
Sequential Composition of Multi-Party Choreographies

Andreas Schönberger and Guido Wirtz
Distributed and Mobile Systems Group

University of Bamberg
Bamberg, Germany

{andreas.schoenberger|guido.wirtz}@uni-bamberg.de

Abstract—For Business-To-Business (B2Bi) scenarios, the ap-
plication of choreography and orchestration technology has
become a core technique for resolving discrepancies between the
interaction logic of individual partners and the intended overall
message flow. While orchestrations govern the message ex-
changes of each single partner, choreographies define constraints
and requirements for the message flow between all partners.
Using choreographies, B2Bi scenarios can be analyzed from a
global perspective before the business services of the integration
partners for implementing orchestrations are developed.
So far, B2Bi choreographies mostly have been binary, i.e.,
performed by exactly two partners. This paper shows how
multi-party B2Bi choreographies can be composed from binary
choreographies, how the multi-party perspective lends itself to
attacking the so-called partial termination problem and how
projections for the individual partners can be derived.

Keywords-multi-party choreographies; business services; busi-
ness process management; B2Bi; ebXML BPSS

I. INTRODUCTION

The choreography-orchestration tool-chain is a natural
candidate to be applied to Business-to-Business integration
(B2Bi). Choreographies may be used for modeling the inter-
actions between integration partners from a global point of
view and thus for defining and agreeing upon the business
documents to be exchanged and the sequence of these ex-
changes. In a second step, each integration partner can lever-
age orchestration technology for implementing its obligation
defined by the choreography. Thus, defining and analyzing
choreographies has become an important method for defining
the requirements and setting the context of the implementation
of integration services. In the B2Bi domain, many approaches
([1], [2], [3], [4]) focus on strictly binary choreographies,
i.e., on interactions between exactly two integration partners.
While binary choreographies cover the majority of current
B2Bi scenarios, multi-party scenarios actually are an implica-
tion of the concepts of supply chains/supply networks. Con-
sequently, Huemer and Hofreiter argue [5] that interactions
with more than one business partner at least have to be defined
locally. Moreover, there are some real world examples that are
not binary. For example, RosettaNet, a leading supply chain
community of the ICT industry, defines the so-called “Order-
To-Cash With Logistics Service Provider Scenario”1 depicted
in figure 1. In this scenario, a Customer, a Supplier and a

1cf. http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/
eBusinessProcessScenarioLibrary/OrdertoCash/tabid/3320/Default.aspx

Logistics Service Provider (LSP) role (represented by BPMN
pools) are using RosettaNet PIPs (small cuboids labeled
3A4, 3A8 and so on) for exchanging business documents.
Moreover, the local actions of each role for processing the
business documents exchanged via PIPs are given. However,
figure 1 only describes the intended flow of interactions and
leaves out what happens if communication errors occur or
if, for example, the Supplier and LSP role are not able to
agree upon the provision of transportation services. Note that
such technical/business errors only affect two of the three
roles immediately (send and receive actions are defined for
one partner only). This raises the question whether or not
erroneous behavior may have an effect on the remaining role
and how to detect problematic execution paths.
In order to provide a widely applicable solution to this prob-
lem, this paper defines how multi-party choreographies can
be composed from existing binary choreographies. Further,
the negative effect of technical/business errors between two
partners on the remaining partners is captured as the so-called
partial termination problem and an algorithm for identify-
ing problematic execution paths is sketched. Additionally,
an algorithm for deriving role projections from multi-party
choreographies is given for fostering straightforward systems
development.
Section II pins down the notion of B2Bi choreography used
here. Section III introduces sequential multi-party (SeqMP)
choreographies as new class of multi-party B2Bi chore-
ographies. Also, the partial termination and role projection
problems are introduced and their solutions are described.
Finally, section IV discusses related work and section V
concludes and points out directions for future work.

