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Abstract—Platform as a Service is the major productivity
enabler in the cloud computing stack. By providing managed and
highly automated application environments, it enhances developer
productivity and reduces developer operations and maintenance
efforts. The market, however, is fast-changing and offerings are
differing conceptually as well as in their supported technological
ecosystem. Therefore, provider selection is an important but
currently not well supported step for companies trying to benefit
from the technology. Influenced by the diversity of service
offerings and the absence of applied standards this is a tedious
task, especially for ensuring application portability. In this paper,
we present a multi-criteria selection approach for cloud platforms
based on a field-tested ontology and a comprehensive data set. The
methodology is enhanced by semantic algorithms and mappings
to reduce hidden query and data biases. This allows not only the
exact matching of requirements but also the evaluation of possible
alternatives that can be adapted to fit the defined requirements.
We validate our approach by contrasting real user queries against
the results of our semantically enhanced algorithms.

Keywords—Cloud Computing, Platform as a Service, PaaS,
Selection, Decision Making, Semantics, Recommender, Portability

I. INTRODUCTION

Platform as a Service (PaaS) is a major technology to
improve development productivity for today’s agile develop-
ment cycles. The managed and highly automated application
environments free developers from configuring servers and
reduce developer operations and maintenance efforts. As a
result, developers can focus on the application development,
generating the actual business value. The PaaS market itself,
however, is fragmented and offerings are differing conceptually
as well as in their supported technological ecosystem [1].
Therefore, provider selection is an important but currently
not well supported task for companies trying to benefit from
the technology. Besides making an informed choice, despite
the variety of offerings, a main issue within this task is to
avoid a potential vendor lock-in and retain future options for
application portability [2]–[4]. In contrast to Infrastructure as
a Service (IaaS), decisions on appropriate PaaS providers typi-
cally involve more criteria due to their diverse ecosystems. As
of now, there are no widely applied standards in the world of
PaaS which stresses another approach based on technological
components and capabilities to compare offerings [1]. Until
recently, the vendors’ documentation and advertisements were
the only source of data to answer these questions. Not only
because such unstructured information may be updated without
prior notice, but also since the whole process involves a lot
of manual tasks that are costly, the need for a consolidated

repository evolved [1], [5], [6]. Nonetheless, existing works
targeting cloud provider selection regularly lack a decent data
set in terms of amount, actuality, and quality. Moreover, the
approaches often neglect important real-world problems and
are based on an optimistic view on the quality of the data
and the users’ selection queries. As we will show, these as-
sumptions are often not sufficient for the practical applicability
of provider selection and ignore an evident problem of data
and query biases while sacrificing results. Closely associated,
most approaches only allow an exact matching of the users’
queries with the data which can lead to a substantial amount
of unsatisfied queries. However, in most scenarios there is a
chance that partial matches might still be able to fit the user’s
needs constrained by a set of semantic rules for the applied
domain.

Whereas feasible algorithms for selection are discussed
fairly often, data and query problems and semantic knowledge
lack appropriate consideration. The presented work aims to
improve on these shortcomings in general and as an application
of the problem in the context of cloud platform selection.
Hence, the focus of this paper is on cloud properties and
semantic matching for cloud platforms rather than on generic
decision algorithms that are discussed sufficiently in related
works [7], [8]. We stress that existing works on cloud selection
are of limited value in practice because they are missing
additional validation and semantic enhancements to improve
selection accuracy. To that end, we will validate our hypotheses
in practice via real-world data from the leading cloud platform
knowledge base PaaSfinder1. Our main research questions are:

RQ 1: How to find matching cloud platforms for particular
application and user requirements?

RQ 2: Are there any issues with the accuracy and satisfac-
tion of user queries caused by data and query biases?

RQ 3: How to semantically enhance matching algorithms
to find and rank cloud platforms that only partially match the
defined requirements?

RQ 4: Do these algorithms improve the satisfaction and
accuracy of real user queries?

To elaborate on the given questions, the paper proceeds as
follows: In Section II, we describe important fundamentals for
our selection and portability approach targeting RQ 1. Next, we
evaluate real user queries to answer RQ 2 before we present our

1See https://PaaSfinder.org
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Fig. 1: Platform as a Service Taxonomy (cond.) [1]

methodologies for data governance and semantically enhanced
selection algorithms (RQ 3&4) to account for data and query
biases in Sections III and IV. In Section V, we contrast our
approach with existing related work. Section VI discusses
limitations and future work. Finally, Section VII summarizes
the contributions of the paper.

