
Towards Application Portability in Platform as a
Service

Stefan Kolb and Guido Wirtz
Distributed Systems Group

University of Bamberg
Bamberg, Germany

{stefan.kolb, guido.wirtz}@uni-bamberg.de

Abstract—Cloud Computing has been one of the most vi-
brant topics in the last years. Especially Platform as a Service
(PaaS) is said to be a game changer for future application
development. Taking away most of the configuration work, it
pledges to foster rapid application development which seems
even more important in a world of complex scalable distributed
systems. Whereas Infrastructure as a Service (IaaS) is in the
process of consolidation and standardization, the PaaS market is
largely fragmented offering varying ecosystem capabilities. In this
situation, application portability is a major concern for companies
utilizing PaaS to avoid vendor lock-in and to retain the ability for
future strategical decisions. To categorize portability problems of
PaaS, we define a model of current PaaS offerings and identify
different portability perspectives. Starting from the model, we
derive a standardized profile with a common set of capabilities
that can be found among PaaS providers and matched with
one another to check application portability based on ecosystem
capabilities. We validate our findings with a comprehensive data
set of 68 PaaS offerings together with a web-based application
for portability matching. We also identify further portability
problems by porting the application to different PaaS vendors,
validating ecosystem portability and giving hints for future
research directions.

Keywords—Cloud Computing, Platform as a Service, PaaS,
Ecosystem, Comparison, Portability

I. INTRODUCTION

Over the last years, the cloud hype led to the establishment
of a large amount of cloud offerings. They span the whole
cloud stack from Infrastructure as a Service (IaaS) through
Platform as a Service (PaaS) and Software as a Service (SaaS).
Especially the PaaS market is said to be crucial with consistent
growth over the next years1. With its abstraction of the pro-
gramming platform, including the operating system, runtimes,
and middleware, its major promise is that customers can focus
on developing applications without the need to maintain the
computing environment. This is particularly beneficial in the
context of complex interdependencies of highly scalable dis-
tributed cloud systems. The outsourcing of vast parts of the IT
stack also delivers cost savings to the customers, while vendors
in turn can benefit from the economies of scale by efficiently
utilizing the underlying infrastructure [5]. A determining in-
fluence on the degree of IT commoditization is thereby the
standardization of the products [6]. Nevertheless, we see that
the PaaS market is driven by differentiation. Currently, there
exist a lot of divergent offerings with varying capabilities,

1See Gartner Research [1], [2], IDC Research [3] and 451Research [4].

system configurations, and vendor-specific restrictions. For
vendors, this differentiation is one integral part to attain and
retain their market share in the face of market pressure, but for
the customers this inevitably leads to some kind of lock-in [7],
[8]. In such a scenario, the change to a different provider leads
to significant additional costs for necessary migrations [9],
[10]. However, business requirements can change over time
as well as the capabilities and contract terms of the provider
which makes it essential to preserve as much flexibility as
possible between different vendors. With the market and cloud
offerings steadily evolving, portability is even more important
for business continuity [11]. Being a higher level abstraction
with more and less standardized ecosystem capabilities than
IaaS, PaaS also inherits more potential incompatibilities that
make it harder to retain application portability [11], [12]. The
term PaaS ecosystem thereby describes the complex system of
interdependent components and capabilities that work together
to enable a PaaS cloud2. We can see increasing demand by
users of any PaaS to expand those capabilities, e.g. the number
of runtimes or services supported. The common recognition
that there exists no one-size-fits-all PaaS3 means we have
to approach portability among PaaS from another perspective
than between ordinary standardized middleware implemen-
tations. As the offerings do not share one common set of
portable capabilities but rather intersect with one another at
many different parts, it is better to look at portability between
PaaS platforms from a local application view, starting from
a particular configuration, and to dynamically identify a set
of compatible partners. To achieve this, we define a set of
application dependencies from the PaaS ecosystem like lan-
guage runtime, frameworks, data stores or third-party services
that should be portable between vendors. Whereas there are
many unstructured PaaS comparisons available throughout the
web, there exist few structured approaches to compare PaaS
offerings aiming at application portability (See Section VI).
In general, there is a lack of comparability between PaaS
which makes it hard for customers to decide on one [14].
Cloud offerings like PaaS that rent synthetic entities, such as
access to a middleware stack, are less well described by current
standards, and hence even common terminology is lacking for
describing how such entities might be transferred from one
provider to another [11]. In order to categorize these portability
problems, we define a model of current PaaS offerings and
identify different portability perspectives. Based on this model,
we derive a standardized profile with a common set of capabil-

2See http://searchcloudprovider.techtarget.com/definition/cloud-ecosystem
3See [13] and http://blog.docker.io/2013/08/paas-present-and-future/



ities that are seen among PaaS providers. These profiles can be
matched with one another to check ecosystem portability. The
profiles are the foundation for different use cases including
discovery and lookup, filtered retrieval, and matching with an
application dependency profile. Our approach is empirically
validated by providing a web-based application for these use
cases together with a comprehensive data set of 68 PaaS
offerings. We argue that if offerings are ecosystem-compatible,
it is generally possible to port the applications with potentially
additional adaptation effort between the vendors. In that regard,
we also identify further portability problems by migrating
our application to five different PaaS vendors validating our
notion of ecosystem portability while identifying first results
for future research directions.

The remainder of the paper is structured as follows. In
Section II we evaluate and define the notion of PaaS and
our specific scope of PaaS offerings. Section III introduces
a generic model of current PaaS systems. Based on this
abstraction, we assess and categorize different portability
challenges for PaaS systems in Section IV. Along with the
identified portability dimensions derived from the high-level
model, we extract important capabilities that form a typical
PaaS ecosystem and formalize them into a concrete PaaS
profile specification in Section V. Moreover, we present our
implementation for portability matchmaking that allows the
discovery and matching of those profiles. We validate our
idea of ecosystem portability by porting the application to
different matching vendors and describe real world use cases
that can be targeted with the profiles. Additionally, we identify
further portability problems that must be investigated on finer
levels of granularity. Section VI reviews related work and
gives distinction and rationales for deviating design decisions.
Finally, Section VII summarizes the paper and discusses future
work.

II. PLATFORM AS A SERVICE

The NIST Definition of Cloud Computing defines Platform
as a Service as “the capability provided to the consumer [...]
to deploy onto the cloud infrastructure consumer-created or
acquired applications created using programming languages,
libraries, services, and tools supported by the provider. The
consumer does not manage or control the underlying cloud
infrastructure including network, servers, operating systems,
or storage, but has control over the deployed applications
and possibly configuration settings for the application-hosting
environment” [15].

