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Abstract

Applying choreography and orchestration technology to
Business-to-Business integration (B2Bi) scenarios has
become a popular technique for very good reasons.
Choreography descriptions can be used to capture B2Bi
scenarios from a global and abstract perspective while
orchestrations then can be used to specify the local
implementation of each integration partner. ebXML BPSS
(ebBP) is a prominent B2Bi choreography standard with
very helpful domain-specific concepts, but clear guidelines
for creating executable choreographies are missing.
In order to create ebBP models that are both adequate
and executable, expressiveness, comprehensibility and
standard-conformance have to be weighed up. In this
paper, we introduce ebBP-Reg as an ebBP modeling flavor
that is designed such that ebBP-Reg choreographies are
executable as WS-BPEL orchestrations. At the same time,
ebBP-Reg models strictly conform to the ebBP standard and
support concurrency and decomposition. We characterize
syntactic validity of ebBP-Reg models by means of language
production rules and show how instances of ebBP-Reg can
be implemented using WS-BPEL.

Keywords: B2Bi, ebXML BPSS, WS-BPEL, choreography,
orchestration

1. Introduction

In the B2Bi domain, integration partners typically first have
to agree upon the types and sequence of message exchanges
for connecting their information systems and then implement
the agreed-upon process in a distributed manner. Applying
choreography and orchestration technology to this task are
a good fit because choreography languages offer a global
and abstract view on system interactions while orchestration
languages offer the functionality for implementing each inte-
gration partner’s local behavior.
Considering concrete languages for a B2Bi choreogra-
phy/orchestration tool chain, ebXML BPSS (ebBP) [1] and
WS-BPEL [2] are a particularly good choice. ebBP offers
domain-specific concepts like BusinessTransactions or B2Bi
Quality-of-Service and allows for the technology-independent

specification of B2Bi choreographies. Although technology-
independence enables choosing multiple implementation tech-
nologies, ebBP must be mapped to an implementation tech-
nology at some point in time. WS-BPEL as the most impor-
tant Web services orchestration standard is a natural fit for
that due to its platform-interoperability. However, deriving
WS-BPEL orchestrations from ebBP choreographies is not
straight-forward because the semantics of ebBP is not pre-
cisely defined and, consequently, validity and implementabil-
ity are not clear. Therefore, the class of processes to be con-
sidered for modeling ebBP choreographies must be carefully
chosen in order to ensure validity and implementability. At the
same time, expressiveness, comprehensibility and standard-
conformance play an important role in tailoring an adequate
class of valid and implementable ebBP models. In [3], ebBP-
ST, ebBP-Reg and ebBP+ are proposed as three different
ebBP modeling flavors that serve different requirements. In
the work at hand, we present ebBP-Reg as the ebBP modeling
flavor that strictly conforms to the ebBP XML schema and
supports hierarchical decomposition as well as concurrency
for binary collaborations. Standard-conformance and imple-
mentability while covering the majority of B2Bi scenarios
have been the decisive requirements for shaping ebBP-Reg
(cf. [3]). We are giving production rules for creating valid
and implementable models and we informally define its
operational semantics by mapping ebBP-Reg to WS-BPEL.
Section 2 introduces ebBP and section 3 defines valid and
implementable ebBP-Reg models. Then, section 4 presents
the use case that is used for validation and section 5 describes
the mapping of ebBP-Reg to WS-BPEL. Finally, section 6
discusses related work and section 7 concludes and points
out directions for future work.

2. Basics

The core concepts of ebBP are so-called BusinessTransac-
tions (BTs) and BusinessCollaborations (BCs). BTs specify
the exchange of a request document and an optional response
document between the BT ‘requester’ role (request document
sender) and the BT ‘responder’ role (request document re-
ceiver). B2Bi Quality-of-Service attributes as well as addi-
tional control messages signaling the progress of document
processing are available as additional BT parameters. BCs
define the choreography between at least two integration