II. CLOUD PLATFORM SELECTION

A. PaaS Taxonomy

Due to conceptual differences, each cloud service model
(IaaS, PaaS, SaaS) needs to be treated separately in terms of
comparison, selection or portability [9]. Whereas the entities
and interfaces of IaaS systems like compute, network, and
storage [10] are widely agreed upon, those of PaaS offerings
are less well described by current standards and lacking a
common terminology or model [5], [11]–[13]. Taxonomies and
semantic technology is regarded as one of the most efficient
solutions for the classification, normalization, and connection
of domain knowledge [5]. To be able to supply a central
marketplace and compare existing PaaS providers, we first
needed to agree on a PaaS taxonomy to index offerings. Our
PaaS taxonomy [1] is based on extensive literature reviews,
analysis of the state of the art, and longstanding experience
with cloud platforms and their evolution. Moreover, the ac-
companying data set of currently 74 active PaaS vendors is
the most recent and comprehensive available to date. The
referenced taxonomy and its attributes are the foundation for
the structured data set of the knowledge base and the presented
selection algorithms and semantics. As every knowledge base
is only an abstraction of reality and limited to a specific
point of view, the set of attributes of a derived taxonomy
differs. In our case, the selection and definition of relevant
attributes is defined by a notion of application portability based
on the technological ecosystem of the providers. Thus, the
model’s attributes are focused on the available technological
ecosystem that is vital for assessing application portability
between vendors [1]. Other properties like business-related
QoS or cost details are omitted to some extent. Nevertheless,
the specification is extensible for any kind of qualitative
or quantitative attributes. Figure 1 shows an excerpt of the
taxonomy’s properties that are available through the filtering
interface to users conducting a cloud provider selection. For
a comprehensive explanation of the model and its attributes
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please see [1] and the project repository2. Technically, the
data is structured and encoded as JSON profiles so that the
knowledge representation is applicable for both, machines and
humans. The following section gives an insight how the notion
that lead to the selection of attributes was derived and what it
means.

B. Ecosystem Portability

One of the major obstacles when working with software
systems is how to prevent or tackle application portability
threats. An obvious answer to this is often standardization.
Naturally, several standardization organizations have addressed
cloud standards. Whereas some of them have gained traction,
e.g., OVF [14], most initiatives remain disregarded by practice.
Moreover, only very few of them consider the PaaS model
as their main objective rather than IaaS. Examples in the
context of application portability as single unit of delivery
include TOSCA [15] or the Open Container Initiative3. Yet,
we can see that vendors already have competing ideas and
approaches in this area. In the past, software standards have
failed for achieving portability in various ways [16]–[18]. For
the cloud, especially the lack of acceptance by industry leaders
prevents adoption and the market is also still too fragmented
and evolving at the moment.

For that reason, we pursue a no-standards approach for
application portability with no intermediaries and instant ap-
plicability. Commonly, portability is based on a set of attributes
that bear on the ability of software to be transferred from one
environment to another [19]. More specifically, portability can
be based on application dependencies which means relying
on native support and open technologies. In our data, we see
consensus in an array of dependencies that are supplied and
used for typical application development. Naturally, vendors
want to attract as many customers as possible by supporting
their development needs which is why their ecosystems in-
tersect. Hence, if all required technological components and
capabilities are supported by a platform, we should be able
to run our application with little to no additional adaption
effort [20]. Next to the components of the software, the
characteristics of the service provider become an important
factor when selecting a software service [21]. For instance,
the location of the provider’s data center and the implemented
privacy policy are often important nonfunctional criteria [22].
A benefit of our approach is that it can deal with both of the
described requirements. Whereas this principle weakens the
typical write once, run anywhere cross-platform benefits of
standards, it has a wider range of applications. The feasibility
of the described approach was validated by two case studies
including an extensive real-world application migration [1],
[23], [24].