This well known and often cited definition already shows
that the term Platform as a Service can be applied to cloud
services with very different capabilities. In general, the defi-
nition only requires the ability to deploy applications which
have certain dependencies that are supported by the platform
environment. Moreover, it demands the abstraction from the
underlying cloud infrastructure while possibly granting access
to unspecified configuration settings of the PaaS environment.
PaaS clouds are not fundamentally different from traditional
computing systems (i.e. platforms) where applications can be
developed and run [11]. Although [11] additionally demands
an implicit basis for creating scalable applications, other def-
initions [13] and the current vendor landscape minimize the
requirements to an application runtime platform delivered in a

SaaS

IaaS

SaaS-centric PaaS

Generic PaaS

IaaS-centric PaaS

Force.com, OrangeScape

Google AppEngine, Heroku, Cloud Foundry, OpenShift

Amazon Elastic Beanstalk, Windows Azure

More Mgmt
More Productivity

Less Mgmt
More Control

leveL noitcartsb
A

Fig. 1: Types of Platform as a Service

pay-per-use, self-service way. In fact, definitions are widely
spread and often conducted from contrasting perspectives
resulting in diverging PaaS categories missing a common
consensus. The result is a crowded market of PaaS offerings
that sometimes provide completely different capabilities [16].
Gartner [17] for example defines a lot of xPaaS subcategories
where x specifies the part of the platform functionality that is
delivered by the PaaS. Forrester [13] instead, categorizes PaaS
by the applicability for different types of developers, namely
DevOps pro, coder, and rapid developer. These kinds each
come with distinct backgrounds, preferences, and motivations
on the controllability of the platform. The situation is also
made worse by cloud washing, the tendency of jumping on the
bandwagon and terming offerings as cloud services that do not
even provide typical cloud characteristics (as defined in [15])
[14]. Instead of trying to create another set of new categories,
we classify PaaS offerings along dimensions that are high-
level and a common denominator, the SPI model (SaaS, PaaS,
IaaS). During the research, we found properties from both
boundary technologies IaaS and SaaS incorporated into the
PaaS offerings. On the one hand this can be more control over
the infrastructure and the programming environment, on the
other hand the ability to instantly provision applications in a
SaaS manner or tools for visual programming of applications
tightly bound to SaaS solutions4. Currently, we see three
distinctive groups of PaaS in between IaaS and SaaS (See
Figure 1).

Firstly, there are IaaS-centric PaaS that offer streamlined
deployment of applications on top of the IaaS stack while still
retaining high or full control over the underlying infrastructure.
An example of this type of provider is Amazon Elastic
Beanstalk which is a simplified composition of Amazon’s
low-level IaaS services including e.g. EC2 and Elastic Load
Balancer. At the other end there are SaaS-centric PaaS with a
clear focus on productivity and simplicity which are mostly
restricted and tailored to a specific SaaS solution. These
platforms abstract most of the available middleware and are
often composed via visual tooling help without touching the
actual application code. One of the first representatives was
Force.com that provides the ability to develop applications
for Salesforce’s Customer Relationship Management SaaS
solution. SaaS-centric PaaS also include very specific plat-
forms that target Business Intelligence or Business Process

4See also http://blogs.forrester.com/james staten/11-01-24-is the
iaaspaas line beginning to blur



Management and such. At the center of our model reside
the PaaS which we term Generic PaaS. All of these supply
a more or less classical application platform that consists
of a set of language runtimes, frameworks, services, and
other components an application can be programmed to. The
platform is managed by the PaaS provider while important
aspects like scaling can be transparently initiated through a
management interface by the developer.

Although as described many types of platforms can be
termed PaaS, the scope of this research focuses on Generic
PaaS and solutions on the lower end, closer to IaaS. That is
because these solutions actually include an application plat-
form that is comparable between different providers. As men-
tioned, SaaS-centric solutions are too specific to be compared
or switched between. Those platforms come with restrictive
vendor lock-in that cannot be bridged because of the nature of
the offering’s purpose.

Achieving portability between cloud offerings is a diverse
challenge. In the literature, the terms portability and interop-
erability are often confused and falsely used as substitutes
[18]. However, both describe different scenarios. Portability is
defined as “[...] the capability of a program to be executed on
various types of data processing systems without converting
the program to a different language and with little or no
modification” [19]. For the cloud and PaaS this means the
ability to write code that works with more than one cloud
provider regardless of the differences between them [20].
Interoperability in contrast describes “[...] the ability of two
or more systems or components to exchange information and
to use the information that has been exchanged” [19]. Here, we
use the term cloud interoperability only for cloud systems that
interoperate with each other in the classical sense. This would
be the case for hybrid or federated multicloud deployments
that need to interoperate to e.g. synchronize data or exchange
other information in order to run one application in multi-
ple sovereign clouds. Whereas we are strictly talking about
application portability, some researchers may have termed
similar ideas as interoperability. We will still only use the term
portability throughout this paper.

III. PLATFORM AS A SERVICE MODEL

Due to their different specifications, each cloud model
(IaaS, PaaS, SaaS) needs to be treated separately in terms
of portability [21]. Whereas the entities and interfaces of
low-level IaaS systems like compute, network, and storage
[22] are widely agreed upon, the entities of PaaS offerings
are less well described by current standards and lacking
common terminology for describing how such entities might
be transferred from one provider to another [11]. Therefore,
we need a common model of PaaS [23]. Before we have a
closer look at the different aspects of PaaS portability, we
define such a model of current PaaS offerings (See Figure 2).
We develop this PaaS model because existing approaches are
either too generic, aiming at the whole SPI model which does
not fit the specialties of the PaaS environment, or do not depict
the current state of PaaS in enough detail. The results are
based and validated by the findings of our analysis of 68 PaaS
offerings. Moreover, we aligned our model with related work
on models and taxonomies from [14], [24]–[28]. The properties
may not be exhaustive but at that level and time they prove to

be the most important ones to form a model of a modern PaaS
offering. In our notion, PaaS can be divided into three layers:
infrastructure, platform and management.

A. Infrastructure

The PaaS infrastructure tier abstracts the physical infras-
tructure and adds another layer on top of IaaS capabilities or
directly abstracts the bare hardware. Whereas with IaaS one
can choose from different machine configurations, PaaS hides
most of those physical properties. What is left for the customer
are concepts like dynos (Heroku), worker units (AppHarbor),
app cells (CloudBees) or gears (OpenShift) that abstract a
specific instance configuration that can be used within the
PaaS. The raw CPU power among these concepts will vary and
is elusive. Horizontal scalability is achieved by provisioning
more instances on the fly. The instance’s disk capacity is often
negligible as most PaaS only provide ephemeral storage to be
stateless and highly scalable. Therefore, all persistent assets
except the deployment artifacts must be saved in separate data
stores to allow scale-out. The RAM size of those instances,
however, is often explicitly given and may be directly config-
ured as part of vertical scalability. In contrast to IaaS where
CPU power and usage is a main factor for billing, most PaaS
are metered by instance count and RAM size.

Another important factor is the geographical region the
application will be deployed in. This is particularly interesting
because of legal and performance reasons. As bandwidth
capacities keep increasing on the customer’s end, latency is
one of the main constraining factors for publicly hosted appli-
cations5. An application deployed in a data center in Europe
will have significantly faster response times to European users
than an application hosted in the United States. It is therefore
beneficial that a PaaS vendor offers several deployment regions
or at least the appropriate region for the application’s customer
base. This is an essential feature for companies serving a
particular region or willing to expand to different regions.
Even more important than raw speed are legal issues and
data security regulations. EU-based companies for example
are prohibited by law to transfer or store customer-related
data outside of the European Union [29]. With the majority
of PaaS and cloud offerings in general being US-based or
governed by US rights, those companies are not permitted
to record customer-related data at the provider. However, the
sole deployment region of the applications does not infer
the required rights from this area. This must be ensured by
explicit legal agreements with the provider like Safe Harbor6

or a jurisdiction based in the EU. This is a crucial aspect
for cloud vendors in general and even more present with
the disclosures of the PRISM surveillance program in mid
2013. Moreover, there are other regulations that limit cloud
adoption for certain businesses, like HIPAA and Sarbanes-
Oxley compliance, to name a few, that must be provided
for corporate data to be moved to the cloud [30]. Although
some providers are explicitly EU-based and advertised as EU-
compliant, the majority of vendors are just starting to address
these issues.