II. B2BI CHOREOGRAPHIES

ebXML BPSS (ebBP, [6]) is the leading B2Bi choreogra-
phy interchange format. The availability of domain specific
concepts such as support for community-defined business
document libraries or B2Bi Quality-of-Service (QoS) param-
eters like security and reliability make ebBP particularly
useful for capturing the specification of B2Bi scenarios.
ebBP concentrates on the interactions between integration
partners, i.e., the sequence and types of business document
exchanges (e.g., PIP cuboids in figure 1) and not on the local
activities of integration partners for sending, receiving and
processing these (e.g., activities within the BPMN pools in

http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/eBusinessProcessScenarioLibrary/OrdertoCash/tabid/3320/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/eBusinessProcessScenarioLibrary/OrdertoCash/tabid/3320/Default.aspx

Figure 1. RosettaNet Order to Cash with Logistic Service Provider Scenario (from RosettaNet1)

figure 1). In the terminology coined in [7], this corresponds
to the specification of interaction choreographies instead of
interconnection choreographies. For the purpose of the work
at hand, it is sufficient to know that the concept of ebBP
BusinessCollaborations (BC) can be used to capture the
choreography of business document exchanges (the PIPs of
figure 1) between two or more integration partner roles. ebBP
BusinessCollaborationActivities (BCA) can be used to specify
the execution of an existing BC within another BC. This work
builds upon the concept of binary BCAs, i.e., BCAs with
exactly two roles, that are performed in sequence according
to some guards that distinguish between the results of a BCA.
As long as these concepts are available, this work is also
applicable to other interaction-style choreography languages.
Note that ebBP is an XML-based B2Bi choreography in-
terchange format and therefore needs a visual language to
be useful for B2Bi modeling. The UN/CEFACT Modeling
Methodology (UMM, [8]), the Business Choreography Lan-
guage (BCL, [9]) as well as the upcoming BPMN 2.0 chore-
ographies ([10], section 11) are visual B2Bi choreography
languages.
Figure 2 shows the use case of figure 1 in BPMN chore-
ography notation. The use case is remodeled as a series of
binary BCAs that are composed of 1 to 3 PIPs. The binary
choreographies (BCAs) are modeled as so-called BPMN
Call Choreographies (Collapsed) and visualized as rounded
rectangles with a ‘+’ at the bottom. The two bands at the
top and at the bottom contain the integration partner roles
participating in the call choreographies. The text in the middle
contains an id (c1...c4), a name and the PIP types contained
in the call choreographies (3A4, 3A8 and so on). Using the
PIP types, it is easy to identify which call choreography corre-

sponds to which part of the original RosettaNet choreography
definition. For defining the detailed structure of each binary
call choreography, existing approaches are ready for use (cf.
[4], [11], [12]).

III. SEQ-MP CHOREOGRAPHIES

This section first motivates the class of sequential multi-
party (SeqMP) choreographies and gives its formal definition
in subsection III-A. Subsection III-B then identifies two
important problems in SeqMP choreographies and subsection
III-C provides algorithms for solving these.

A. Definition

The class of SeqMP choreographies is tailored to the needs
of B2Bi. By analyzing 100 scenarios of the publicly avail-
able RosettaNet implementation guidelines (for implementing
B2Bi processes), we have discovered that the majority of in-
teractions is binary (84 scenarios), i.e., are performed between
exactly two integration partners. This is in line with academic
research (cf. section I). The remaining multi-party interactions
of our analysis can be split up into binary interactions.
We have identified two factors that foster decomposability
into binary interactions. First, the atomic building blocks of
many B2Bi processes are binary transaction-like concepts for
the exchange of request business documents and optional
response business documents. In the case of RosettaNet, these
atomic building blocks are called Partner Interface Processes
(PIP) and despite the simple structure of PIPs the economic
value exchanged using PIPs is worth billions of dollars
(RosettaNet Standards Assessment 20082). Similar concepts

2http://www.rosettanet.org.my/Download/2009 ImplementationStatistics 05.
26.09.pdf

http://www.rosettanet.org.my/Download/2009 ImplementationStatistics 05.26.09.pdf
http://www.rosettanet.org.my/Download/2009 ImplementationStatistics 05.26.09.pdf