2See https://github.com/stefan-kolb/paas-profiles
3See https://www.opencontainers.org



TABLE I: Statistics for User Interactions with Exact Matching
Algorithm

Exact matching

Number of satisfied queries 5836 (73.78 %)
Number of unsatisfied queries 2074 (26.22 %)∑

Total queries 7910

C. Decision Support System

Figure 2 shows the general architecture of the Decision
Support System (DSS) PaaSfinder. The central part of the
system is of course the knowledge base with the PaaS provider
data. The data is entered and updated via the acquisition
component via different data sources and stakeholders. Several
quality control stages are implemented along this way which
are described in the following to ensure data quality. The
interface to the inference component of the knowledge base
supports both human and machine decision makers, which we
believe is essential for such a decision that is both automat-
able and technically influenced, but finally driven by human
decision makers.

In the introduction, we assert that the quality of the data
and the users’ queries have a possible negative influence on
the selection result leading to fewer appropriate results or
no results. To elaborate this hypothesis, we state RQ 2: Are
there any issues with the accuracy and satisfaction of user
queries caused by data and query biases? To evaluate this
question, Table I shows aggregated statistics of user queries
recorded by PaaSfinder. The queries were conducted by real
users with an interface for exact matching as described in
Section IV-A. A total of 7910 interactions from 4200 users
were recorded in between 8/2/2016 and 01/18/20174. We
define satisfied queries as queries that returned at least one
PaaS provider that fits the requirements specified by the user
as result. This does not necessarily mean that the user found
the appropriate provider for his needs, but the query itself is
satisfied. Consequently, all queries that returned no result are
categorized as unsatisfied. As we can see, 73.78 % of the user
queries provided at least one result. Then again, this means
that more than a quarter of them did not satisfy the user’s
query. By carefully examining the set of unsatisfied queries, we
realized that there is a larger set of queries that could have been
satisfied with additional expert knowledge. In this context, an
expert is a person with special skills or experience in the
particular area, who is widely recognized as a reliable source
of knowledge in that area [25]. But such experts are costly
and therefore it would be beneficial to externalize parts of
such knowledge once and reapply it automatically to different
queries on the system. But were do the problems come from
that prevent a satisfying query result and can they be prevented
by semantically enhanced selection algorithms? To answer this
question, we analyzed the queries, data, and the results and
categorized what led to the unsatisfied query result. Thereby,
we identified two main categories of problems that caused the
mismatches: query and data problems. Both types influence
each other to create unwanted effects on the query results, e.g,

4Users are identified based on their IP address. Technically induced dupli-
cate requests were removed from the data. The anonymized raw data can be
accessed at https://github.com/stefan-kolb/paas-profiles/releases/tag/cloud17
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Fig. 3: Selection Problems Impacting MCDM Scenarios

no results. Figure 3 summarizes these potential problems for
queries on knowledge bases intertwined with our approach to
include semantic knowledge to account for these issues. As
we see, these problems are often neglected in related work on
cloud provider selection and diminish the applicability of the
research results for practice.

III. DATA BIASES AND DATA GOVERNANCE

A comprehensive, correct, and consistent knowledge base
is the foundation of a methodical comparison and selection of
cloud platforms. So an important step during the course of any
MCDM approach is to continuously secure the data quality
through appropriate data governance. This must be enforced
by a carefully crafted data model at design time and quality
assurance inside the acquisition component at runtime.

Several of the data problems depicted in Figure 3 that occur
at runtime already manifest themselves during design time of
the data model. As we discussed in Section II-A, the decision
problem for the selection plays an important role for the scope
of the model’s attributes. This point of view also defines the
relevant data for the knowledge base. For cloud platforms,
we realized that there exists a conflict between the aims
of knowledge bases and the practical applicability in related
work. Not all properties that seem relevant for a particular
problem can be fulfilled or are available for a majority of
entities in the real-world, e.g., SLAs or CPU power values.
Hence, typical problems that occur at runtime are missing
or incomplete data (comprehensiveness, completeness). Some-
times, possible candidates are not available inside the recent
data set (comprehensiveness) due to the fast moving business
or specific information is not listed due to the amount and
complexity of the model’s properties (completeness). Often,
data actuality is limited as providers are frequently changing
their offerings but corresponding data is not available in a
structured form and must be manually updated by humans (up-
to-dateness). Also, several threats to the integrity of the data
due to consistency problems and errors are common. Not all
of the domain-specific data consistency rules can be defined
inside the data model, so missing information on derived or
related data entries such as Cloud Foundry-based platforms
and different naming terminologies or faulty values cannot
be completely eliminated [6], [13]. Also, there exist several
threats that exacerbate the identified data biases. First of all,
stale data and infrequent updates are problems of knowledge
bases that often occur. Next, we experienced data biases due
to provider interests and misinformation that were caused by
different knowledge levels and opinions of data suppliers.