5See http://www.igvita.com/2012/07/19/latency-the-new-web-
performance-bottleneck

6See http://export.gov/safeharbor/



Runtime Stack 

Application Administration 

Middleware 

In
fr

as
tr

uc
tu

re
 

Pl
at

fo
rm

 
M

an
ag

em
en

t 

Provisioning 

Service Stack 

APIs 

Bindings 

Deployment 

Platform Administration 

Scaling Monitoring 

Native 
Services 

Add-on 
Services 

Frameworks 

Instance 

Memory CPU Disk 

G
eo

gr
ap

hi
ca

l 
Re

gi
on

s 

Se
cu

ri
ty

/C
om

pl
ia

nc
e 

D
ep

lo
ym

en
t 

M
od

el
s 

Buildpacks 

Apps 

Authentication Logging Billing … … 

Languages 

Fig. 2: Platform as a Service Model

PaaS is getting popular in different deployment models
[15]. Public PaaS are hosted over the Internet accessible for
a vast amount of different customers. A lot of public PaaS
vendors tend to use existing IaaS providers like Amazon Web
Services for their bare infrastructure management. Whereas
public PaaS is still the most popular type of PaaS, companies
are moving towards the implementation of private in-house
PaaS solutions. With the emergence of open source PaaS like
Cloud Foundry and OpenShift, more and more companies try
to modernize their infrastructure capabilities and reuse existing
in-house hardware for new private clouds. This can result
in better workload distribution for these computing clusters
while enabling the companies to leverage the productivity
improvements and dynamic capabilities of PaaS inside their
own security realms.

B. Platform

The platform is the main deliverable of a PaaS offering
and includes the application hosting environment delivered as
a service. Two stacks of components are decisive: The runtime
stack and the service stack. Both stacks can be combined
by the customers via bindings. Those bindings are generally
environment variables that include important properties of the
services like endpoint URLs, credentials, and other configura-
tion information.

The runtime stack includes the basic runtimes offered by
the PaaS, i.e. the programming languages that applications
can be written in. Furthermore, we see the vast popularity
of language-specific frameworks like Ruby on Rails which
are leveraged to develop today’s applications. Many customer
applications also depend on middleware that may be hosted by
the PaaS. Java EE for example is an established technology
that requires a middleware product that implements its speci-

fication. Most specific are APIs that cover PaaS functionality
like Google App Engine’s APIs to their proprietary Datastore
or Blobstore services. The higher the stack, the more specific
the application dependencies become, thus raising the risk of
lock-in.

The services stack is divided into native and add-on ser-
vices. Native services are hosted and operated by the PaaS
vendor typically co-located to the PaaS environment inside
the same infrastructure. These services include mostly latency
and performance critical core services like data stores. Add-
on services are supplied by third-party service providers that
integrate with the PaaS. They include both competing (e.g.
data stores) as well as complementary services like analytics,
search engines, messaging services, and many other utilities.
The ability to create a large ecosystem of partners is a huge
factor of current PaaS offerings. These services can improve
the customer’s ability to deliver applications along with cross-
selling opportunities for the vendors7. Add-ons are provisioned
from within the PaaS including Single Sign-on (SSO) with the
add-on provider and are directly billed as additional part of
the platform fees. However, add-ons possibly run in another
infrastructure that is even geographically different from the
PaaS. This must be taken into account when performance
critical operations are involved.

Another key part of a modern PaaS is extensibility. Orig-
inally developed by Heroku, buildpacks8 are a collection of
scripts that define a generic API for detecting, compiling
and releasing runtime languages, frameworks or services.
Buildpacks enable the developers to add own packages of
services or runtimes to their PaaS environment. They can be

7See http://www.infoworld.com/d/cloud-computing/forrester-paas-makes-
developers-happy-220963

8See https://devcenter.heroku.com/articles/buildpacks



seen as isolated entities that can generate any of the service
or runtime stack’s capabilities. As of scalability issues with
services like data stores (i.e. necessary data replication) this
is typically more convenient for parts of the runtime stack.
Other vendors have either adopted Heroku’s buildpacks or
defined their own extensibility mechanisms like OpenShift
cartridges9 or dotCloud custom services10. Buildpacks can be
manually created by the developer or are also often created and
shared by the community. This capability gives the developers
greater freedom and possibilities to use the system, blurring
the differentiation to IaaS.

Above both stacks, we see that some PaaS are starting
to support instant deployment of popular applications like
Content Management Systems (CMS) which on their part have
dependencies on the runtime and the services stack while
crossing the boundary to SaaS products.

C. Management

On top of the two previously described layers resides
a management layer that allows control over the deployed
applications and the configuration settings of the platform.
The management layer includes the abilities to deploy and
manage the lifecycle of the applications. This encompasses
pushing, starting, and stopping of applications. Moreover, the
provisioning of all native services and add-ons is initiated
from the management tier. All available configuration and
administration settings for the applications and the PaaS en-
vironment can also be controlled. This includes a wide range
of functionality like scaling, logging, down to the creation of
domain routes and environment variables. The management
layer also covers the resource usage monitoring that is relevant
for billing and scaling decisions. All those functionalities are
controlled by the management interface. The interface can be
a fully fledged RESTful API, console-based or driven via web
UIs. Although the mentioned functionalities are shared by all
different PaaS to a great extent, procedures and commands are
not standardized and differ widely between providers.

IV. PLATFORM AS A SERVICE PORTABILITY

As we can see from the several layers and the possible
manifestations of the inherited components and capabilities,
portability between PaaS is a difficult task. Nearly every
vendor has its particular management API, platform config-
uration and restrictions, resulting in a strong dependency to
a certain provider and significant costs when migrating from
one vendor to another [31]. Yet the cloud was about flexibility,
abandoning the burden of expensive in-house data centers and
workstations, this enables providers to harvest their locked-
in customers by dictating the prices. The EU commissioned
study SMART 2011/0045 [32] even says that portability is
the second most important obstacle hindering increasing cloud
adoption. Portability threats can occur at a variety of different
parts of a PaaS.

According to [21] there are two main interfaces that are
exposed to the customer that must be investigated when
looking at portability problems (See Figure 3). These are the
Self-service Management API through which the cloud user

9See https://www.openshift.com/developers/cartridge-authors-guide
10See http://docs.dotcloud.com/services/custom/

PaaS cloud

Self-service 
Management

API

Functional 
Interface

The (service and 
library) interfaces to 

which the application 
is written

Cloud user manages 
their use (application 
life cycle, etc.) of the 

platform

>_

Fig. 3: PaaS Portability Interfaces [21]

manages their use of the cloud and the functional interface
provided by what is resident in the cloud. This interface
encompasses the primary function of the cloud service. For
PaaS, this functional interface is the runtime environment and
the set of components to which the application is written. The
Self-service Management API in turn manages the application
lifecycle and configuration settings of the platform. Both
interfaces can be mapped to our model. The management
tier includes the Self-service Management API functionality
whereas the functional interface corresponds to the platform
tier. Portability of the Self-service Management API can be
achieved independently from the functional interface. As we
want to focus on the portability of application dependencies
in this paper, we concentrate on portability approaches for
the functional interface and omit efforts on the standardiza-
tion of the management interface. This must be investigated
separately.

[33]–[35] define three different dimensions for cloud
portability: service, functional and data portability. Service
portability is defined as the ability to add, reconfigure and
remove resources on the fly. Functional portability refers to
the platform agnostic definition of application functionality. At
last, data portability includes import and export functionality
for data structures across platforms [33]. Whereas service and
functional portability de facto match with the Self-service
Management API and the functional interface, data portability
is explicitly added. Nonetheless, data portability is strongly
dependent on the particular data store solution that needs
to supply appropriate export routines to enable portability
between databases. Solutions for this problem should be de-
veloped independently from the PaaS context.