Figure 2. SeqMP model of the RosettaNet use case

can also be found in ebBP, UMM or BCL. Second, the control
flow defined typically is fairly simple, i.e., does not apply con-
cepts like parallel structures or hierarchical decomposition.
This, in turn, is in line with a multi-case study of Reijers
et al. [13] who report the results of an investigation of 16
business processes from six Dutch organizations: “Business
processes turned out to be completely sequential structures.
Their routing complexity was only determined by choice
constructs and iterations.” This finding is also backed by the
B2Bi models created for the eBIZ-TCF project (http://www.
moda-ml.net/moda-ml/repository/ebbp/v2008-1/en/) that do
not use concurrent behavior.
Now, as control flow of B2Bi interactions tends to be
simple and the atomic building blocks are binary, multi-
party choreographies can be viewed as sequences of binary
choreographies, i.e., as binary BCAs.
The advantage of using binary BCAs as building blocks
for multi-party choreographies is that integration partners
can be assumed to have agreed upon the result of the
binary BCA. Also, both partners start and terminate the
BCA more or less in lock-step. Consequently, the result
of the binary BCAs can be used for routing the control
flow of the multi-party choreography. In figure 2, this is
indicated by guards (expressions placed in brackets) that are
attached to the transitions. The guard [PO-confirmed]
after BCA c1 captures confirmation of the purchase order
exchanged whereas [PO-rejected] captures rejection.
The corresponding transitions of these guards link to BCA
c2 or end state f1 accordingly. The annotations in curly
braces are explained later. This concept of defining multi-
party choreographies as sequentially performed binary BCAs
with branching structures for defining control flow is reflected
in the following definition.

Definition 3.1 (SeqMP Choreography):
A SeqMP choreography is a directed graph SeqMP
(s0,F,SBCA,T,R,RA) with the following elements:

• s0 the (unique) start state.
• F a non-empty set of final states.

• SBCA a non-empty set of binary BCAs.
• T the union of the following transition sets

– Tstart = {(s0,true,bca)}, bca ∈ SBCA
– Tend ⊆ SBCA × G × F
– Tflow ⊆ SBCA × G × SBCA

where G is a set of boolean guards consisting of the
constants {true, else} and any disjunction of terms that
consist of the names of the possible results of the BCA
just performed. A term is evaluated upon termination of
a BCA and becomes true when the BCA produces the
corresponding result. ‘else’ becomes true if all guards of
all other transitions with the same source become false.

• R the set of roles of the SeqMP process.
• RA: SBCA → R2, a role assignment function that

assigns exactly two roles to each BCA. �
Further, the following auxiliary functions are defined.

Definition 3.2 (SeqMP Auxiliary Functions):
• .-notation/#-notation is used for accessing the compo-

nents of a tuple by name/index.
• namesB the function that computes the names of the

results of a BCA.
• namesG the function that computes the names contained

in a guard.
• A path path(a,b) between two nodes a,b ∈ {s0} ∪ F ∪

SBCA is a sequence of nodes a,n1..x,b such that for all
i=1...x-1, (ni,gi,ni+1) ∧ (a,ga,n1) ∧ (nx,gx,b) ∈ T. The
length of a path(a,b) length(path(a,b)) is the number of
nodes in the sequence. Let Path(a,b) be the set of all
paths between a and b. �

Based on this definition, it is possible to characterize the
validity of SeqMP processes using the following three con-
ditions.

Definition 3.3 (Valid SeqMP Choreography):
A SeqMP choreography smp is valid iff the following three
conditions hold:

1) Subsequent role participation:
∀ (s1, g, s2) ∈ smp.Tflow: RA(s1) ∩ RA(s2) 6= ∅, i.e.,
for two subsequent BCAs at least one of the assigned

http://www.moda-ml.net/moda-ml/repository/ebbp/v2008-1/en/
http://www.moda-ml.net/moda-ml/repository/ebbp/v2008-1/en/

Figure 3. Seq-MP model of a complex use case (conflated visualization)

roles must be the same (thence enabling synchroniza-
tion between terminating one BCA and starting the
next).