Due to the presented problems, special care to the data
governance needs to be taken in knowledge-based systems.



In our case, one might think that an automatic information
gathering process of the platforms’ specifications is possible.
However, there is virtually no data available in a standardized
and structured form that would allow us to crawl informa-
tion automatically. Instead, data comes from heterogeneous
sources and most often in natural language. Examples are
the provider websites, user documentations, changelogs, and
only sometimes APIs. In such cases, the data is typically
gathered and entered through the acquisition component by
experts or knowledge engineers. Due to the amount, diversity,
and continuous changes to the PaaS provider market and data
this is not feasible. Therefore, we use a more open process
with additional knowledge providers to enhance data complete-
ness and actuality. Stakeholders are domain experts, vendors,
consultants, end users, and automatic crawlers. Additionally,
a feedback loop back to the knowledge engineers to trigger a
revalidation or an update of the data after a certain threshold
is desirable to avoid stale data. As the various knowledge
suppliers have different levels of expertise and intentions, we
needed to implement several techniques and barriers inside
the acquisition component to ensure good data quality (see
Figure 2). First and foremost, data structure requirements and
limitations for available properties and values are enforced by
our generic PaaS model. Additionally, we implemented a large
set of automated semantic rules for the data inside the acquisi-
tion component that cannot be checked by model constraints,
to avoid, e.g., duplicates, intersecting concepts [13], [26] and
ensure completeness, consistency of concepts and values where
possible. Nevertheless, a second human quality control stage
must be passed, if the data passes the tests, before the data
is merged. Solely ensuring that the structural and semantical
integrity of the data is fine via automatic tests is not enough
because there still is the problem that wrong information might
be given unintentionally or intentionally which can only be
reasonably validated by human experts. As an example, we
experienced that IaaS vendors which did not provide specific
PaaS features tried to add their offering to the knowledge base
for marketing reasons.

With all of the presented data governance measures, we
prevent numerous typically unhandled threats to data quality up
front. However, since absolute completeness and consistency
of the data is hard to achieve in reality, this must be targeted
by additional semantic enhancements to the query as shown in
the following section.

IV. QUERY BIASES AND SEMANTIC QUERY
ENHANCEMENTS

Query problems are caused by the user or the machine
that sends a query to the knowledge base. In some cases,
query data may be incomplete, inaccurate, or simply irrelevant
to the problem that is being investigated [25]. This includes
nonexistent query attributes or values that must be prevented
by structural query validation to avoid unsatisfied queries
(selector existence). In our case, a query is validated by our
feature model and its validations by translating it into a virtual
provider model. Other effects are harder to detect and handle.
For example, if the user does not ask the right question for his
problem, e.g., a user is looking for hosting in North America
but does not include the option for a private hosting in his
query. If the model does not cover the relevant properties of
the decision problem, the query cannot be answered with an
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appropriate result. Also, the more detailed a query is, the
more comprehensive the data set needs to be. As a state
of total information is not achievable in reality, we need
to assume the imperfectness of the data set. A too specific
query in connection with an imperfect data set can lead to an
unsatisfied query whereas the actual requirements might still be
satisfiable in reality. In general, there is a correlation between
very specific queries and a no result. Our data shows that
unsatisfied queries have an average of 5.38 query keys whereas
satisfied queries have only 2.72 keys per query selector. The
typical search behavior applied by users can often be described
by a back and forth of specialization and generalization of
the search query. One of our ideas to tackle this problem is
to automatically assist the user on his way in this process
via semantic knowledge to make it feasible to relax possibly
overspecified queries and show the effects of query relaxations
to the user.