For portability of the functional interface two scenarios are
possible11: the portability of application dependencies versus
the portability of entire applications. One can either port
an application with all its dependencies as a single unit of
delivery, take the dependencies with the application through
extensibility mechanisms like buildpacks or rely on the native
support of application dependencies between PaaS. Almost all
PaaS use some kind of container virtualization12 atop of the
operating system to manage and isolate applications. One idea
is that standardized containers can encapsulate any payload
and will run consistently on virtually any server [36]. Another
approach is to standardize the packaging of the application
and their dependencies so that they can be consistently run on
different platforms. Standardization around the unit of delivery

11See https://www.openshift.com/blogs/paas-standards-standardize-on-
what

12See e.g. http://www.docker.io



Business Perspective

Ecosystem Perspective

Implementation Perspective

}Profile

Fig. 4: Perspectives for Categorizing Portability Requirements

would correspond with a uniform virtualization image format
like Open Virtualization Format (OVF) for IaaS. Consensus
on such low-level PaaS artifacts, however, is unlikely and
still a long way off. On a higher level, portability can be
based on application dependencies. If one wants to port an
application to another PaaS, this PaaS has to support either all
the application dependencies natively or a developer needs to
be able to take these dependencies to the PaaS in a standardized
and consistent way. This will enable customers to deploy an
application on any PaaS without any drastic changes. Porting
application dependencies could be possible if all PaaS agree
on a standard format for extensibility, e.g. buildpacks. In this
way one can move an application even if the PaaS does
not support the dependency by itself. Yet, we can see that
vendors also have competing ideas and approaches in this
area (See Section III-B). Instead, we want to focus on a
no-standards approach that works with the status quo. We
actually see consensus in an array of dependencies that are
supplied and used for typical application development. As
most PaaS already include a wide set of common components
for application development, it is not unrealistic to say that
there exists a set of dependencies that are used in most of the
development cases in the form of a common denominator of
core capabilities. This is also motivated by the fact that vendors
want to attract as many customers as possible by supporting
their development needs. If a collection of PaaS offerings
support all necessary application dependencies natively, one
should be able to move an application between those vendors.
Moreover, this scenario includes both, portability between
clouds and application migrations from or to the cloud.

Apart from the aforementioned dimensions, we think we
can tackle portability on different levels of granularity. As an
example, we take the metaphor of crafting a product. Here, first
of all one needs to be sure to have all the components and
tools needed to assemble a product. If all parts are present
one can be sure that there is a way to build the product
but there is most likely not only one way to assemble it.
The same applies for an application on a PaaS. If the PaaS
offers all the components like runtime languages, services,
etc. that an application depends on, one should be able to
run the application on the system, but it might be necessary to
add some glue here and there to make it happen. These finer
details are implementation details. A PaaS may have specific
requirements for applications that they must conform to in
order to run on the platform. Consequently, we can distinguish
between the capabilities we need to craft a product and the
conformance to how it must be build. Therefore, we categorize
PaaS portability by three different perspectives (See Figure 4).

The most abstract perspective is the business perspective. It
includes business relevant nonfunctional and abstract require-
ments like pricing, compliance or SLAs. The ecosystem per-

spective describes concrete requirements including application-
specific dependencies like runtimes, services, and other ca-
pabilities of the platform tier. It can be summarized as all
capabilities that form the technical realization of the platform.
On the lowest end, we see the implementation perspective.
These conformance requirements are portability threats that
are implementation-specific requirements or restrictions, e.g.
deployment descriptors, restricted usage of runtime APIs or
specific management API calls. All capabilities that are spe-
cific to the technologies of the ecosystem belong to this
layer. Every layer not only has a specific set of portability
requirements but also a certain granularity. The properties on
the upper two tiers are well-defined capabilities of a PaaS
offering that can be mapped to taxonomies. The lower tier
includes very specific implementation artifacts and restrictions
that need other approaches to formalize and test those re-
quirements like e.g. static analysis or unit tests. We focus on
high-level portability of applications in this paper and omit
the details of the implementation perspective. Therefore, we
formalize capabilities of the two upper tiers, focusing on the
ecosystem perspective, into a PaaS profile that can be matched
with application requirements. We also incorporate important
abstract capabilities from the business perspective to provide
a more thorough profile.

V. PLATFORM AS A SERVICE PROFILES

To make PaaS offerings comparable and matchable, we
cluster a set of core properties of the aforementioned busi-
ness and ecosystem perspectives into a standardized machine-
readable PaaS profile13. We address the following use cases
from [21]. Firstly, the discovery of cloud resources, i.e. select-
ing an appropriate cloud for an application. In this regard, the
profile serves as description language and standard catalog for
inter-cloud resource discovery. By means of this discovery we
can identify high-level portability for deployment on a single
cloud, and the additional use cases of migration from on-
premise to cloud as well as the migration between different
clouds.

One of the major aspects was the real world applicability
of the profiles. They should relieve the current problem of
different vendors with diversified capabilities and the incom-
prehensible status quo. In our opinion, an impartial initiative
open for contribution of customers and vendors can help to
lead to a better overview and understanding of PaaS. Currently,
we face various biased initiatives pushing certain products
and a lot of outdated and incomplete information about PaaS
offerings. By following the dimensions and components of
our model, we also try to solve semantic conflicts between
PaaS by providing a common set of capabilities. A major
challenge with profiles is to keep them accurate and up-to-
date. Current PaaS offerings are changing at a fast pace.
Snapshots of the status quo as provided by market researchers
are likely to be already outdated when they get published14.
Even the documentation of the vendors itself is sometimes
lagging behind. We tackle this problem with several ideas.
First of all, the profiles are open source and can be collectively

13The most recent specification can be found at the project homepage at
https://www.github.com/stefan-kolb/paas-profiles.

14See market research from Forrester [13], [37], Gartner [17] or DZone
(http://www.dzone.com/page/comparison-guide-to-cloud-providers-2013).



Service

Native

Add-on

Type

Version

Name

Description

Infra-

structure

Run
tim

e
La

ng
ua

ge

Vers
ion

M
id

dl
ew

ar
e

Fr
am

ew
or

k

N
am

e

Ve
rs

io
n

Ru
nt

im
e

N
am

e

Ve
rs

io
n

Ru
nt

im
e

Extensibility

Hosting

Public
Private

Scaling

Horizontal

Vertical

Auto

ContinentCountryRegion

Provider

Type

URL

Name

Description

Status

Pr
ic

in
g

Co
m

pl
ia

nc
e

Beta

Prod
ucti

on

En
d o

f L
ife

Fi
xe

d
M

et
er

ed

M
od

el
D

ai
ly

M
on

th
ly

An
nu

al
ly

Pe
rio

d

H
yb

rid

Ecosystem

Business

Fig. 5: Platform as a Service Taxonomy

updated and revised. Another idea is that providers can add
themselves to the shelf, driven by the fact that they want to
become known to the customers. We take respect to this fact
by including vendor-verified profiles. Moreover, the profiles
and the web interface are continuously updated. If a profile
gets updated, it is immediately deployed to production. To our
knowledge, this is by far the most recent and comprehensive
publicly available collection of PaaS vendors15.

As a next step, we transform the PaaS model into a concrete
taxonomy describing essential parts of a PaaS with the different
perspectives in mind. Figure 5 shows the extracted taxon-
omy on which the profiles are based. Capabilities belonging
to either the business or ecosystem perspective are visually
clustered. The taxonomy depicts a restricted set of properties
that are present for the majority of PaaS offerings in order to
avoid missing values in the profiles and to allow for reasonable
matching. Not all properties that may be derived from the PaaS
model are included in the taxonomy. Some are missing because
they cannot be compared or are too specific. For example, APIs
are too fine-grained and often nonportable when being vendor-
specific and are therefore omitted in the profile. We also
include other business-relevant information that is not depicted
in the PaaS model but beneficial for a real world comparison,
as a simple proof of supplying all application dependencies
will not satisfy a business decision in practice. This should
make the profile more self-contained and complete.

