quality measure element [22, p. 14]. AIT and NDS
can be aggregated to a notion of installation effort (IE) per
installation step:

IE(s) =

{
0 if NDS = 0
AIT (s)
NDS(s) otherwise

(2)

Note that an installation routine that consists of several
simple steps is desirable over a single installation step that
takes very long even if the multiple step installation takes

longer. The reasoning behind this is that simple and quick
installation steps are easier to automate, to repeat in case of
a failure, or to adapt to a new environment.

C. Measuring Deployability

Deployability describes the effort required to put a service
in its production environment. There is no direct representa-
tion or corresponding metrics for this attribute in SQuaRE.
We derive new metrics from existing general-purpose quality
measure elements from SQuaRE [22] as far as applicable.

Service deployment normally consists of the execution
of a single server operation provided with the service exe-
cutable. Nevertheless, deployment can take different forms,
multiple of which can be supported by a server. The more
options a server supports, the more flexible it is and the
easier deployment can be achieved. We capture this in the
metric deployment flexibility (DF), which corresponds to
the number of options available. The intention of the metric
is to adapt installation flexibility from [12, p. 37] to this
context. Typically, three different options are available:

1) a copy operation of a deployment archive into a specific
directory, denoted as hot deployment,

2) the invocation of a deployment script, or web service,
3) a manual user operation using a GUI or web interface.
To be able to use one of the deployment operations for

a service application, this application must be prepared for
deployment. This normally requires the packaging of the
service and the construction of one or more deployment
descriptors. The construction of these descriptors may be
partly automated or aided by graphical wizards, but in
the end it is configuration effort that can take a signif-
icant amount of time to get right. The more complex
the packaging and the more extensive the descriptors, the
harder it is to deploy a service in a specific environment.
We capture packaging with the metric effort of package
construction (EPC) and deployment descriptors with the
metric deployment descriptor size (DDS). The effort of
package construction can be measured based on the number
of steps quality measure element [22, p. 21] in a similar
fashion as NDS. This means by counting each part of a
prescribed folder structure that needs to be built and com-
pression operations that need to be performed to construct
the prescribed deployable executable:

EPC(service) = Nfc +Ndc +Nco (3)

Nfc refers to the amount of folder creations, Ndc to the
amount of descriptors, and Nco to the amount of compres-
sion operations required. In our case study, a very simple
structure consists of a process file, an interface definition
file, and a deployment descriptor file in one directory that
is compressed. Decisive for EPC are, the deployment
folder, the descriptor file and the compression operation, so
EPC = 1+1+1 = 3. However, the structure can be vastly

more complex and depend on various nested archives with
multiple descriptors.

The deployment descriptor size for a service corresponds
to the added size of all descriptor files needed:

DDS(service) =

Ndesc∑
i=1

size(ddi) (4)

DDS is the sum of the size of all relevant descriptors
< dd1, ..., ddNdesc

>. In our case, two different types
of descriptor files exist: i) Plain text files and i) XML
configuration files. As plain text files and XML files differ
in the ways in which they represent information, different
ways of computing their size are needed. Here, we use
two simple mechanisms to compute file sizes. For plain
text files, a lines of code metric is appropriate. For the
descriptors at hand, every non-empty and non-comment
line in such files is a key-value pair with a configuration
setting, such as a host or port configuration, needed for
deployment. We consider each such line, using a LOC
function. For XML files, the notion of lines is not applicable,
but instead information is structured in nested elements
and attributes. To compute the size of XML files, we
consider the number of elements, including simple content,
and attributes, excluding namespace definitions, Nea, which
represent an item of information in the same fashion as
key-value pairs in plain text files. All in all, the size of
a descriptor desc is defined as follows:

size(desc) =

{
LOC(desc), if plain(desc)
Nea, if xml(desc)

(5)

Listing 1 outlines a simple descriptor file for a single service.
The descriptor consists of four elements and four non-
namespace attributes that are set, so the total size is eight.