Therefore, to mitigate the observed effects, in addition
to the presented enhancements to the knowledge acquisition,
we propose an enhanced multi-step selection process (see
Figure 4). Overall, we try to answer a typical MCDM question:
’given a set of alternatives and a set of decision criteria, then
what [are] the best alternative[s]?’ [8, p. XXV] First, we try to
fully satisfy the user query. In case we could not find suitable
vendors or to provide possible alternatives, we relax and adapt
the query based on externalized semantic knowledge. In the
following, we first discuss the exact matching algorithm and
afterwards our semantic algorithms that allow such a partial
matching (RQ3).

A. Exact Matching Step

Ultimately, a query result that fully satisfies the user’s
demands is what we always should aim for. This is especially
necessary for automatic application migration scenarios, where
we cannot relax the query and risk incompatibilities that would
potentially break the portability and the process by forcing
adaptations to the application. In fact, the exact matching step
can be broken down into two steps again, a filtering and a
ranking step. As our main focus for the selection and the
properties of our PaaS model is on application portability,



most of the criteria are must-haves. This means if any of
those criteria cannot be fulfilled by a candidate provider, it
must be excluded from the result set (filtering step). Most of
the popular MCDM algorithms do not handle such must-have
criteria well but optimize a target function. Such a step can be
best applied after the initial filtering of portable candidates to
rank the results based on non must-have criteria, e.g., pricing
or uptime, with established MCDM methods (ranking step). To
this end, several well known algorithms such as the analytic
hierarchy process (AHP) [27], outranking [28] or the weighted
sum model [29] can be used. By now, inside the filtering
step, all requirements are equally important for the selection
algorithm. For our case, this is reasonable as most requirements
are relevant for application portability and therefore must-
haves. Also, user-defined preferences require more knowledge
from the user what implications this has on the result set and
wrong configurations might have unwanted side effects on
the results. Therefore, in this scenario we follow a different
approach and try to make it as easy as possible for the user
to define his must-haves and let the algorithms do the hard
work. However, we could add this functionality later to feed
the algorithms with additional information what can safely be
relaxed to expand the result set.

B. Semantic Matching Steps

As shown, there are data and query problems that cause
unsatisfied queries or diminish the amount of possible al-
ternatives that are displayed. Therefore, as a second step of
our selection approach we introduce a partial matching stage
(RQ3). It is useful for semi-automatic or manual application
migration search or exploration with user interaction. This is
reasonable as of now in most cases a fully automatic migration
among cloud platforms will not be possible anyhow [23], [30].
Again, see Figure 4 for an illustration how we gradually relax
and adapt the user’s query to find new sets of (additional)
appropriate selection results. In that case, we make use of
certain rules and algorithms based on semantic information to
alter the initial user query. These rules account for the data and
query problems discussed before. Overall, there do exist some
general algorithms that can be applied to nearly all knowledge
bases of similar type than ours, e.g., similarity based on edit
distances of query attributes. However, most of the general
concepts need to be specifically tailored to the exact domain
of the knowledge base [13], [25]. In the following, we present
a set of rules for the aforementioned problems applied to the
case of cloud platform selection. By using different domain-
specific rules, several restrictions can be relaxed while still
retaining a perfect fit or at least the possibility to find a fit.
Even when there is no exact match, such a result can satisfy the
user more than a no result. Some of the rules and algorithms
are portability preserving while others imply the possibility
that porting is possible but not guaranteed or involves more
effort to achieve the same result. Therefore, these results must
be marked with some kind of less appropriate indicator to the
user. Of course this list of algorithms can be extended further.
Here, we present a selection of our main findings inside the
PaaSfinder system.

a) Generalization: What we learned from our work
with the knowledge base is that the more specific the informa-
tion is, the less likely it is that it is given or even up-to-date.
Therefore, specific information that comes in a hierarchical

context with other data can be more safely relaxed than generic
information without influencing the selection result. Also, as
we discussed before, users tend to overspecify their needs
which also fosters the negative impact caused by missing or
outdated data. Hierarchical relationships between data are often
found in technological knowledge bases. For an example see
equation 1.