A. Profile Specification

Listing 1 shows an exemplary PaaS profile definition.
Whereas the taxonomy’s properties could be specified in
any markup language, we explicitly choose the JavaScript
Object Notation (JSON) because of its wide application in

15At the time of writing we had 68 vendor profiles.

cloud-based systems. It is human-readable, de facto standard
for RESTful APIs and appropriate for direct injection in
document-oriented databases. The representation also enables
the possibility to serve the profile directly through the PaaS
API of a certain vendor. This would add more transparency to
the offerings as one could retrieve relevant information about
the PaaS via a standard API call. We aim at restricting the
possible values, so all profiles can be compared against each
other. Where possible, we try to rely on commonly known
and established concepts in order to have an intuitive profile
creation process.

{
"name": "Uniba Paas",
"revision": "2014-01-26",
"vendor_verified": "2014-01-26",
"url": "http://PaaSify.it",
"status": "production",
"status_since": "2013-08-01",
"pricing": [
{

"model": "fixed",
"period": "monthly"

}
],
"compliance": [
"SSAE 16 Type II",
"ISAE 3402 Type II"

],
"scaling": {
"vertical": true,
"horizontal": true,
"auto": false

},
"hosting": {
"public": true,
"private": false

},
"infrastructures": [
{
"continent": "NA",
"country": "US",
"region": "Virginia",
"provider": "Amazon Web Services"

}
],
"runtimes": [

{
"language": "java",
"versions": [

"1.6", "1.7"
]

}
],
"middleware": [
{
"name": "tomcat",
"runtime": "java",
"versions": [

"6.0.35"
]

}
],
"frameworks": [

{
"name": "rails",
"runtime": "ruby",
"versions": [

"3.*", "4.*"
]

}
],



"services": {
"native": [

{
"name": "mongodb",
"description": "Document database",
"type": "datastore",
"versions": [
"2.2"

]
}

],
"addon": [
{

"name": "mongohq",
"url": "https://www.mongohq.com/",
"description": "MongoDB as a Service",
"type": "datastore"

}
]

},
"extensible": false

}

Listing 1: An Exemplary PaaS Profile

1) Meta Information: Besides the main concepts from the
PaaS taxonomy, we introduce additional meta information to
the profiles. In order to verify and keep track of the profile
itself it includes the properties revision and vendor verified.
The property revision dates the last change or update of the
profile. The property vendor verified denotes if and when the
profile was last verified and officially audited by the vendor
itself.

2) Business Properties: The business properties either de-
scribe the PaaS as a whole or are related to the business
perspective of the PaaS. This includes the official name of
the PaaS offering and the url leading to the PaaS’ webpage.
As a qualifier for the maturity of the PaaS, a profile includes
the status of the offering and the time when this status became
active. This consists of the following lifecycle stages: ‘beta’
if it is in private or public beta testing, ‘production’ when
the offering is live and generally available, and ‘eol’ (end of
life) if it is discontinued or integrated into another offering.
Moreover, the profile includes all available pricing options.
This can be empty if it is royalty-free open source or no billing
is announced yet. Otherwise, this includes an object with the
pricing model and the billing period. All billing options are
subscription-based. The model can either be fixed, metered or
hybrid billing. Fixed billing describes a one-off fee that is
payed for a certain amount of resources (excluding additional
bandwidth transfer after a threshold) during a certain period.
Metered pricing is based on a sole consumption paradigm.
Here, all resources are billed by a fee per unit contract.
Hybrid pricing is a mixture of both models where a fixed fee
in combination with a metered consumption is applied. The
billing periods can typically be daily, monthly or annually.
As described in Section III, compliance with certain laws
or security standards is crucial for enterprises. The profile
includes an array of certified standards that are fulfilled by
the PaaS.

3) Ecosystem Properties: A major benefit and essential
characteristic of cloud environments is their rapid elasticity, in
other words scaling of the application resources [15]. One does
typically differentiate two methods for adding more resources

to an application: horizontal and vertical scaling. Vertical
scaling (scale-up) adds more resources to the same logical
unit, i.e. instance, in terms of e.g. CPU or RAM capacity.
In contrast, horizontal scaling (scale-out) scales the number
of application instances that may serve user requests. Both
tasks can be done manually or automatically based on policies,
according to application demands. The property auto scaling
describes if the PaaS is capable of scaling any of the above
properties automatically.

The hosting property conforms to the available deployment
models of the PaaS as defined in [15]. Although, values are
limited to public or private clouds. A community cloud is
just another form of privately managed cloud. An offering is
considered capable of being a hybrid cloud if it offers both
public and private deployments.

If an offering is available as public PaaS, the profile
includes all infrastructures an application can be deployed to.
The location of any infrastructure can be localized by four
properties: The continent where the data center is located in,
the country, the region, and an optional provider field. The
continent must be encoded with one of five continent codes
for Africa, Asia, Europe, North America, South America and
Oceania. Also, the country codes must conform to the two-
letter codes defined in ISO 3166-1 [38]. The property region
can be used to further clarify the location of the data center.
This field is free text and may specify a region or even the city
the data center is located in. The provider field may indicate
the name of an external IaaS provider used by the PaaS vendor,
e.g. Amazon Web Services for a PaaS run on Amazon EC2
instances.

The four main components of platform application depen-
dencies are runtimes, middleware, frameworks, and services.
Runtimes include all language runtimes an application can be
written in that are officially supported by the vendor16. To
further classify these runtimes, the properties language and
versions are used. Language identifies the official name of the
runtime and is limited to a restricted set of languages in order
to enable exact matching between them. As several versions of
languages are not necessarily backward compatible and newer
versions may offer different features, the property versions
includes all supported language versions. Wildcards may be
used for branches or even marking all versions as supported
(e.g. ‘*.*’). Middleware includes an array of preconfigured
middleware stacks. These are identified by their official name
which will be compared based on regular expressions to
eliminate syntactic differences. This matching procedure is
also applied to any of the other platform components. Similar
to the runtimes, the field middleware includes a version array
that indicates supported versions. To group the middleware
products to the correct runtime, they have an additional runtime
field that ties them to the runtime they are used in. Ac-
cordingly, frameworks consist of the name of the preinstalled
and configured framework, the supported versions, and the
base runtime. Frameworks and some middleware products are
special in terms of portability requirements. They can often
be ported as artifacts included in the application package,
too. This can release developers from expecting them to be
natively available in the PaaS. Services are divided into native

16Languages added via buildpacks that are not officially supported must not
be added. Extensibility is modeled explicitly.



and add-on services (See Section III). Native services have
a name that identifies them. Moreover, they are classified by
a type field that assigns a category to them in order to be
able to infer the usage of the service. To further describe what
the service is offering, it might have an additional description
field. A version field is supplied that defines the release of the
service for compatibility reasons. Add-ons are handled slightly
differently. They are also referenced by their name, type and
an optional description but do not include a version property.
Many of them do not even have a version number as they
supply services like analytics, search, messaging or payment
that are not necessarily offered as standalone application.
These add-ons are consumed as a service and are independent
from any particular PaaS. The internal properties will therefore
not vary between PaaS providers if they offer third-party
integration with the service provider. To that end, a url prop-
erty references the add-on provider’s webpage. The property
extensible indicates if the PaaS supports any mechanism like
buildpacks to add custom components to any of the runtime
or service stack.