partner roles and are composed from BTs using the concept
of BusinessTransactionActivities (BTAs). A BTA represents
the execution of a BT and maps BC roles to the BT re-
quester/responder roles. Additional execution parameters such
as a ‘TimeToPerform’ can be declared for BTAs. Using BTAs,
multiple executions of a BT within a BC can be specified.
Similarly, a BusinessCollaborationActivity (BCA) specifies
the execution of a BC within a second BC which enables
hierarchical decomposition.
The control flow structure of a BC is an almost arbitrary
graph that uses Forks, Joins, Decisions and Transitions to
describe the flow between BTAs and BCAs. ebBP Forks can
be of type ‘OR’ or ‘XOR’ and ebBP Joins carry a boolean
‘waitForAll’ attribute. We denote Joins with ‘waitForAll’ set
to true as AND-Joins and with ‘waitForAll’ set to false as
OR-Joins. Forks of type ‘XOR’ (XOR-Fork) are allowed to
trigger exactly one successor whereas an arbitrary number
of successors can be triggered by an Fork of type ‘OR’
(OR-Fork). If an OR-Fork is matched by an AND-Join then
all Fork successors have to be triggered. We will denote
the Fork of such a combination as AND-Fork. If an OR-
Fork is matched by an OR-Join then an arbitrary number of
Fork successors may be triggered, but the behavior of the
OR-Join is not precisely defined. ebBP Decisions connect
multiple BTAs/BCAs and choose between different paths
by assigning guards to the according links whereas ebBP
Transitions connect exactly two BTAs/BCAs and also allow
for the specification of guards.
The reader is assumed to be familiar with WS-BPEL.

3. ebBP-Reg

First, a superset of the eligible ebBP-Reg processes is
defined that is restricted by means of wellformedness rules
afterwards.

Definition 3.1 (ebBP-Reg Process):
An ebBP-Reg process is a five-tuple RP (s0,F,A,C,T) with
the following elements:
• s0 the start node.
• F a non-empty set of final states.
• A = SBTA ∪ SBCA with SBTA a non-empty set of

BTAs and SBCA a set of BCAs.
• C = SXORF ∪ SANDF ∪ SANDJ with SXORF a set of

XOR-Forks, SANDF a set of AND-Forks and SANDJ a
set of AND-Joins.

• T the union of the following transition sets
– Tstart = {(s0,true,e)}, e ∈ A
– Tend = A × G × F
– TctrlIn = A × G × C
– TctrlOut = C × {true} × A
– Tstraight = A × G × A

where G = Gbta ∪Gbca a set of boolean guards defined
on the results of BTAs and BCAs, respectively. �

Further, the following auxiliary functions are defined.

Definition 3.2 (Auxiliary Functions):
• .-notation/#-notation is used for accessing the compo-

nents of a tuple by name/index.
• A path between two nodes a,b ∈ {s0} ∪ A ∪ C ∪ F is

a sequence of nodes a,n1..x,b such that for all i=1...x-
1, (ni,gi,ni+1) and (a,ga,n1) and (nx,gx,b) ∈ T. Let
Path(a,b) be the set of all paths between a and b. �

Considering the ebBP control flow constructs introduced in
section 2, OR-Forks, OR-Joins and Decisions are missing
in the definition of ebBP-Reg processes. The functionality
of OR-Forks to perform an arbitrary selection of follow-on
activities is not supported. Consequently, OR-Joins are not
needed because any node n ∈ A∪C \SANDJ then can serve
as join node for an XOR-Fork and AND-Joins can be used
for joining AND-Forks. The functionality of ebBP Decisions
is provided using the guards on ebBP Transitions in order to
circumvent referential constraint problems when linking from
Decisions to other control flow nodes (cf. toBusinessStateRe-
f/fromBusinessStateRef constraints in [1] sec. 3.8.2).
The following production rules describe how to create a syn-
tactically valid ebBP-Reg model step by step. The production
rules are chosen such that any syntactically valid ebBP-Reg
model can be performed using WS-BPEL (cf. section 5).

Rule 3.1 (Elementary Process):
Any process rp = (s0, {f}, {bta}, ∅, {(s0, true, bta), (bta, true,
f)}) is a valid RP. �

Rule 3.2 (Add BTA):
Let rp be a valid RP, bta a BTA /∈ rp.A.SBTA, and pred =
(pred#1,pred#2,pred#3) ∈ rp.Tend.
Then rp’= (rp.s0, rp.F, rp.A.SBTA ∪ {bta}, rp.C, rp.T ∪
{(pred#1, pred#2, bta), (bta, true, pred#3)} \ {(pred#1,
pred#2, pred#3)}) is a valid RP. �

Rule 3.3 (Process Composition):
Let rp1, rp2 be valid RPs, pred ∈ rp1.Tend, bcarp2 be a BCA
executing rp2, and bcarp2 /∈ rp1.A.SBCA.
Then rp’ = (rp1.s0, rp1.F, rp1.A.SBCA ∪ {bcarp2}, rp.C,
rp.T ∪ {(pred#1, pred#2, bcarp2 ), (bcarp2 , true, pred#3)} \
{(pred#1, pred#2, pred#3)}) is a valid RP. �

Rule 3.4 (Event-Based Choice):
Let rp be a valid RP and pred ∈ rp.Tend. Let ebc = (xorF, F,
A, TctrlOut, Tend) be an ‘event-based choice component’ that
chooses from a set of BTAs/BCAs at run-time as requested
by a backend/partner process with:
• xorF an XOR-Fork.
• F = {f1,...,fn} a set of final states.
• A = {a1,...,an} a set of BTAs and BCAs with at least

one BTA.
• TctrlOut = xorF × {true} × A.
• Tend ⊆ A × {true} × F such that A × {true} → F is

a bijective function.
Further, let pred#3 ∈ ebc.F ∧ ebc.xorF /∈ rp.C ∧ (ebc.F \
{pred#3}) ∩ rp.F = ∅ ∧ ebc.A ∩ rp.A = ∅.
Then rp’ = (rp.s0, rp.F ∪ ebc.F, rp.A ∪ ebc.A, rp.C ∪ {xorF},



rp.T ∪ ebc.TctrlOut ∪ ebc.Tend ∪ {(pred#1,pred#2,xorF)} \
{(pred#1, pred#2, pred#3)}) is a valid RP. �

Rule 3.5 (Parallel):
Let rpx be a valid RP and pred ∈ rpx.Tend. Let rp1,...,rpn be
a set of valid RPs and PCA = bcarp1 ,...,bcarpn be a set of
BCAs for executing each RP and for all bcarpi with i in [1;n]
holds: bcarpi /∈ rpx.A. Let andF, andJ /∈ rpx.C be an AND-
Fork and an AND-Join and let Tfork = {andF} × {true} ×
PCA and Tjoin = PCA × {true} × {andJ}.

Let for any rpi with i in [1;n]: All constituent sets of rpi

and rpx are pairwise disjoint.
Then, rp’ = (rpx.s0, rpx.F, rpx.SBCA ∪ PCA, rpx.C ∪ {andF,
andJ}, rpx.T ∪ Tfork ∪ Tjoin ∪ {(pred#1,pred#2,andF),
(andJ,true,pred#3)} \ {(pred#1, pred#2, pred#3)}) is a valid
RP. �

For the following rules, let rp.A.PCA denote the set of
BCAs within any parallel structure of a given valid RP rp as
defined in rule 3.5.

Rule 3.6 (Add Transition):
Let rp be a valid RP, d ∈ (rp.A \ rp.A.PCA) ∪ rp.C.SXORF
∪ rp.C.SANDF ∪ rp.F, padd ∈ rp.A \ rp.A.PCA, Tpadd ⊆
rp.T with: ∀t ∈ Tpadd : t#1 = padd, and (padd, g, f) ∈ rp.Tend

for some g and f.
Further, let newT = (padd,newG,d) be a transition, R be a

function that computes a new set of transitions from Tpadd by
assigning a new valid guard to each element of Tpadd such
that (newG ∨

∨
t∈R(T

padd ) t#2) evaluates to true and ∀ t1,t2
∈ newT∪R(Tpadd ), t1 6= t2: (t1#2 ∧ t2#2) evaluates to false.
Then, (rp.s0, rp.F, rp.A, rp.C, (T \ Tpadd ) ∪ {newT} ∪
R(Tpadd )) is a valid RP. �
Note that this rule also is valid for d ∈ rp.F and therefore
also covers new transitions to final nodes.

Rule 3.7 (Add Final Node):
Let rp be a valid RP, padd ∈ rp.A \ rp.A.PCA, Tpadd ⊆ rp.T
with: ∀t ∈ Tpadd : t#1 = padd, and (padd, g, f) ∈ rp.Tend for
some g and f.