Runtime Framework  V ersion (1)

A concrete rule from our data would be, Ruby  Rails
 v5. In the course of the partial matching stage, we can
relax queries that include very specific information, e.g, a
framework version, so that they only request the framework
and imply that the specific version may be supported. Even
further, we can then relax the need for the framework to a
simple requirement for the corresponding runtime and imply
that this framework will be supported. Although this line of
argument and relationship might sound ambitious, tests with
our data show that it is actually often safe to assume.

b) Customization: Whereas today all cloud platforms
come with a large ecosystem of technological assets, there is
still room for customization and the addition of technologies by
the user. This trend was initially introduced by the Buildpack5

concept of Heroku, to allow the users to customize and add
specific technologies to the preconfigured application environ-
ments just like they were used to with IaaS. This was necessary
as more and more offerings evolved from specialized language-
based PaaS to polyglot platforms supporting more and more
runtimes and therefore the state space of ecosystems to be
supported grew exponentially. Platforms that support such an
extensibility concept are capable of running more technologies
than officially supported by the provider. These concepts
are typically best applied for the addition of other runtime
languages and framework support. The selection algorithms
can make use of that to include these vendors into the extended
result set even when runtimes are not supported by the data.
This especially helps with queries that look for a larger set
of supported runtimes (N(unsatisfied)runtimes>1 = 505)
indicating the need for extensibility of the platform.

c) Compatibility: The concept of compatibility or re-
placeability can be applied in multiple ways inside the se-
lection algorithms. In a classical sense, several technologies
implement the same base technology or a standardized lan-
guage, such as SQL, and are at least partially compatible and
replacable, e.g., MySQL, PostgreSQL, and MariaDB. Often,
providers also name their configuration of a system differently
as it is tweaked differently, e.g., Pivotal GemFire which essen-
tially is Apache Geode. Additionally, the ecosystem of cloud
platforms can replace required native services through their
third party add-on marketplaces. Often, it can be beneficial
to use a specialized and managed add-on service for specific
service dependencies rather than relying on a native service
inside the platform.

d) Terminology: Even with a stringent data model and
automated tests as presented in Section III, it cannot be
guaranteed that every technology has the same consistent name
throughout the data. Due to the large and diverse ecosystems,

5See https://devcenter.heroku.com/articles/buildpacks



TABLE II: Evaluation of Semantic Query Enhancements

Algorithm Target Query selector(s) No. of unsatisfied queries Pct. of unsatisfied queries Avg. results x̃

Exact matching 2074 26.22 % 5

Generalization completeness, up-to-dateness,
overspecification

frameworks 1792 (-282) 22.65 % (-3.57 %) 8

Customization completeness, up-to-dateness runtimes, frameworks 1345 (-729) 17.00 % (-9.22 %) 16

Terminology integrity middleware, frameworks,
native services, add-ons

2010 (-64) 25.41 % (-0.81 %) 5.5

Compatibility integrity native services 1992 (-82) 25.18 % (-1.04 %) 6

Portability overspecification, irrelevance status 1873 (-201) 23.68 % (-2.54 %) 7
pricing 1686 (-388) 21.31 % (-4.91 %) 9

property values cannot be completely restricted and enumer-
ated. In our case, this applies to frameworks, middleware
products, services, and add-on names. Therefore, we also need
to find equalities between them to correct inconsistencies and
also add probable duplicates to the result sets. To that end, we
can apply edit-distance based algorithms to identify similar
technologies.

e) Portability: As we discussed before, every selection
approach has its specific scope that manifests itself inside the
knowledge base’s model. Most of the times, several additional
attributes are added to the model that contribute to the practical
applicability of the selection and are often requested by users.
Nevertheless, when using an excluding matching step, all
criteria contribute equally to the candidate filtering regardless
of their importance for the selection scope. To not require the
users to apply this specific knowledge manually, the algorithms
should be aware which attributes can be safely relaxed. In
our case, we mainly focus on the portability of application
dependencies. Therefore, it can be beneficial to relax criteria
that are not immediately important for application portability,
e.g., pricing.

C. Evaluation

In Section II-C, we already showed that there are issues
with the accuracy and satisfaction of user queries caused by
data and user query biases. To evaluate the effects of our
proposed semantic enhancements, we need to reconsider RQ 4:
Do these algorithms improve the satisfaction and accuracy of
real user queries? For evaluation, we applied the suggested
algorithms on the recorded user interactions6 to evaluate how
the user experience would have been altered with our proposed
semantic query enhancements. Table II shows the results of
both, the exact query matching and the semantically enhanced
queries in relation to each other.