Listing 1. Example of a Simple Deployment Descriptor
<deploy xmlns=” . . . ” xmlns:bpel=” . . . ”>

<process xmlns:tns=” . . . ” name=” t n s : S i m p l e S e r v i c e ”>
<provide partnerLink=” S i m p l e P a r t n e r L i n k ”>

<service name=” t n s : S i m p l e S e r v i c e I n t e r f a c e ”
port=” S i m p l e P o r t ”/>

</provide>
</process>

</deploy>

These two metrics can be aggregated to a combined version
for deployment effort (DE), by adding them up:

DE(service) = DDS(service) + EPC(service) (6)

The idea here is to capture every factor, independent of its
nature, that increases the effort of deploying a service.

IV. VALIDATION AND EVALUATION

Validation of software metrics is crucial to ensure that
they measure what they are intended to measure and to
clarify how they can be used in a meaningful way [23].
We have implemented a prototypic tool1 that automates the

1See www.uni-bamberg.de/pi/port-metrics for more information.

computation of all metrics, except for NDS and DF , which
are determined by heuristic evaluation. Since these metrics
need to be computed only once per server environment, this
effort should be acceptable. The tool computes the metrics
through static code analysis or parsing of events in log files.

A. Theoretical Validation

The theoretical validation frameworks we use clarify the
mathematical properties of the metrics on the one hand [13]
and examine construct validity on the other hand [14].

1) Measurement-theoretic Validation: [13] proposes a
framework for the axiomatic validation of structural software
metrics. The authors list different categories of structural
metrics and define a set of mathematical properties each type
should fulfill. In this case only the internal metrics relating
to descriptors and package sizes DDS, EPC, and DE are
structural code metrics, so only they directly fit in this frame-
work. Nevertheless, a clarification of the measurement-
theoretic properties of all metrics is important. For this
reason, we discuss the central properties from [13] for all
metrics. The internal metrics are size metrics [13], which
should fulfill non-negativity, null value, and additivity. An
additional property required by nearly all categories in [13],
which we also consider here, is monotonicity.

Non-negativity: This property applies to all metrics in the
framework. Nearly all of the metric values are obtained by
counting occurrences, being either operation steps (NDS),
seconds elapsed (AIT), successful installations (ESR),
available deployment options (DF), or elements and lines
of code (DDS and EPC). As IE and DE are aggregated
from two non-negative metrics, they are also non-negative.

Null value: Metric values for an empty system or program
should be null. DDS and EPC will be zero for an empty
program, as no descriptors or packages need to be built.
Being the sum of the two, this also applies to DE. If there
is nothing to install, NDS and DF will be zero as no steps
are required or options available. In this case, IE is defined
to be zero. Finally, if nothing is executed, the time elapsed
will be zero (AIT) and nothing will successfully be installed
(ESR), no matter how many attempts.

Additivity: Size metrics should be additive, meaning that
the size of two disjunct systems taken together should be
identical to the sum of the two. This property holds for
DDS and EPC. Given two services s1 and s2 are sepa-
rately packaged, the sizes of their descriptors and packages
is completely independent. Hence, if they are deployed on
the same server, forming a system s together, the values for
DDS and EPC of that system will be equal to the sum
of the values of the two services. As a consequence, this
also applies to DE. Additivity does also hold for NDS:
Given two servers are installed, all installation operations
need to be completed for both of them. However, it does
not hold for the remaining metrics. AIT , ESR, and IE are
average values or aggregated thereof, so adding them up is

meaningless. Also the number of deployment options (DF)
does not necessarily increase with the number of servers.

Monotonicity: Metric values for the combination of two
unrelated systems should be at least as high as the values for
each of them. According to [13], this is no strict requirement
for a size metric, but monotonicity in the above sense is
implied from additivity. What is more, monotonicity also
holds for AIT , ESR, IE, and DF . The time elapsed
cannot decrease by installing more systems (AIT) and,
similarly, a partial failure of an installation does still count
as a failure (ESR). Moreover, adding more servers does not
decrease the amount of deployment options available (DF).

2) Evaluating Construct Validity: The second theoretical
validation framework [14] addresses construct validity. It
is used to assess whether a metric really measures what it
is intended to measure. The framework is qualitative and
takes the form of ten aspects that should be clarified for
each metric to define its scope and meaningful areas of
application. By attribute, [14] refers to the aspect to be
measured, in our case installability, and by measurement
instrument the authors denote the mechanism with which
the metrics are computed, in our case the tool.