2) Guard validity:
Let SUCCbca ⊆ smp.T be the set of outgoing
transitions from some bca ∈ smp.BCA with: ∀ t (t#1,
t#2, t#3) ∈ SUCCbca: t#1 = bca. Then, the guards of
bca are valid iff:
(|SUCCbca| = 1 ∧ for {t} = SUCCbca: t#2 = true) ∨ (∀ t
∈ SUCCbca: t#2 6= true ∧ ((

⋃
t∈SUCCbca

namesG(t#2)
= namesB(bca))∨ (

⋃
t∈SUCCbca

namesG(t#2) ⊂
namesB(bca) ∧ ∃ t1 ∈ SUCCbca: t1#2 = else ∧ @
t2 ∈ SUCCbca, t1 6= t2: t2#2 = else)) ∧ ∀ t3, t4 ∈
SUCCbca, t3 6= t4: namesG(t3#2) ∩ namesG(t4#2) =
∅)

3) Connectedness:
(∀ f ∈ smp.F: Path(smp.s0, f) 6= ∅) ∧ ∀ bca ∈
smp.SBCA: Path(smp.s0, bca) 6= ∅ ∧ ∃ f ∈ smp.F:
Path(bca, f) 6= ∅. �

Actually, it would not be hard to extend this definition to using
multi-party BCAs as building blocks (and even the algorithms
in section III-C would work) as long as an agreed-upon result
among all participants of the BCAs would be guaranteed.
This, however, does not seem to hold true for many real-

world scenarios.

B. Problems in Multi-Party Choreographies

Remodeling the RosettaNet Order-To-Cash use case as
depicted in figure 2 immediately reveals two important prob-
lems, partial termination and creation of role projections.
Partial termination becomes obvious when looking at the
transitions that lead into final states f3, f4 and f5 of figure 2.
As the source of these transitions are binary BCAs, only those
roles participating in the respective BCA will be aware of the
termination of the overall SeqMP choreography. However,
the Customer role (in case of BCA c2 Arrange Shipping)
or the Supplier role (in case of BCA c3 Perform Shipping)
may still wait for some interaction to happen. This may
not be a problem in case the individual BCAs of a SeqMP
choreography are independent of each other, but the business
semantics of RosettaNet’s Order-To-Cash scenario contradicts
independence of, for example, c1 and c4. One possibility to
attack this problem is adding additional BCAs implementing
exception handling routines. However, modeling such multi-
party choreographies may be hard because such exception
handling BCAs may fail as well and suitable business doc-
uments for communicating exception handling semantics are
not always available in business document libraries. Further,

Figure 4. 1 out of 2 Possible Projections for the LSP Role (conflated visualization)

a business level problem like disagreeing on the conditions of
shipping between Supplier and LSP may require business es-
calation routines between Supplier and Customer that are not
intended to be implemented using business-document based
choreographies. Note, that the partial termination problem
implicitly is contained in the original RosettaNet definition
of the use case as well. It just is not as obvious because only
the intended flow of interactions is modeled.
Creation of role projections is an obvious problem when
considering that some roles may not participate in every BCA
of a SeqMP choreography. Hence, the possible sequences of
BCA executions with participation of a particular role r must
be derived from the overall choreography and the BCAs with
participation of r must be suitably abstracted.
Both problems are not hard to solve if the use case is
as simple as in figure 2. However, more complex SeqMP
choreographies such as the artificial use case depicted in
figure 3 may be more challenging. The use case depicts a
multi-party order-to-cash choreography between a Customer,
a Seller, a Logistics Service Provider (LSP), a Financial
Service Provider (FSP) and an Escort Service Provider (ESP).
Due to space limitations, the BPMN choreography notation
has been conflated in an ad-hoc manner by only showing
the participating roles and an id for each call choreography.
The business semantics of the use case may be derived to
some extent from the guards on the transitions, but, for the
purpose of this paper, the control flow of the use case is
decisive. One striking observation is that partial termination
is not a problem associated to final states only, but actually
of transitions that partition a SeqMP choreography in parts
with or without possible participation of a particular role.
For example, by firing the transition between c6 and c8 as
depicted in figure 3, there is no possibility that the FSP role
will become active in the particular SeqMP instance anymore
whereas participation still would be possible in c6.