Further, let newF /∈ rp.F be a final node, newT =
(padd,newG,newF) be a transition, R be a function that
computes a new set of transitions from Tpadd by assigning
a new valid guard to each element of Tpadd such that
(newG ∨

∨
t∈R(T

padd ) t#2) evaluates to true, and ∀ t1,t2
∈ newT∪R(Tpadd ), t1 6= t2: (t1#2 ∧ t2#2) evaluates to false.
Then, rp’ = (rp.s0, rp.F ∪ newF, rp.A, rp.C, (T ∪ {newT} \
Tpadd ) ∪ R(Tpadd )) is a valid RP. �

Rule 3.8 (Remove Final Node):
Let rp be a valid RP, f ∈ rp.F, PREDf ⊆ rp.Tend with:
∀t ∈ PREDf : t#3 = f, and Hf be the set of sets of outgoing
transitions of predecessors of f such that: PREDf ⊆

⋃
h∈Hf

h
∧ ∀ hx,f ∈ Hf : (∀ t ∈ hx,f : t#1 = x) ∧ (@ t ∈ rp.T \ hx,f :
t#1 = x) ∧ hx,f∩ PREDf 6= ∅.

Further, let DEST ⊆ (rp.A \ rp.A.PCA) ∪ rp.C.SXORF ∪

rp.C.SANDF ∪ rp.F \ {f}.
Further, let R be a function that computes a new set of

transitions from each hx,f ∈ Hf by assigning to each t ∈
hx,f a new valid guard and replacing t#3 with some d ∈
DEST such that:

∨
t∈R(hx,f ) t#2 evaluates to true ∧ ∀ t1,t2

∈ R(hx,f ), t1 6= t2: (t1#2 ∧ t2#2) evaluates to false, and for
each hx,f ∈ Hf : ∃ Path(x,e) 6= ∅ with e ∈ rp.F \ {f}.
Then, rp’ = (rp.s0, rp.F \ {f}, rp.A, rp.C, (T \

⋃
h∈Hf

h) ∪⋃
h∈Hf

R(h)) is a valid RP. �

4. Use Case

For giving an impression of ebBP-Reg’s expressiveness
and for validation purposes, the artificial RosettaNet1 PIPs
(conceptually equivalent to BTs) based purchasing use case
depicted in figure 1 is used. The use case starts out with
a parallel structure for concurrently exchanging purchase
order requests (PIP 3A19) within two BCAs of the same
type (BC-single3A19-1, BC-single3A19-2) that, again, spec-
ify seller and buyer roles. For BC-single3A19-1, the root
level seller role takes the BC-single3A19 seller role and for
BC-single3A19-2, the root level seller role takes the BC-
single3A19 buyer role. After the concurrent purchase order
requests, a single purchase order confirmation (PIP 3A20,
denoted ‘BT-3A20’) is exchanged within a BTA. In case
of a protocol failure (denoted ‘P-F’) or a negative confir-
mation message (denoted ‘Stop’), the process is terminated.
Otherwise, the process is continued and multiple actions
may be taken. The root level buyer role may try to change
(PIP 3A21) or cancel (PIP 3A23) the purchasing process
or the root level seller role may try to finish the process
by sending an invoice (PIP 3C3). Depending on whether or
not these BTAs succeed (‘[P-S]’ transitions) or fail (‘[P-F]’
transitions) and depending on the result of additional BTAs
(BT-3A22/3A24 for replying to change/cancellation requests)
the process eventually terminates. The different final states
denote the different overall results of the purchasing process.

Note that the use case captures the main types of process
components (parallel structures, loops, event-based choices)
that can be created from the rules of the last section. For
validating the mapping of the next section, the prototypic
WS-BPEL implementation of the use case has manually been
derived according to the translation rules of section 5.2.
Thereby, the implementability of the translation rules has been
checked as well. The ebBP-Reg specification as well as the
WS-BPEL implementation of the use case are available under
http://www.uni-bamberg.de/pi/ebBP-Reg-CtrlFlowUseCase.

5. WS-BPEL implementation

The description of how to use WS-BPEL for implementing
ebBP-Reg choreographies is split up into two parts. Section

1. http://www.rosettanet.org

http://www.uni-bamberg.de/pi/ebBP-Reg-CtrlFlowUseCase
http://www.rosettanet.org


Figure 1. ebBP-Reg Use Case ([true] guards left out)

5.1 describes the organization of integration components and
section 5.2 shows how to derive the components’ WS-BPEL
code from an ebBP-Reg model.

5.1. Integration Architecture

The integration architecture for performing ebBP-Reg
choreographies refines the approach of a previous paper [4]
that is based on the concept of control processes and reflecting
ebBP’s modular structure in the organization of integration
components.