We can not only see that the number of unsatisfied queries
decreases substantially due to the semantic enhancements
but also that the number of average results (median) rises.
Generally, more choices are not necessarily desirable as the
decision problem for the user gets more complicated with
a larger result set. Therefore, additional semantic steps are
best applied to empty result sets or very few results, initially
leaving the user with no real choice. Exactly these cases are
frequent in our data (N(results <= 1) = 2845, 35.97 %)

6The concrete implemented algorithms can be found at https://github.com/
stefan-kolb/paas-profiles/releases/tag/cloud17

which strengthens the necessity for the semantic matching
steps. The generalization algorithm proves to be one of the
most effective query enhancements. Apparently, the sizes of
the platforms’ technological ecosystems pose a problem for
the completeness and up-to-dateness of the data set. The pre-
sented enhancements smooth out these inconsistencies while
still preserving these frequently requested model attributes.
Expectedly, the customization algorithm has the highest impact
on the result set size as it appends every extensible platform
to all runtime queries. Whereas it does retain application
portability, due to its impact on the query, it should only
be used sparingly and for the final stages of the selection
process. The terminology results show that our data governance
measures from Section III are working quite effectively, as
we experienced only a few syntactic duplicates summing
up for less than one percent of result set changes. For the
compatibility mappings, we identified sets of 15 compatible
native services. Even with this small set of relationships, we
can improve the amount of satisfied queries by one percent.
This could be further enhanced by identifying appropriate
mappings to available third party add-on services. Last, we
evaluated two examples for relaxing query attributes, i.e., status
and pricing, that do not directly contribute to the portability
of application dependencies. Both highly influence the user
request but can be valuable to satisfy queries that need to
focus strongly on application dependencies first. Overall, we
can conclude that the more detailed queries a knowledge base
allows, the more beneficial our semantic enhancements and
matching stages will be.

D. Summary

Together with our work from [1], we proposed a system
for selecting cloud platforms for particular application and
user requirements (RQ1). By examining real user queries from
the PaaS knowledge base PaaSfinder, we showed that there
are issues with the accuracy and satisfaction of user queries
(RQ2) in knowledge bases and suggested different semantic
algorithms that account for the identified data and query
biases that allow a partial matching of application requirements
(RQ3). Our evaluations show that the proposed semantics
enhance the user satisfaction and lead to a more accurate
selection result (RQ4).

V. RELATED WORK

Existing literature targeting cloud provider selection can be
best distinguished based on the cloud model [9]. Essentially,



a majority of papers focus on IaaS, whereas little work has
been conducted on PaaS cloud service selection [5]. In general,
recent work on cloud service selection is primarily focused on
rankings based on cost comparisons and other nonfunctional
characteristics [5], [31]. Functional aspects are mostly only
considered through virtual machine capabilities in the IaaS
context. All of the referenced works validate their approaches
on a very limited data set of cloud providers.

A. Generic Approaches

Despite the differences between cloud types, many existing
approaches intend to suggest a generic solution for cloud
services. However, this often limits their practical applicability
due to the conceptual differences between cloud types and
therefore small set of intersecting properties [9]. Wittern et
al. [32] use feature models as a representation mechanism
for requirements elicitation within a cloud service selection
process. As a concrete instantiation of their generic selection
approach, they present models for cloud storage selection.
Sundareswaran et al. [33] are focused on the performance of
the selection process rather than the semantic accuracy of the
approach. Menzel et al. [34] suggest a step-by-step process
to build a concrete, customized evaluation method for any
decision scenario. As an application of their framework, they
demonstrate an approach for IT infrastructure decisions.