C. Seq-MP Algorithms

This section presents algorithms for dealing with the partial
termination and the role projection problem identified in the
last section. Note that the algorithms are defined for SeqMP
that is defined for binary BCAs as building blocks. However,
the algorithms themselves also would work for multi-party
BCAs as building blocks. For validation, the algorithms have
been implemented for an abstract model of SeqMP in Java.

Algorithm 1: Projection Computation
input : A valid SeqMP smp to be analyzed
output : A mapping of roles to their projections:

smp.R → Set<State>
variables : Set<State> computed ;
\\initially maps each role of smp to an empty set;
Map<Role,Set<State>> projs;

algorithm:

1 foreach State s of each path without loop in a depth first
traversal of smp do

2 Set<Role> known =⋃
r∈states on the current pathRA(r);

3 Set<Role> curr = RA(s);
4 curr = curr \ known;
5 if curr 6= ∅ ∧ s /∈ computed then
6 foreach Role r in curr do

// Add role projection for r starting at s
7 projs.get(r).add(doProjection(r, s,

processBegin));
8 end
9 computed .add(s);

10 end
11 if processBegin then processBegin = false;
12 end
13 return projs;

The prototype implementation together with the test graphs
for figure 2 and 3 are available3.

1) Computing Escalation Sets: As really safe multi-party
choreographies that specify exception handling logic in full
(cf. above) are hard to design, we propose the computation of
so-called escalation sets for tackling the partial termination
problem. Definition 3.4 defines the concept of escalation sets
formally and essentially says that an escalation set is the set of
roles that, without proper notification, potentially is disabled
from participating in a SeqMP instance anymore by firing a
particular transition.

Definition 3.4 (Escalation Set):
An escalation set es is a subset of the roles of a valid SeqMP
choreography smp that is attached to a transition t=(t#1,

3http://www.uni-bamberg.de/pi/seqMP-Algorithms

http://www.uni-bamberg.de/pi/seqMP-Algorithms

Algorithm 2: Role Projection at State s: Part 1

input : State s and Role r of valid SeqMP smp;
boolean first telling whether s is the first BCA in smp
output : The first state of the role projection sout
variables : Map<String, State> proj ;
Map<State,State> visitMap;

procedure: walk(Map<State,State> vMap, State curr) :
1 State mSelf = vMap.get(curr);
2 foreach Transition t=(t#1,t#2,t#3) in SUCCcurr do
3 State mTarg = vMap.get(t#3);
4 if mTarg 6= null then
5 if Not(mSelf is an EBCState ∧ mSelf = mTarg) then
6 if mSelf is an EBCState then tr(mSelf, mTarg,

"true");
7 else tr(mSelf, mTarg, t#2);
8 end
9 else

10 if proj.containsKey(t#3.id()) then tr(mSelf,
proj.get(t#3.id()), t#2);

11 else
12 Map<State,State> cpVMap =

vMap.scopy();
13 if t#3 is a FinalState ∨ r ∈ RA(t#3) then
14 State mNext = t#3.scopy();
15 cpVMap.put(t#3, mNext);
16 proj .put(t#3.id(), mNext);
17 if mSelf is an EBCState then tr(mSelf,

mNext, "true");
18 else tr(mSelf, mNext, t#2);
19 else
20 if mSelf is an EBCState then

cpVMap.put(t#3, mSelf);
21 else
22 EBCState ebc = new EBCState();

cpVMap.put(t#3, mSelf);
23 proj .put(ebc.id(), ebc);
24 tr(mSelf, ebc, t#2);
25 end
26 end
27 walk(cpVMap, t#3);
28 end
29 end
30 end
31 end procedure // continue...