Purpose of the metrics: The purpose of all metrics is
the evaluation of the installability characteristics of service
orchestrations and their runtimes. They can be used for
private self-assessment of a workgroup or to inform third
parties, such as customers and maintainers.

Scope of the metrics: The scope of the metrics is
typically a single project from one workgroup that consists
of multiple service orchestrations and runtimes.

Measured attribute: The attribute to be measured is the
installability of the software, the ease with which it can be
installed in a runtime environment. The installation effort
metrics (NDS, AIT , and IE) measure the complexity
of the installation process and ESR the reliability of the
installation. The deployment effort metrics (DDS, EPC,
and DE) measure the size of deployment artifacts and DF
the flexibility of the deployment process.

Natural scale of the attribute: The natural scale of the
attribute is independent on any metric that tries to quantify it.
We have no knowledge on the natural scale of installability
per se, but it is reasonable to assume that software products
differ in their installability in a way that allows for an
ordering. This implies that installability can be observed
at least on an ordinal, and possibly on a rational scale [22].

Natural variability of the attribute: We have no knowl-
edge on the natural variability of installability. However, it
can reasonably be expected that installability varies depend-
ing on the environment into which a software is installed
or the size of the system to be installed. This claim is also
supported by the practical evaluation in section IV-B.

Definition of the metrics and the instrument: All met-
rics are formally defined in section III. They are computed
by counting elements of code, matching installation steps or

product functions, and timing task executions [14, p. 4].
Natural scale of the metrics: Ease of setup retry (ESR)

is measured on an interval scale of [0; 1]. All other metrics
are measured on a ratio scale [22, p. 36]

Natural variability of the measurement instrument:
This aspect refers to possible measurement errors in the
metrics computation. Human judgement always involves
a margin of error, so metrics determined by heuristic
evaluation (NDS and DF) can yield inaccuracies. The
computation of the remaining metrics is automated in a
prototype tool, so we can at least guarantee reproducibility
of the computation. The number of failed installations
(ESR) and the time elapsed during installation (AIT and
IE) likely depends on physical constraints such as the
number of processors or memory available, and will be
different on different machines. However, this is rather an
inherent natural variability and not a computational error.
We compute the descriptor size metrics (EPC, DDS, and
DE) based on white-listing of relevant descriptor files.
In case we omitted a file type, there is an error in the
measurement instrument.

Relationship of the attribute to metrics values: All of
the metrics are direct in the sense of [23]; that is, changes to
the underlying attributes are directly reflected in the metrics.
For instance, if more installations fail, ESR increases. If
the installation procedure gets more complex, it will likely
involve more steps and / or take longer (NDS, AIT , and
IE). If deployment gets more complex, it will likely involve
more steps to construct deployment archives and require
larger descriptors (EPC, DDS, and DE). If a new option
for deployment is available, DF increases.

Side-effects of using the metrics: Measurement of
human behaviour is prone to side-effects, as humans could
adapt their behaviour to produce desirable metric values
without changing the underlying attribute. Here, we measure
code artifacts, so there is no room for this type of error.

B. Experimental Results

An experimental evaluation of the metrics framework
is important to verify its applicability and demonstrate its
interpretation. We use a set of BPEL engines as a case study
and evaluate their installability and the deployability of a
set of functionally identical processes deployed on different
engines. We also evaluate several third-party processes, run-
ning on specific engines. It should be noted that, although
we focus on orchestration engines, the metrics framework
should be applicable to a larger variety of environments,
such as application servers in general. However, this claim
should be supported by additional experiments that could
also be used to confirm the usefulness of the framework.
We defer such additional experiments to future work.