Figure 2. Basic Integration Architecture

A control process as depicted in figure 2 encapsulates
an integration party’s control flow logic and uses existing
functionality (abstractly denoted ‘backend’ in figure 2) for
including business logic such as the creation and validation
of business documents and for being notified about real-
world events such as that a new BC or BT have to be
performed. Control processes implement the complete cross-
enterprise communication and therefore relieve the burden

of dealing with complex distributed computing issues from
business applications. For exemplifying the basic interaction
between control processes and backends assume that the
requester backend of figure 2 detects the need to perform
a BTA and signals this need to the requester control process.
The requester control process then coordinates the business
document exchange with the responder control process. Both
control processes interact with the according backend pro-
cesses for fetching/delivering/creating business documents.
At the end, the control processes deliver the result of the
BTA to the backend components. Reflecting ebBP’s modular
structure in the organization of control processes can be done
by creating a separate pair of control processes for each
BTA/BCA of a BC as proposed in [4]. We present the set
of interfaces needed for modularizing control processes and
specify which messages have to be exchanged via these in-
terfaces for implementing ebBP-Reg choreographies (section
5.2).
Figure 3 shows the set of interfaces that can be used for imple-
menting an ebBP-Reg choreography as an UML component
diagram. The use case of section 4 is used as example. Each
control process is depicted as a separate component with the
stereotype <<CtrlProc>> and for each type of component a
control process interacts with two interfaces are created, one
interface per communication direction. The seller’s control
process BC-controlFlowTestS (the center component of figure
3) implements the top-level collaboration of the use case,
i.e., it coordinates the sequence of executing the specified
BCAs and BTAs. Using interfaces cftS-BE-Client and
cftS-BE-Callback, the BC-controlFlowTestS receives
the trigger for starting the overall collaboration as well as
BTAs and it sends back acknowledgements to the backend
once the requested BTAs have been started. Before such
acknowledgements can be sent to the seller’s backend, the
BC-controlFlowTestS control process informs the buyer’s top
level control process BC-controlFlowTestB that a new BTA
is needed, waits until BC-controlFlowTestB signals that a
new instance of the requested BTA’s buyer control process
has been created, and then sets a up a new instance of
the requested BTA’s seller control process. For example, for
starting the use case’s BTA BT-3A20, BC-controlFlowTestS
would wait until BackendS requests this BTA, request a new
instance via interface BC-controlFlowTestB and await
the acknowledgement via BC-controlFlowTestS, then
inform the backend that the BTA control process has been
set up and finally create a new instance of BT-3A20Requestor.
Note that the seller’s BTA control process indeed is created
after informing the backend because the first message ex-
change between BT-3A20Requestor and BackendS is initiated
by the BTA control process. Conversely, when a new BCA
has to be started, e.g., BC-single3A19-2 of the use case,
the top level control processes would first start the BCA’s
control processes and then inform the backends because the
first message exchange between backends and BCA control
processes is initiated by the backend components.



Figure 3. Interfaces for Interacting with the Main Control Process

Figure 3 only shows control processes for one type of
BTA (BT-3A20) and BCA (BC-single3A19-2), but for any
additional type of BTA/BCA additional control process com-
ponents would have to be installed. Once the pair of control
process instances has been created for a new BCA/BTA
via the according *-Client interfaces, control is passed on
to these control processes which, again, interact with each
other for coordinating more deeply nested activities and with
the respective backends for including business logic. Once
the lower level control processes have performed the work,
control is returned to the higher level control processes via
the *-Callback interfaces. Note that figure 3 does not include
the interfaces for interacting with the buyer’s backend.

5.2. WS-BPEL mapping

WS-BPEL is a natural candidate for implementing the
above integration architecture. One WS-BPEL process
is used for implementing a particular <<CtrlProc>>
component of figure 3 and each component interface (both
consumed and offered) is described as a separate WSDL file
which is bound to the WS-BPEL process via WS-BPEL’s
partnerLinkType construct. Message correlation is solved
using WS-BPEL’s correlation mechanism and by including
the message header of listing 1 in every message exchanged
between the components of figure 3.