t#2,#3) ∈ smp.T such that: ∀ r ∈ es: (∃ path(s1, t#1), s1
∈ smp.SBCA, length(path) > 1: r ∈ RA(s1)) ∧ (∃ path(t#1,
s2), s2 ∈ smp.SBCA, length(path) > 1: r ∈ RA(s2)) ∧ (∀
path(t#3, s3), s3 ∈ smp.SBCA, length(path) > 1: r /∈ RA(s3))
�

In the use cases of figures 2 and 3 the escalation sets are
attached to each transition by enumerating the according roles

Algorithm 3: Role Projection at State s: Part 2
algorithm:

// ...continue
1 sout = new StartState("s1");
2 State currCopy = s.scopy() // copy s without transitions
3 proj .put("s1", sout);
4 proj .put(s.id(), currCopy);
5 if first then
6 proj .put("ebc0", new EBCState("ebc0"));

// define transition between #1 and #2 with guard #3
7 tr (sout, proj .get("ebc0"), "true");
8 tr (proj .get("ebc0"), proj .get(s.id()), "true");
9 else

10 tr (proj .get("s1"), proj .get(s.id()), "true");
11 end
12 visitMap.put(s, currCopy);
13 walk(visitMap, s);
14 return sout;

in curly braces. For figure 3, only the initial letters of each role
are given. For example, the escalation set {F} of the transition
between c6 and c9 says for the Financial Service Provider
(FSP) role that it may have participated in an instance of
the depicted SeqMP graph (if c2 or c5 were on the path to
c6), that the FSP role still could be triggered (via the path
(c6,c10,c12,c13,c3,c5)) and that it cannot be triggered
any more (because from c9 no BCA with participation of
FSP can be reached). This may or may not be an issue
depending on whether or not the FSP considers each BCA
c5 as a completely independent business case. The LSP role,
in turn, is not included in the escalation set between c6 and
c9 because it knows from the [shipped] outcome and the
global SeqMP model that there is no way of being involved
in the current SeqMP instance any more.
We have a fully working algorithm for computing escalation
sets as of definition 3.4 in the prototype implementation. Due
to space limitations, we only sketch the algorithm:

1) For a particular state s of a SeqMP choreography,
calculate the roles that may have participated in any
BCA on any path leading to s and store it as es.

2) Remove the roles participating in s from es because
they are informed about the outcome of s.

3) Remove all roles that do not participate in any BCA
reachable in forward direction as they have been in-
formed about termination earlier or have been consid-
ered in an escalation set earlier. If es is empty then store
it for all outgoing transitions of s. Otherwise proceed.

4) For each outgoing transition t of s
a) Calculate the roles that participate in any BCA

reachable in forward direction via t and store them
as tfollow.

b) Store es \ tfollow as escalation set of t.

Using escalation sets, the participants of a SeqMP choreogra-
phy can find out at design time which transitions potentially
suffer from the partial termination problem at runtime and
may agree on appropriate actions for dealing with this issue,
e.g., informing their integration partners via mail or phone.
Clearly, when firing a problematic transition at runtime the
defined escalation set has to be compared to the roles that
really have participated in that particular instance.