The runtimes available are six free and open source
engines, the OpenESB BPEL Service Engine v2.3, Petals
ESB Easy BPEL 4.1, Apache ODE 1.3.5, bpel-g 5.3,

Orchestra 4.9 and ActiveBPEL 5.0.2. The first two are ESB
solutions that include an orchestration engine, whereas the
latter four are pure engines running in a servlet container.
We modified the betsy tool, which we used in previous
work to benchmark standard conformance of these engines
[24,25], to gather data on the installation processes. The
tool automatically deploys and executes conformance test
cases on these engines. Also the installation of engines
is automated in the tool. To be able to gather the data
needed for the computation of metrics like AIT , we had
to modify the installation process to print timing data in a
suitable format into the log files, so that we could parse these
files later. Furthermore, we analyzed installation scripts to
compute metrics such as NDS. Finally, our prototypic tool
for metric computation inspects the log files to compute
the relevant metrics. The main benefit of extending betsy
for this task is that the installation process of engines is
automated and thereby reproducible, and works in the same
fashion for all engines. This similarity enables a reasonable
direct comparison of different engines, the lack of which is
a common drawback in software comparisons [26].

1) Server Installability: Tab. I lists the metrics that char-
acterise server installability in its upper half. To gather the
data needed for the calculation of the metrics, we repeated
the installation process of each engine 150 times, including
a warm-up phase, on a machine running Windows 7, 64bit
with an i7 quadcore processor, 16 GB of RAM, and a 1 TB
SATA drive with 7200 RPM. These hardware requirements
are far above the requirements specified for any of the
engines. Thereafter, we mined the log files of these runs and
analyzed the installation scripts implemented. The installa-
tion process for all engines consists of the setup of a core
server environment, into which the engine needs to be copied
or installed with a vendor-provided installation script, along
with the setting of environment-specific configurations.

Several observations can be made based on the data
here. Most engines require a similar amount of steps for
installation (i.e., have a similar value for NDS). All
but the engine with the lowest amount of steps, Petals,
have a fully deterministic installation process (i.e., after
one installation attempt, it is always possible to deploy
and execute processes on the engine). For Petals, every
tenth installation is a failure. In this case, the engine
signals a successful installation, but certain components are
missing which results in failures during later operation. We
were unable to ultimately determine the reasons for these
installation failures. Finally, for the average installation
time, the engines differ strongly with up to two orders of
magnitude. OpenESB forms an outlier with a very high
installation time. This is due to one step, where a vendor-
provided installation script is called which consists of a
number of uncompression operations that take very long.
The same applies for Orchestra and ActiveBPEL, although
to a lesser degree.

Table I
INSTALLABILITY METRICS – SEPARATED BY SERVER INSTALLABILITY AND DEPLOYABILITY

Metric OpenESB v2.3 Petals 4.1 ODE 1.3.5 bpel-g 5.3 Orchestra 4.9 ActiveBPEL 5.0.2
Server Installability of Engines (N = 150 runs)
Number of distinct steps, NDS 7 5 6 6 7 6
Average installation time, AIT [sec] 133.88 3.13 3.31 3.01 42.53 22.91
Coeff. of variance of instal. time, CVtime 0.02 0.11 0.51 0.37 0.22 0.06
Installation effort, IE 19.13 0.63 0.55 0.50 6.08 3.82
Ease of setup retry, ESR 1 0.90 1 1 1 1
Deployability of Functionally Identical Processes (N = 36)
Deployment flexibility, DF 2 2 3 2 2 2
Descriptor size, DDS (mean / st.d.) 73.92 / 7.37 78.5 / 6.31 10.69 / 1.75 9.11 / 2.81 0 / 0 21.36 / 5.96
Effort of package constr., EPC (mean) 14 9 2 2 1 5
Deployment effort, DE (mean / st.d.) 87.92 / 7.37 87.5 / 6.31 12.69 / 1.75 11.11 / 2.81 1 / 0 26.36 / 5.96

Being a mean value, AIT is vulnerable to outliers in the
data. Given there is a high deviation in the data, AIT would
not allow for a meaningful interpretation. To determine
whether this is the case here, we computed the coefficient of
variation (CVtime), which describes the relation between the
mean value and the standard deviation of a variable. If the
value of CV is larger than one, the underlying distribution
is considered as having a high variation, otherwise it is
considered as having a low variation. Low values apply for
all our observations of AIT , which means that this metric
indeed allows for a meaningful interpretation on its own.
Finally, IE provides a way to directly view and compare
the associated effort, and would, for instance, allow for a
ranking of the different engines.