B. Web Application

To be able to apply the PaaS profiles in practice, we
implemented a web application that is capable of viewing,
filtering, and matching user and application requirements17.
We present an overview of all listed PaaS offerings as an
entry point. The overview includes the most important high-
level characteristics name, status, runtimes, scaling, hosting
and infrastructures. This gives the user the ability to get a quick
overview over the available offerings. Starting from there, one
may navigate to a detail page showing all information provided
by the profile, structured and partially visually enriched for
better accessibility. One may also directly go to the filtering
and matchmaking capabilities. The results can be influenced
by applying multiple filters along the properties defined in
the profile specification. Additionally, the profiles can be
retrieved, searched, and matched via a RESTful API. The
implementation itself is PaaS-based. This serves another im-
portant aspect of our portability considerations: the validation
of the initial portability of applications based on ecosystem
capabilities (See Section V-C). The web interface is based on
the Sinatra18 DSL depending on the Ruby runtime. As the
JSON profiles can be easily imported and used in a document-
oriented database, we choose MongoDB19. MongoDB is a
scalable, high-performance, open source NoSQL database. As
an Object-Document-Mapper (ODM) that implements the data
mapper pattern, we use Mongoid 320 which has a requirement
on Ruby 1.9.3 or 2.0 and MongoDB version greater than
2.2. This MongoDB version is not widely accessible as native
service, so we decide to use an add-on service for this purpose,
in that case MongoLab21.

C. Application Portability Matchmaking

The web application includes a matchmaking capability
which returns matching vendors for a definition of capabilities.

17The project homepage is https://github.com/stefan-kolb/paas-profiles. An
online version of the web interface can be found at http://PaaSify.it.

18See http://www.sinatrarb.com/
19See http://www.mongodb.org/
20See http://mongoid.org
21See https://www.mongolab.com/

Application 

Filter
Matchmaking

Fig. 6: Application Portability Matchmaking

The application portability matching (See Figure 6) can either
be done visually by selecting all necessary dependencies in
the web interface or via an application profile that is auto-
matically matched against the PaaS profiles. A query on the
PaaS profiles is actually a profile by itself. An application
profile can include arbitrary properties that are included in
the profile specification (See Section V-A). Of course not all
of them will be sensible and needed to describe application
dependencies and PaaS capabilities. The matching of all given
properties except the version properties is AND concatenated,
i.e. all properties must exactly match with a compared PaaS
profile. The version attributes, however, are treated as OR
concatenated in the query because an application is typically
only dependent on one specific or any of a set of versions.
In order to allow better matching between concepts that are
not identified by a restricted set of values like middleware,
frameworks, and services, their names are compared based
on regular expressions. Partial matching, i.e. differentiating
between required and optional capabilities or the inclusion of
results that only match a portion of properties is currently not
supported by default. We omit this option because we think
portability is primarily about must-haves. Still, we can adapt to
these scenarios by adding and removing optional capabilities
in the filter or by querying alternative configurations. To be
able to automatically include feasible partial PaaS matches,
the algorithm needs to be enriched with further semantic
information about which properties can be manually upgraded
even if they are not natively supported, e.g. the ability to use
extensibility mechanisms for missing runtime languages or to
replace missing services with external add-ons.

Listing 2 shows the application profile for the web applica-
tion prototype. A suitable PaaS must allow public deployment,
has to be horizontally scalable, support the Ruby runtime in
either version 1.9.3 or 2.0 and the MongoLab add-on.
With these requirements the prototype returned five matches
that fit our application profile. These are AppFog22, Cloud-
Foundry.com23, cloudControl24, EngineYard25 and Heroku26.
All platforms have quite a few contrarieties and similarities
which make the comparison interesting. Although AppFog
and CloudFoundry.com are based on the Cloud Foundry (CF)
open source PaaS, AppFog emerged from the 1.* branch of
CF while CloudFoundry.com has already migrated to the new

22See https://appfog.com
23See https://www.cloudfoundry.com
24See https://www.cloudcontrol.com
25See https://www.engineyard.com
26See https://www.heroku.com



major version 2. Heroku and cloudControl are independent
proprietary systems but cloudControl reuses key parts of
Heroku’s concepts. Both use buildpacks to install and configure
different application dependencies. Furthermore, cloudControl
has a similar Git-based deployment workflow like Heroku.
EngineYard does not have a counterpart in this set.

1 {
2 "hosting": {
3 "public": true
4 },
5 "scaling": {
6 "horizontal": true
7 },
8 "runtimes": [
9 {

10 "language": "ruby",
11 "versions": [
12 "1.9.3",
13 "2.0"
14 ]
15 }
16 ],
17 "services": {
18 "addon": [
19 { "name": "mongolab" }
20 ]
21 }
22 }

Listing 2: Application Profile for the Web Prototype

While deploying onto the different PaaS, we come across
several differences that require partially very different deploy-
ment workflows and also code changes to get the application
running. In this paragraph we give a nonexhaustive overview of
some of the findings. Any of the PaaS use their own command-
line client (CLI) for communicating with the platform. Not
all of them allow a continuous workflow with the CLI but
require additional manual deployment steps for certain tasks
like add-on provisioning via the Web UI. The API methods
of the management interface are generally very different for
most tasks between the vendors and the APIs in general are far
from compatible. Some PaaS require the application artifacts
to be in Git revision control in order to deploy them onto
the PaaS. Besides very different deployment workflows on the
management interface, we also have to adapt the application
artifacts. The recognition of the type of application (in this
case Ruby/Sinatra) is based on configuration files and code
characteristics. Different PaaS are not necessarily able to detect
the correct type with the same set of configuration files.
Furthermore, standard mechanisms for specifying the required
Ruby version via the Bundler dependency management are
not available in all PaaS. Once, we have to manually specify
the version via a CLI parameter due to an old Bundler version
running on the PaaS. Some PaaS support a direct invocation of
shell commands on the environment to populate the associated
database via Rake build commands while others require to
tunnel the services and access them from the local machine.
Also, the structure of the environment variables that bind the
application to the services is different between vendors which
requires reprogramming of parts of the application.

As described in the preceding paragraph, several changes
are required to deploy the application to the vendors but it

is possible to get the application running on every PaaS.
Despite the simplicity of the application which does not make
use of any critical system calls within the environment that
might be conflicting, we can validate and conclude initial
findings from our research. The results support our initial
hypotheses that we can actually identify ecosystem portability
that allows us to tell if we can run our application on a
PaaS from a high-level ecosystem perspective, and that there
also is a narrower implementation perspective, which must
be investigated independently, that includes various additional
requirements and restrictions.

VI. RELATED WORK

Whereas a lot of standardization bodies and groups are
working on cloud portability and interoperability standards
on IaaS level, only few directly target PaaS. As we have
argued in this paper, PaaS’ capabilities and functionalities are
fundamentally different from IaaS and therefore need to be
focused separately in terms of standardization. In general, the
PaaS service model benefits less from standardization than
IaaS [18]. The platform components and capabilities are too
different between vendors and too plenty to be standardized.
As stated in Section IV, standardization on the functional
interface can also happen on the unit of delivery. The Topol-
ogy and Orchestration Specification for Cloud Applications
(TOSCA) [39] specifies a portable description for the structure
of applications, their component services and artifacts includ-
ing management and operational behavior of those. In order
to run these standardized application packages a TOSCA-
compatible runtime environment is necessary on the target
cloud. This approach asserts to be feasible for IaaS and PaaS
environments. Whereas on this functional interface only few
efforts are currently developed, it is another matter with the
management interface. The management API that controls
the monitoring and application lifecycle will have widely the
same set of functionalities between PaaS. While the Open
Cloud Computing Interface (OCCI) [40] standard claims to
be applicable for all layers, it is still missing a concrete
proposal besides the IaaS management API. Another initiative
Cloud Application Management for Platforms (CAMP) [28]
does specifically target the management interface of PaaS.
Technically, CAMP defines interfaces for self-service provi-
sioning, monitoring, and control of cloud platforms. While
there are standardization efforts ongoing, none of them has
gained significant traction in practice. Like with many other
cloud standards, an important factor for this situation is the
lack of acceptance and disregard from established technology
leaders in this area that prevents any widespread adoption of
standards. In contrast, our approach is directly applicable to
all vendors in practice.