2) Computing Role Projections: Our approach for com-
puting projections of a SeqMP smp for a role r is based on
abstracting interactions without participation of r using so-
called event-based choices as depicted in figure 4. Figure 4
shows the smaller one out of two possible projections for
the LSP role of the use case depicted in figure 3. It starts
out by transitioning from the start state to an event-based
choice ebc0 which means that the LSP has to wait until one
of the outgoing transitions of ebc0 is fired (which is why
it is denoted as event-based choice). As there only is one
single outgoing transition that leads into BCA c7, the LSP
role has to wait until the ESP role triggers c7. As no BCA
without participation of the LSP is directly reachable from
c7, all directly following states are simply copied. However,
in c11, c9 is directly following which is a BCA without
LSP participation. To resolve this, another event-based choice
ebc1 is introduced. All final states and BCAs with LSP-
participation that are reachable via the transition to c9 are
then connected to ebc1. If there was a path(c9,c7) then there
would be a transition from ebc1 to c7 (you can try that using
the prototype implementation).
We choose deliberately to allow for multiple projections of a
particular SeqMP smp for a particular role r. The reason for
that is that different branches of a multi-party choreography
potentially may comprise completely unrelated BCAs of r. For
example, if the use case of figure 3 began with BCAs c1, c2
and c4 then only the BCAs of figure 4 would be possible for
the LSP role. Assume further there was no transition between
c8 and c7. Then, depending on whether transition c2-c4 or
c2-c3 is taken, completely disjoint sets of BCAs with LSP-
participation are possible. In that situation, we believe that
integration participants should not be forced to view unrelated
BCAs as part of a single collaboration. We use algorithm 1
for identifying potentially disjoint projections for a particular
role r. Once the first BCA with participation of r is found
that could be the starting point of such a projection, the
computation of a role-specific projection at a particular state
is started (algorithm objects 2 and 3). For the case of the LSP
role of the use case of figure 3, this approach leads to two
individual projections that overlap. In this case, the individual
projections still may be considered to be two different use
cases or may be merged which depends on the system setting
of the integration participant.
Also, in figure 4, the various final states that are following
ebc1 could be conflated and as there are only final states
following, the transition to ebc1 could even be replaced by
one single final state. Note that it is essentially irrelevant for

the LSP whether the overall collaboration terminates in f12,
f13 or f14 because there are no more BCAs within the LSP’s
projection after completion of c11. This calculation can easily
be done after having performed the algorithms as described
here.

IV. RELATED WORK

The problems identified in section III-B are quite different
from several problems identified in different choreography
research. In publications such as [14], [15], [16], [17], prob-
lems like enforceability or realizability are researched. The ac-
cording approaches have in common that the atomic building
blocks of choreographies are single message exchanges and
it is then researched whether or not the message sequences
in the choreographies can be enforced by the local role-
specific projections of interaction partners, and whether or
not the sequence of message exchanges is the same for
synchronous or asynchronous communication. In the work
at hand, these problems are not relevant. By using BCAs
instead of single message exchanges, we can be sure that
the state of integration partners is aligned at the end of each
BCA (cf. [4], [12]). BCAs are performed using according
protocol machines that ensure alignment and therefore are not
comparable to single messages in some communication buffer
that may cause diverging states or deadlocks. Moreover, due
to the Subsequent role participation condition, valid SeqMPs
do not suffer from a local enforceability problem. To the best
of our knowledge, partial termination as defined above has
not been identified as multi-party choreography problem yet.
However, deriving role projections of multi-party interactions
has been a research topic for a long time. For example,
van der Aalst and Weske [18] describe an approach for
dissecting Petri Nets that contain role specific behavior.
However, communication between participants is modeled
as send- and receive-transitions that already are associated
with roles. This corresponds to dissecting interconnection
style choreographies and is representative for more recent
research on interconnection style choreographies. However,
we are considering the problem of deriving interaction style
choreographies. At first sight, the proposal for deriving role
projections of Let’s Dance models as described in [14] is
comparable to that problem. However, Let’s Dance applies a
block-structured approach for modeling loops which is dif-
ferent from the class of SeqMP models with arbitrary loops.
In [19], so-called Interaction Petri nets that enable multi-
party interactions by modeling binary message exchanges as
transitions of Petri nets, are analyzed. The model of [19]
therefore can be considered to be comparable for the role
projection problem of the work at hand and an algorithm for
calculating role projections is presented as well. However,
the problem there is defined for Petri Nets and therefore
the algorithm is not directly amenable to SeqMP models.
Further, the algorithm in [19] introduces duplicate transitions
for flattening parallelism. However, transitions correspond
to message exchanges in [19] and to BCAs for SeqMP.