Listing 1. Control Message Header
1 <xs:complexType name="commonMetaBlockType">
2 <xs:sequence>
3 <xs:element name="RootIdentifier"../>
4 <xs:element name="ParentIdentifier"../>
5 <xs:element name="InstanceIdentifier"../>
6 <xs:element name="ProcessDepth"../>
7 </xs:sequence>
8 </xs:complexType>

Message correlation is performed using either the
InstanceIdentifier or the ParentIdentifier
field depending on whether communication takes place
between components at the same process depth or between
parent and child control process. So, BC-controlFlowTestS
would use the InstanceIdentifier field for binding
messages from its partner top level control process BC-
controlFlowTestB and ParentIdentifier field for
binding messages from, for example, BT-3A20Requestor. For
this mechanism to work, a BCA control process assigns a
new id to the InstanceIdentifier field and its own
process id to the ParentIdentifier field when sending
a start message to a lower level control process.
The sequence of message exchanges for implementing
an ebBP-Reg choreography is given by specifying the
message exchanges for setting up a BCA control process and
then defining how any of ebBP-Reg’s language constructs
would be translated into the control process. For solving
concurrency issues, one out of the two control processes for
coordinating the activities of a collaboration is assigned the



‘leader’ role. This only is a technical distinction and does not
effect the business semantics of a collaboration. Therefore,
an arbitrary algorithm for assigning the leader role could be
used or the integration partners even could assign the leader
role at build-time. Due to space limitations, we are only
presenting the WS-BPEL mapping of a ‘leader’-type BCA
control process, but the rules for mapping ‘non-leader’-type
processes are symmetric. Further, the description of how to
implement BTAs is not presented because a fully compatible
solution is available in [5]. Note that the mapping of
ebBP-Reg into WS-BPEL is designed such that it can easily
be automated, although the prototype was created manually
(cf. section 4). In that sense, the operational semantics
of ebBP-Reg is given in terms of interacting WS-BPEL
orchestrations.
The control messages to be exchanged are described in table
1.

Ctrl. Msg. Explanation
cbStart Starts a BCA control process.

initFail Signals that starting a root level BCA control process
failed.

reqAct Requests an activity at the leader control process.

actChoice Sent by a BCA control process to signal that a new
BTA shall be started. If both BCA control processes
may start a BTA, only the leader process is allowed
to send this message.

initAct Used to distribute the instance id of a new activity.

initAck Used to acknowledge the start of an activity to the
partner control process.

idReq Requests a new id at the backend.

idRes Result of an id request.

ttpReq Requests the ebBP timeToPerform value for a new
activity (if not statically assigned).

ttpRes Result of a timeToPerform request.

actReady Signals to the backend that a BCA control process
has been set up or that a BTA control process
immediately will be set up.

bcResult Reports the result of a BCA.

txResult Reports the result of a BTA.

txStart Starts a BTA.

Table 1. Control Messages Overview

5.2.1. Setting up a collaboration level control process.
Initially, a BCA control process either receives a cbStart
message from a superordinate BCA control process or from
the backend. In the latter case (which means the process under
consideration is a root level process), the cbStart message
is forwarded to the corresponding BCA control process which
in turn informs its backend component about the new col-
laboration instance. Upon receipt of the cbStart message,
the correlation sets for identifying the process instance are
set up (cf. above). In case the partner BCA control process
is not reachable an initFail message is returned to the
initiator and the BCA control process is terminated. If the
collaboration level ebBP timeToPerform value has been set to

‘runtime’ the BCA control process synchronously requests a
ttpRes message from its backend using a ttpReq message.
Then, the main WS-BPEL scope of the process is entered
that carries a WS-BPEL onAlarm for controlling the col-
laboration’s timeToPerform timer. If the timeout occurs,
the main scope gets interrupted and the BCA control process
sends a bcResult message to its initiator informing it
about the technical failure. The main scope’s content consists
of a WS-BPEL while that continues until a final state is
reached. Within this loop, a series of WS-BPEL ifs are
used to determine the ‘state’ the collaboration currently is
in. Any BCA, BTA, AND-Fork, XOR-Fork and final state
that is not located between a matching AND-Fork and AND-
Join is considered to be a state. Looking at the use case
depicted in figure 1, the AND-Fork at the top or the BTA
BT-3A21 would be considered as states, but not BCAs
BC-single3A19-1/2. In each of these states, i.e., within
the WS-BPEL if tags, the code for the respective ebBP-
Reg language constructs is mapped. Listing 2 exemplifies the
concept referring to the use case of figure 1.