A related but narrower scoped initiative is the Cloud
Foundry Core Definition (CFCD)27. It defines a baseline of
common capabilities in order to promote cloud portability
among different Cloud Foundry PaaS offerings. However, the
definition’s capabilities are limited to runtime languages and
native services. The CFCD defines a set of specific versions
of these runtimes and services that developers can use to build
portable applications. The Cloud Foundry team recognizes that
application services and runtimes continue to evolve, so they

27See http://core.cloudfoundry.org/definition



are willing to introduce a system of deprecated, current, and
next versions. These capabilities can be validated by entering
the API endpoint of the Cloud Foundry service28. Whereas this
specification targets the portability of applications considering
the PaaS ecosystem, we argue that it does only consider a
small scope of capabilities that are needed for compatibility.
Compared to our specification, important aspects like e.g.
middleware, frameworks, add-ons or scaling capabilities are
neglected. Although being explicitly defined as CF definition,
the concept could be transferred to other PaaS, too. We tested
against our data but did not find any non-CF PaaS that fulfills
the specification. In contrast to the fixed set of capabilities and
versions of the CFCD, our approach does not need to declare
certain property values but does naturally depict the current
state of PaaS which is a better fit for user- and application-
specific requirements. In our scope, generic portability match-
ing has an edge over one specific specification. Furthermore,
it seems that the specification is currently neglected because
of the switch to Cloud Foundry v2. It is unclear how v2 will
influence the specification as v2 itself is not compatible with
the CFCD.

In [41] the authors present a concept of a Cloud Service
Broker (CSB) that should be able to find a best match for
a PaaS application and automatically deploy it through a
generalized API to the provider or set up an appropriate
PaaS solution on an IaaS provider if no matching provider
can be found. To achieve this, the CSB should be aware of
application requirements and available cloud offers. However,
besides the architecture for the cloud broker and the use cases,
the authors do not present a solution how those application
requirements should be collected or represented neither than
how the existing cloud offerings and their capabilities are
structured and matched.

The European Commission funded project Cloud4SOA29

[42] is equally motivated. Among other capabilities, they
also include matchmaking into their work. Even though the
underlying PaaS Semantic Interoperability Framework (PSIF)
model [24] is comparable with our PaaS model, it is relatively
high-level. It consists of a PaaS system which may have
multiple PaaS offerings (based on language runtime) that
provide software components and a management interface
that hosts applications inside an IaaS system. The inherited
functional, nonfunctional, and execution semantics of the PaaS
entities are only roughly specified. An announced detailed
specification of the fundamental PaaS entities is not available
yet. Consequently, important capabilities and a clear separation
of concerns especially at the platform tier is missing. There
is no distinction between components of the service and
runtime stacks but all functionality is clustered into a software
component entity. Their profiles are divided by programming
language. Whereas having a profile for each language is
reasonable, as some capabilities are only available in a specific
language (mapped by a runtime property in our specifica-
tion), the multitude of profiles will make it even harder to
keep the profiles consistent and up-to-date. For matchmaking,
Cloud4SOA allows selecting certain required capabilities and
optional requirements that resolve into an ordered result on

28Compatibility is validated by calling specific API targets returning the
necessary capability descriptions.

29See http://www.cloud4soa.eu/

a percentage basis. We omit this option because we think
portability is not about options but must-haves. Still, we
can adapt to that scenario by adding or removing optional
capabilities in our filter interface.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a model that describes current
Platform as a Service offerings and deducted an ecosystem
profile to enable comparison and portability matching based on
application dependencies and capabilities. We also investigated
more on different portability threats and possible solutions
for them from a PaaS point of view. With data from 68
PaaS vendors, we offer a comprehensive overview of the
fragmented vendor landscape. Furthermore, we implemented a
web interface that allows users to take advantage of the PaaS
profiles. Besides giving an overview over available products,
it is possible to filter on capabilities and do matchmaking
by configuring required capabilities for application portability.
Whereas our results allow for validating portability between
PaaS on a high-level, this still does not include lower level
portability problems in terms of implementation details. We
validated this hypothesis by porting our application to five
different vendors and identified several low-level problems.
Although we could generally port our application, it involved
additional (re)programming and significantly different work-
flows to migrate the application. These problems include
platform- and cloud-specific requirements and restrictions30

as well as management API differences. These factors have
impact on the migration of applications from one cloud to
another and also from on-premise to cloud environments. As
next steps, we would like to investigate more on both of those
adjacent perspectives separately.

REFERENCES

[1] Y. V. Natis, B. J. Lheureux, M. Pezzini, D. W. Cearley, E. Knipp, and
D. C. Plummer, “PaaS Road Map: A Continent Emerging,” Gartner,
Tech. Rep., January 2011, http://www.gartner.com/id=1521622.

[2] F. Biscotti, Y. V. Natis, M. Pezzini, T. E. Murphy, P. Malinverno,
M. C. D. Feinberg, W. R. Schulte, T. Friedman, J. Thompson, B. J.
Lheureux, E. Thoo, and B. Huang, “Market Trends: Platform as a
Service, Worldwide, 2012-2016, 2H12 Update,” Gartner, Tech. Rep.,
October 2012, http://www.gartner.com/DisplayDocument?id=2188816.

[3] R. P. Mahowald, C. W. Olofson, M.-C. Ballou, M. Fleming, and
A. Hilwa, “Worldwide Competitive Public Platform as a Service 2013–
2017 Forecast,” IDC, Tech. Rep., November 2013, http://www.idc.com/
getdoc.jsp?containerId=243315.

[4] Y. Peraza and G. Zwakman, “Cloud Computing: Overview Report
2013,” 451Research, Tech. Rep., August 2013, https://451research.com/
report-long?icid=2863.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A View
of Cloud Computing,” Communications of the ACM, vol. 53, no. 4, pp.
50–58, 2010.

[6] S. Ortiz, “The Problem with Cloud-Computing Standardization,” Com-
puter, vol. 44, no. 7, pp. 13–16, 2011.

[7] J. Bitzer, “Commercial versus open source software: the role of product
heterogeneity in competition,” Economic Systems, vol. 28, no. 4, pp.
369–381, 2004.

[8] D. Durkee, “Why Cloud Computing Will Never Be Free,” Communi-
cations of the ACM, vol. 53, no. 5, pp. 62–69, 2010.

30See e.g. http://12factor.net/



[9] M. Hajjat, X. Sun, Y.-W. E. Sung, D. Maltz, S. Rao, K. Sripanidkulchai,
and M. Tawarmalani, “Cloudward Bound: Planning for Beneficial
Migration of Enterprise Applications to the Cloud,” ACM SIGCOMM
Computer Communication Review, vol. 40, no. 4, pp. 243–254, 2010.