B. IaaS

Zhang et al. [6] are limited to IaaS properties such as
compute, storage, and network which are eventually ranked by
entity costs. Semantically, they claim to perform some basic
input validation on the user’s query. In [35], the authors
present an approach for IaaS cloud selection using MCDM
methods. Their method is based on five cost and performance-
related criteria for thirteen cloud services. Pawluk et al. [36]
introduce an IaaS cloud broker focused on cost minimization.
Moreover, they try to address lock-in issues by ranking multi-
cloud application scenarios while relaxing the cost objective.
Andrikopoulos et al. [37] present a decision support system for
assisting the migration between cloud providers again focusing
on cost minimization. Gong and Sim [38] suggest a centroid-
based search engine with the help of a k-means clustering
algorithm for similarity search. In that regard, a user query
is transformed into a temporary entity and compared to the
existing provider vectors. To mitigate biases caused by missing
data, they replace absent data with default, most frequent or
similar values. Whereas this approach allows exploring similar
providers based on semantic equivalences, it is not feasible
for selections targeting portability which warrant must-have
requirements. Garcı́a-Galán et al. [39] present a vendor-specific
IaaS selection focusing solely on Amazon EC2 configurations.
Based on their feature models, they validate user queries before
the optimization process is executed. Jung et al. [40] present
CloudAdvisor, a recommender platform focused on QoS prop-
erties like cost, performance expectation, and energy efficiency.
Similarly, Garg et al. [41] concentrate on a set of quantitative
QoS attributes taken from the Service Measurement Index [42].
In addition to academic publications, several web services for
IaaS cost comparisons exist7.

7See http://www.planforcloud.com, https://www.cloudorado.com

C. PaaS

In Bassiliades et al. [43] the recommendation algorithm of
the PaaSport marketplace is discussed. The selection algorithm
is a two-step process that first selects all matching vendors
based on functional requirements and later ranks them based
on nonfunctional requirements using an aggregation scoring
function. Whereas the algorithm scores on very specific data
values like runtime versions or database storage sizes, it
does not use any semantic rules to account for data biases
which, as we showed, strongly interrelate with detailed queries.
Problems caused by missing data are likely, especially since
nonfunctional attributes suggested by the approach such as
uptime guarantees or processing cores are not known for a
lot of PaaS offerings. Quinton et al. [44] propose a software
product lines based approach. They use feature models (FM) to
describe different PaaS environments. To bridge the semantic
gap between these FMs, a generic cloud knowledge model
is introduced to describe all concepts relevant to the domain.
Next, several mappings based on the concepts of the cloud
knowledge model to features with the same semantics of
different FMs are introduced. This approach is comparable
to our unified PaaS model complemented by the terminology
mappings, but instead all of these rules need to be explicitly
specified which requires a lot of manual efforts and risks
missing assignments. Surajbali and Juan-Verdejo [45] propose
a high-level architecture for a PaaS broker that includes
provider selection. Their DSS builds on top of the analytic
hierarchy process to recommend and rank available provider
alternatives. However, they do not give more insights on how
they adapted their formalized selection approach inCLOUDer
for PaaS recommendation.

D. SaaS

In the field of SaaS, offerings are mainly comparable based
on nonfunctional requirements. Godse and Mulik [46] present
a SaaS selection focused on Sales Force Automation for
CRM, based on the analytic hierarchy process. Schlauderer and
Overhage [21] suggest an assessment framework for evaluating
software service providers in general. They define and evaluate
a set of important assessment criteria and requirements but no
selection process by itself.

VI. LIMITATIONS AND FUTURE WORK

Due to the focus on application portability, currently all re-
quirements are equally important for the selection and ordering
of the result set. Nevertheless, there exist properties that can
be relaxed and weighted with a certain importance dependent
on the preferences of a user. We could further enhance our
work and add the possibility to specify preferences that serve
as user-defined semantic input for the selection algorithms and
order the results based on these factors. As of now, all user and
application requirements must be specified manually as input
for the selection algorithms. In the future, it may be possible
to assist the selection process by automating parts of the
application requirements detection, e.g., by finding application
dependencies through static code analysis.

VII. CONCLUSION

In this paper, we showed that existing approaches for cloud
provider selection lack semantic technologies to account for



query and data biases. Both of these factors appear in the
process of selecting alternatives from knowledge bases in gen-
eral and especially in multi-criteria selection scenarios where
more dimensions complicate the data and selection scenario.
However, current research has not considered these problems
appropriately in their works. To that end, we introduced a
multi-step selection process including algorithms based on
semantic findings applied to the domain of cloud platform
selection. We showed that the application of these algorithms
improves the accuracy and satisfaction of user queries on the
knowledge base by contrasting the results of exact queries with
the results of our improved semantic queries on a large data
set of real user queries. Whereas we validated our approach
for a specific selection domain, the findings and general ideas
can be beneficial for a wide range of multi-criteria selection
approaches.
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