Listing 2. Main loop of a BCA control process
1 <while name="cbWhile">
2 <condition>not($inEndState)</condition>
3 <sequence name="cbSwitchSeq">
4 <if name="cbSwitch-fk-parallel">
5 <condition>$cbState = ’fk-parallel’</

condition>
6 <scope name="scope-fk-parallel">
7 ... code implementing the parallel

structure ...
8 </scope>
9 </if>

10 <if name="cbSwitch-bta-bt-PIP3A20">
11 <condition>$cbState = ’bta-bt-PIP3A20’

</condition>
12 <scope name="scope-bta-bt-PIP3A20">
13 ... code implementing PIP 3A20 ...
14 </scope>
15 </if>
16 ... switch across other ’states’ ...
17 </sequence>
18 </while>

Eventually, when a final state has been reached (businessSuc-
cess, techFail or businessFail for the above use case) then the
global loop condition is set to false, the calling BCA process
and/or the backend process are informed about the result and
the process is terminated.

5.2.2. Mapping ebBP-Reg’s language constructs. Tables 2
and 3 sketch in itemized style the WS-BPEL mapping of the
remaining ebBP-Reg language constructs assuming a ‘leader’-
type BCA control process. A detailed technical example
is available via the prototype (see section 4). Remind that
decisions and loops are implicitly covered by the evaluation
of guards that may emerge from BTAs and BCAs. Also
note that, by leveraging standard component interfaces as
described in section 5.1, the resulting WS-BPEL processes
are fully executable.



ebBP-Reg
construct

WS-BPEL Mapping

R5.1) BTA
requester role
(i.e., the role
taken by the
BCA control
process maps
to the BTA
requester role
as specified in
the ebBP-Reg
model)

Await backend’s reqAct; Request new id via
idReq/idRes from backend; Inform partner con-
trol process via actChoice; Send BTA process id
via initAct to partner; Await partner’s initAck;
Send actReady to backend (because first BTA
message will be triggered by the control process);
Start BTA control process with txStart; Await
txResult from BTA control process; If ebBP-Reg
model only specifies one outgoing transition for the
BTA switch process state variable to the next value
and continue the main loop; If multiple transitions
are specified use multiple ifs to evaluate BTA
result;

R5.2) BTA
responder
role

Await partner’s actChoice; Await partner’s
initAct; Take over id from initAct and send
actReady to backend and start BTA control process
using txStart; Send initAck to partner control
process; Await txResult from BTA control pro-
cess and process it as described above;

R5.3) BCA Immediately coordinate (leader control process) the
execution of the BCA once the according ‘state’ of
the BCA’s main loop has been reached (cf. listing
2). Therefore, request new id via idReq/idRes
from backend; If the choreography’s timeToPerform
value of the BCA has been set to ‘runtime’, request
the timer value via ttpReq/ttpRes from backend;
Inform partner control process via actChoice;
Send new BCA’s process id via initAct to partner;
Await partner’s initAck; Start BCA control pro-
cess with cbStart; Send actReady to backend;
Await cbResult from BCA control process; If
ebBP-Reg model only specifies one outgoing transi-
tion for the BCA switch process state variable to the
next value and continue the main loop; If multiple
transitions are specified use multiple ifs to evaluate
BCA result;

Table 2. WS-BPEL Mapping

6. Related Work

Before interaction style choreography languages such as
ebBP were considered for specifying B2Bi processes, in-
terconnection style languages as used in [6] or [7] were
applied. Interaction choreographies apply a paradigm of a
single process consisting of interactions only that then has
to be dissected into the participants’ orchestrations while
interconnection choreographies consider local processes (or at
least activity lanes) of the participants that then are connected
(cf. [8]). This is a fundamental change in perspective.
Instead of ebBP, other choreography languages like WS-CDL
[9] or BPEL4Chor [10] could be used, but these do not
offer B2Bi specific concepts and are tied to Web services as
implementation technology. However, Web services are not
the only B2Bi communication technology.
UN/CEFACT’s UMM [11] is an alternative, graphical B2Bi
choreography standard that is tightly related to the textual
ebBP standard. Giving up the benefits of visual modeling, we
prefer to work with ebBP as a common B2Bi choreography
interchange format that may be derived from various visual
languages and seems to be more suitable for further handling
by analysis, transformation and execution machinery.