[10] K. Sun and Y. Li, “Effort Estimation in Cloud Migration Process,” in 7th
IEEE International Symposium on Service-Oriented System Engineering
(SOSE), 2013, pp. 84–91, San Francisco, United States.

[11] L. Badger, T. Grance, R. Patt-Corner, and J. Voas, “Cloud Computing
Synopsis and Recommendations,” NIST Special Publication 800-146,
2012.

[12] G. S. Machado, D. Hausheer, and B. Stiller, “Considerations on the
Interoperability of and between Cloud Computing Standards,” in 27th
Open Grid Forum (OGF27), G2C-Net Workshop: From Grid to Cloud
Networks, 2009, Banff, Canada.

[13] J. R. Rymer and J. Staten, “The Forrester Wave: Enterprise Public
Cloud Platforms, Q2 2013,” Forrester, Tech. Rep., June 2013,
http://www.forrester.com/The+Forrester+Wave+Enterprise+Public+
Cloud+Platforms+Q2+2013/fulltext/-/E-RES86441.

[14] S. Gudenkauf, M. Josefiok, A. Gring, and O. Norkus, “A Reference
Architecture for Cloud Service Offers,” in 17th IEEE International En-
terprise Distributed Object Computing Conference (EDOC), September
2013, Vancouver, Canada.

[15] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
NIST Special Publication 800-145, September 2011.

[16] S. Ried, “Multiple PaaS Flavors Hit The Enterprise,” Forrester, Tech.
Rep., August 2012, http://www.forrester.com/Multiple+PaaS+Flavors+
Hit+The+Enterprise/fulltext/-/E-RES78101.

[17] Y. V. Natis, J. Tapadinhas, W. R. Schulte, M. Pezzini, M. Cantara,
J. Feiman, D. Feinberg, J. Murphy, T. E. Murphy, P. Malinverno, G. V.
Huizen, A. White, B. O’Kane, N. Heudecker, E. Thoo, J. Thompson,
G. Phifer, and I. Finley, “Platform as a Service: Definition, Taxonomy
and Vendor Landscape, 2013,” Gartner, Tech. Rep., June 2013, http:
//www.gartner.com/id=2515316.

[18] G. Lewis, “The Role of Standards in Cloud-Computing Interoper-
ability,” Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, United States, Tech. Rep., October 2012.

[19] ISO/IEC/IEEE 24765, Systems and software engineering – Vocabulary.
International Organization for Standardization, 2010.

[20] Cloud Computing Use Case Discussion Group, “Cloud Computing Use
Cases White Paper,” July 2010, http://opencloudmanifesto.org/Cloud
Computing Use Cases Whitepaper-4 0.pdf.

[21] M. Hogan, F. Liu, A. Sokol, and J. Tong, “NIST Cloud Computing
Standards Roadmap,” NIST Special Publication 500-291, 2011.

[22] OCCI, Open Cloud Computing Interface – Infrastructure. Open Grid
Forum, 2011.

[23] N. Loutas, E. Kamateri, F. Bosi, and K. Tarabanis, “Cloud computing
interoperability: the state of play,” in 3rd IEEE International Conference
on Cloud Computing Technology and Science (CloudCom). IEEE,
2011, pp. 752–757, Athens, Greece.

[24] N. Loutas, E. Kamateri, and K. Tarabanis, “A Semantic Interoperability
Framework for Cloud Platform as a Service,” in 3rd IEEE International
Conference on Cloud Computing Technology and Science (CloudCom).
IEEE, 2011, pp. 280–287, Athens, Greece.

[25] C. Höfer and G. Karagiannis, “Cloud computing services: taxonomy
and comparison,” Journal of Internet Services and Applications, vol. 2,
no. 2, pp. 81–94, 2011.

[26] R. Prodan and S. Ostermann, “A Survey and Taxonomy of Infrastructure
as a Service and Web Hosting Cloud Providers,” in 10th IEEE/ACM
International Conference on Grid Computing. IEEE, 2009, pp. 17–25,
Banff, Alberta.

[27] D. Hilley, “Cloud Computing: A Taxonomy of Platform and
Infrastructure-level Offerings,” Georgia Institute of Technology, Tech.
Rep., April 2009.

[28] OASIS, Cloud Application Management for Platforms Version 1.1 –
Draft 03. Organization for the Advancement of Structured Information
Standards, July 2013.

[29] European Union, “Directive 95/46/EC of the European Parliament and
of the Council on the Protection of Individuals with Regard to the
Processing of Personal Data and on the Free Movement of Such Data,”
Official Journal of the European Communities, vol. L 281, pp. 31–50,
November 1995.

[30] W. Jansen and T. Grance, “Guidelines on Security and Privacy in Public
Cloud Computing,” NIST Special Publication 800-144, 2011.

[31] D. Petcu, “Portability and Interoperability between Clouds: Challenges
and Case Study,” in Towards a Service-Based Internet. Springer, 2011,
pp. 62–74.

[32] D. Bradshaw, G. Folco, G. Cattaneo, and M. Kolding, “Quantitative
Estimates of the Demand for Cloud Computing in Europe and
the Likely Barriers to Up-take – SMART 2011/0045,” July 2012,
http://ec.europa.eu/information society/activities/cloudcomputing/docs/
quantitative estimates.pdf.

[33] D. Petcu, G. Macariu, S. Panica, and C. Craciun, “Portable Cloud
applications – From theory to practice,” Future Generation Computer
Systems, vol. 29, no. 6, pp. 1417–1430, 2013.

[34] A. Sheth and A. Ranabahu, “Semantic Modeling for Cloud Computing,
Part 2,” IEEE Internet Computing, vol. 14, no. 4, pp. 81–84, 2010.

[35] K. Oberle and M. Fisher, “ETSI CLOUD – Initial Standardization
Requirements for Cloud Services,” in Economics of Grids, Clouds,
Systems, and Services. Springer, 2010, pp. 105–115.

[36] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
“Container-based Operating System Virtualization: A Scalable, High-
performance Alternative to Hypervisors,” ACM SIGOPS Operating
Systems Review, vol. 41, no. 3, pp. 275–287, 2007.

[37] S. Ried and J. R. Rymer, “The Forrester Wave: Platform-As-A-Service
For App Dev And Delivery Professionals, Q2 2011,” Forrester, Tech.
Rep., May 2011, http://www.forrester.com/The+Forrester+Wave+
PlatformAsAService+For+App+Dev+And+Delivery+Professionals+
Q2+2011/fulltext/-/E-RES56710.

[38] ISO 3166-1, Codes for the representation of names of countries and
their subdivisions – Part 1: Country codes. International Organization
for Standardization, 2006.

[39] OASIS, Topology and Orchestration Specification for Cloud Applica-
tions Version 1.0. Organization for the Advancement of Structured
Information Standards, November 2013.

[40] OCCI, Open Cloud Computing Interface – Core. Open Grid Forum,
2011.

[41] C. Goncalves, D. Cunha, P. Neves, P. Sousa, J. P. Barraca, and
D. Gomes, “Towards a Cloud Service Broker for the Meta-Cloud,”
in 12th Conferencia sobre Redes de Computadores, November 2012,
Aveiro, Portugal.

[42] F. D’Andria, S. Bocconi, J. Cruz, J. Ahtes, and D. Zeginis,
“Cloud4SOA: Multi-cloud Application Management Across PaaS Of-
ferings,” in 14th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC), 2012, pp. 407–414,
Timisoara, Romania.

APPENDIX

The data set consisting of 68 PaaS vendors on which
the results in this paper are based can be found at https:
//github.com/stefan-kolb/paas-profiles. The web application for
portability matching is also available at this URL. Moreover,
an online version of the web application is accessible at
http://PaaSify.it.