2) Application Deployability: In its second half, Tab. I
lists deployability metrics for a set of processes, aggregated
by the engines. These are 36 processes from [25] that can
be deployed on all engines. This way, a direct comparison
of the deployability of an engine is possible. To get an
overall view of the sets of processes, we present the means
and standard deviations. For EPC, the mean alone allows
for a meaningful interpretation. As all packages are built in
a very similar fashion here, standard deviations for EPC
are zero for all cases. We also computed deployability
metrics for the process libraries of OpenESB, ODE, bpel-g,
and ActiveBPEL that serve as samples for the respective
engine, and which tend to be more complex. Although
we omit a closer presentation of all of these libraries for
reasons of space, we can say that the libraries have EPC
values similar, though slightly higher, to the ones in Tab. I.
The values of all metrics vary strongly for the different
runtime systems. For instance, OpenESB and Petals require
descriptor sizes of more than 70 elements in the mean.
For the other engines, this is significantly lower. One
special case is formed by Orchestra. There, no deployment
descriptors are required. All information needed is read from
the source files, such as WSDL definitions, directly. Due
to the self-descriptiveness of Web Services artifacts, such
a strategy is possible and Orchestra demonstrates that it is
feasible. Nevertheless, only few runtime systems make use
of this. When looking at EPC values, it can be seen that the

runtimes that require the largest deployment descriptors are
also the ones that require the most complex archives (i.e.,
several nested archives containing zips and wars). For all
other runtimes, archives are simply necessary for grouping
all relevant files together, so that they can be deployed
by linking a single file. DE aggregates the deployment
effort for a direct comparison that allows for a ranking
of the runtimes. Finally, when looking at the number of
deployment options available (DF), it can be seen that all
runtimes offer a similar level of flexibility.

3) Ranking the Servers: Summarizing the results, it can
be said that both, ODE and bpel-g, provide a balanced
level of good values for the metrics, with bpel-g being
slightly ahead. Although it excels in terms of deployability,
Orchestra takes somewhat longer to install (AIT and IE)
and therefore ranks third. Even though ActiveBPEL is
quicker than Orchestra in installation, the deployment is
much more complicated (DE), leading to rank four. Finally,
OpenESB and Petals both have relatively complex files with
large descriptors (DDS and DE). OpenESB takes long to
install (AIT and IE) and the installation of Petals is not
stable (ESR).

4) Process Complexity and Deployability: So far we
mainly used the metrics to compare the quality of run-
times, but their purpose is to compare single orchestrations,
too. For that reason, we examine the processes from the
ActiveBPEL library, a freely available set of processes of
varying complexity, in Tab. II. This lets us observe the ef-
fects of process complexity on deployability. A basic metric
for expressing the complexity of a service orchestration is
the number of services [27] involved in it, independent of
whether the services are implemented or just used by the
orchestration. The processes in the library involve either
one, two, or five services, and Tab. II depicts deployability
metrics for these groups. EPC values are almost constant,
although slightly higher due to the package structure typical
in the library. Moreover, they are unaffected by the growth
in complexity. Descriptor sizes on the other hand grow
almost linearly to the number of services in the system.
This demonstrates that an orchestration with many services
of possibly fine granularity will be comparably harder to

Table II
DEPLOYABILITY OF PROCESSES OF DIFFERENT COMPLEXITY

Nservices Nprocesses ØDDS ØEPC ØDE
1 11 31.36 9 40.36
2 3 43.67 9.33 53.0
5 5 105.0 9 114.0

deploy than one with a few services of lower granularity.

V. CONCLUSION AND FUTURE WORK

In this paper, we have built a comparison framework
for the installability of service orchestrations and their
runtimes, thus answering the research question posed in the
introduction. The framework is derived from the quality
model and metrics definition of the SQuaRE method and
extends it with metrics for deployability. We evaluated the
metrics theoretically and demonstrated their practical usage.
Our long-term goal is to construct a measurement framework
for evaluating the portability of service-oriented and process-
aware applications. Installability is one subcharacteristic
of portability, but properties such as replaceability and
adaptability need to be measured as well.

REFERENCES

[1] W3C, Web Services Architecture, February 2004.

[2] SOA Manifesto Working Group, “SOA Manifesto,” in SOA
Symposium, Rotterdam, The Netherlands, October 2009.