ebBP-Reg
construct

WS-BPEL Mapping

R5.4) Event-
Based Choice

1. If all BTAs the XOR-Fork links to have associated
the BTA requester role with the role of the BCA
control process and the XOR-Fork does not link
to BCAs then await backend’s reqAct; Check the
reqAct for the requested activity and then perform
R5.1. 2. If all BTAs the XOR-Fork links to have
associated the BTA responder role with the role of
the BCA control process and the XOR-Fork does not
link to BCAs then await the partner’s actChoice;
Afterwards, perform R5.2. 3. Otherwise, either inte-
gration partner is allowed to trigger one of the next
BTAs/BCAs. Then, use a WS-BPEL pick to await
either a backend’s reqAct or a partner’s reqAct.
Perform R5.1, R5.2 or R5.3 depending on the type
of selected activity.

R5.5) Parallel Parallel structures are implemented in a threading
like fashion; Start the BCAs the choreography’s
AND-Fork links to by iteratively applying R5.3
(without result collection); Then collect the results
of the BCAs using multiple WS-BPEL receives
in a WS-BPEL flow. In case some BCAs have
exactly the same type then the according results
have to be collected in sequence in order to avoid
conflictingReceives (cf. [2], sect. 10.4); Af-
terwards, switch process state variable to the next
value and continue the main loop (cf. listing 2);

R5.6) Termi-
nal Node

Set the main loop’s condition to false and prepare the
result value of the collaboration, i.e., set the chore-
ography’s ‘name’ attribute of the reached terminal
node to the result variable.

Table 3. WS-BPEL Mapping

There are many approaches that impose syntactic restrictions
for ensuring validity and executability of models. Prominent
representatives are [12] and [13] who structure control flow
using pairwise corresponding control flow nodes. Our ap-
proach is different in only requiring pairwise corresponding
control flow nodes for parallel structures and allowing arbi-
trary graphs for decision and loop structures.
Other publications focus on the translation of graph-oriented
languages (such as ebBP) to block-oriented languages (such
as WS-BPEL). For example, [14] and [15] both target at iden-
tifying a hierarchy of components within (almost) arbitrary
graphs. While [14] identify components by looking for unique
entry and exit edges, [15] do so by searching for unique
entry and exit nodes. Our work is fundamentally different in
translating ebBP into WS-BPEL by preserving a graph-like
structure that uses threading-like process decomposition for
solving concurrency issues instead of trying to identify block
structures. The graph-like structure is preserved by using a
‘go-to’ programming style employing a global while loop
for switching across the ‘states’ of the collaboration protocol
which even allows for irreducible loops at the WS-BPEL
level. Thus, our approach overcomes limitations concerning
the handling of loops as contained in [7] and also avoids the
use of WS-BPEL links (cf. [2] section 12.5.1) that are not
supported by all contemporary WS-BPEL engines.
[16] gives an overview of different translation strategies
between graph-oriented and block-oriented languages. Com-



bining a graph-like structure and threading-like process de-
composition at the WS-BPEL level as we do is not described.
In [17], a different strategy for modeling and executing ebBP
choreographies is presented. [17] introduces explicit ‘shared
states’ into ebBP that represent global synchronization points.
These models give up strict standard conformance, concur-
rency and process decomposition for the sake of simplicity
and comprehensibility.
In [18] and [19], the translation of UMM models into WS-
BPEL is proposed. A formalization of well-formedness rules
for ensuring validity and executability of process models is
not provided. Finally, there are several publications like [20]
or [5] that only target at performing isolated ebBP Busi-
nessTransaction like concepts as WS-BPEL orchestrations
and leave out composition.

7. Conclusion and Future Work

This work describes how ebBP can be restricted to a
class of binary choreography models (ebBP-Reg) that sup-
port process decomposition as well as concurrency and still
are executable. Syntactic well-formedness rules that ensure
executability as well as a mapping to fully executable WS-
BPEL orchestrations are given as well.
Future work comprises adding convenience functionalities at
the orchestration level such as allowing administrators to
overrule the predefined control flow and providing a tool
that automates the mapping of section 5.2. Moreover, the
specification of formal ebBP-Reg execution semantics is
planned in order to specify clear rules for non-WS-BPEL
implementations and for reasoning on the correctness of
models using formal methods. Finally, ebBP as a textual
standard needs a mapping to visual languages. An assessment
of visual representations as well as more real-world use cases
is needed to further determine the usability and efficiency of
ebBP-Reg.
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