[3] R. Khalaf, A. Keller, and F. Leymann, “Business processes
for Web Services: Principles and applications,” IBM Systems
Journal, vol. 45, no. 2, pp. 425–446, 2006.

[4] OASIS, Web Services Business Process Execution Language,
April 2007, v2.0.

[5] OMG, Business Process Model and Notation (BPMN) Version
2.0, January 2011.

[6] D. Petcu, G. Macariu, S. Panica, and C. Crăciun, “Portable
Cloud applications – From theory to practice,” Future Gener-
ation Computer Systems, Elsevier, vol. 29, no. 6, pp. 1417–
1430, August 2013.

[7] B. Boehm, J. Brown, and M. Lipow, “Quantitive Evaluation
of Software Quality,” in ICSE, San Francisco, USA, October
1976.

[8] ISO/IEC, Systems and software engineering – System and
software Quality Requirements and Evaluation (SQuaRE) –
System and software quality models, 2011, 25010:2011.

[9] T. Gilb, Principles of Software Engineering Management.
Addison Wesley, 1988, ISBN-13: 978-0201192469.

[10] ISO/IEC, Systems and software engineering – Systems and
software Quality Requirements and Evaluation (SQuaRE) –
Measurement of system and software product quality, 2013,
CD 25023.

[11] ——, Software engineering – Product quality – Part 2:
External metrics, 2003, 9126-2:2003.

[12] ——, Software engineering – Product quality – Part 3:
Internal metrics, 2003, 9126-3:2003.

[13] L. Briand, S. Morasca, and V. Basily, “Property-based soft-
ware engineering measurement,” IEEE Transactions on Soft-
ware Engineering, vol. 22, no. 1, pp. 68–86, 1996.

[14] C. Kaner and W. Bond, “Software Engineering Metrics:
What Do They Measure and How Do We Know?” in IEEE
METRICS, Chicago, USA, September 2004.

[15] I. Vanderfeesten, J. Cardoso, J. Mendling, H. Reijers, and
W. van der Aalst, Quality Metrics for Business Process
Models. Future Strategies, May 2007.

[16] G. Muketha, A. Ghani, M. Selamat, and R. Atan, “Complex-
ity Metrics for Executable Business Processes,” Information
Technology Journal, vol. 9, no. 7, pp. 1317–1326, 2010.

[17] J. Lenhard and G. Wirtz, “Measuring the Portability of
Executable Service-Oriented Processes,” in IEEE EDOC,
Vancouver, Canada, September 2013.

[18] R. D. Cosmo and J. Vouillon, “On Software Component Co-
Installability,” in ACM SIGSOFT, Szeged, Hungary, Septem-
ber 2011.

[19] IETF, Metrics for the Evaluation of Congestion Control
Mechanisms, 2008, IETF Network Working Group.

[20] J. Nielsen, Usability Inspection Methods, 1994, Wiley, New
York, ISBN: 978-0471018773.

[21] J. Clark, P. van Oorschot, and C. Adams, “Usability of
Anonymous Web Browsing: An Examination of Tor Inter-
faces and Deployability,” in SOUPS, Pittsburgh, USA, July
2007.

[22] ISO/IEC, Systems and software engineering – Systems and
software Quality Requirements and Evaluation (SQuaRE) –
Quality measure elements, 2012, 25021.

[23] IEEE, IEEE Std 1061-1998 (R2009), IEEE Standard for a
Software Quality Metrics Methodology, 1998, revision of
IEEE Std 1061-1992.

[24] S. Harrer, J. Lenhard, and G. Wirtz, “BPEL Conformance
in Open Source Engines,” in IEEE SOCA, Taipei, Taiwan,
December 17-19 2012.

[25] ——, “Open Source Versus Proprietary Software in Service-
Orientation: The Case of BPEL Engines,” in ICSOC, Berlin,
Germany, December 2013, in press.

[26] D. Spinellis, Quality Wars: Open Source Versus Proprietary
Software. O’Reilly Media, Inc., 2011, Making Software,
ISBN: 978-0-596-80832-7.

[27] H. Hofmeister and G. Wirtz, “Supporting Service-Oriented
Design with Metrics,” in IEEE EDOC, Munich, Germany,
September 2008.