The business semantics of duplicate message exchanges (or
duplicate BCAs for SeqMP) is not clear, though.
Apart from that, interesting choreography work has been
presented in [5] where so-called local choreographies are
used to model the sequence of interactions of one integration
partner in multiple global choreographies. The perspective is
different from the work at hand by focusing on a partner
that participates in more than one choreography where the
participants of the respective choreographies may only know
the focal integration partner. A typical scenario for that
type of integration is a manufacturer that employs a sub-
contractor producing parts of a product without the customer
knowing the sub-contractor. While there may be valid reasons
for not revealing the interactions with business partners to
different business partners, the type of integration in [5] leaves
out the opportunity to perform analyses like escalation set
computation that rely on a global view on choreographies.

V. CONCLUSION AND FUTURE WORK

This paper introduces an approach for creating multi-party
B2Bi choreographies from binary B2Bi choreographies. The
identification of the partial termination and the role projection
problem show the potential of SeqMP for optimizing multi-
party B2Bi scenarios. Solutions to these problems which have
been validated using a prototype implementation have been
provided as well.
Future work comprises defining an integration architecture
for supporting the communication of partial termination
events among the participants of a SeqMP choreography and
configuration options for defining when to consider the BCAs
of a SeqMP choreography as independent. Moreover, the
derivation and monitoring of legally binding obligations to
communicate partial termination events is still an open issue.

REFERENCES

[1] J.-H. Kim and C. Huemer, “From an ebXML BPSS choreogra-
phy to a BPEL-based implementation,” SIGecom Exch., vol. 5,
no. 2, pp. 1–11, 2004.

[2] A. Schönberger and G. Wirtz, “Using Webservice Choreog-
raphy and Orchestration Perspectives to Model and Evaluate
B2B Interactions,” in 2006 Int. Conf. on Software Engineering
Research and Practice (SERP), Las Vegas, USA, pp. 329–335.

[3] S. Wieczorek, A. Roth, A. Stefanescu, V. Kozyura, A. Charfi,
F. M. Kraft, and I. Schieferdecker, “Viewpoints for model-
ing choreographies in service-oriented architectures,” in WIC-
SA/ECSA 2009, Cambridge. Los Alamitos/Calif.

[4] A. Schönberger and G. Wirtz, “Towards executing ebBP-Reg
B2Bi choreographies,” in Proceedings of the 12th IEEE Con-
ference on Commerce and Enterprise Computing (CEC’10),
Shanghai, China. IEEE, November 10-12 2010.

[5] B. Hofreiter and C. Huemer, “A model-driven top-down ap-
proach to inter-organizational systems: From global choreog-
raphy models to executable BPEL,” in Joint Conference on E-
Commerce Technology (CEC’08) and Enterprise Computing,
E-Commerce, and E-Services (EEE’08). Crystal City, Wash-
ington D.C., USA: IEEE, 7 2008.

[6] OASIS, ebXML Business Process Specification Schema Tech-
nical Specification, 2nd ed., OASIS, December 2006.

[7] G. Decker, O. Kopp, and A. Barros, “An introduction to service
choreographies,” Information Technology, vol. 50, no. 2, pp.
122–127, 2008.

[8] UN/CEFACT, UN/CEFACT’s Modeling Methodology (UMM):
UMM Meta Model - Foundation Module Version 1.0, 1st ed.,
UN/CEFACT, 10 2006.

[9] M. Zapletal, T. Motal, and H. Werthner, “The business chore-
ography language (BCL) - a domain-specific language for
global choreographies,” in The 5th 2009 World Congress on
Services (SERVICES 2009 PART II), Bangalore, India. IEEE,
September 2009.

[10] OMG, Business Process Model and Notation, v2.0 Beta
2, DRAFT, OMG, June 2010. [Online]. Available: http:
//www.omg.org/cgi-bin/doc?dtc/10-06-04

[11] A. Schönberger, C. Pflügler, and G. Wirtz, “Translating shared
state based ebXML BPSS models to WS-BPEL,” (to appear
in) International Journal of Business Intelligence and Data
Mining - Special Issue: iiWAS 2009, vol. 5, no. 4, 2010.

[12] C. Pflügler, A. Schönberger, and G. Wirtz, “Introducing partner
shared states into ebBP to WS-BPEL translations,” in Proc.
iiWAS 2009, 11th Int. Conf. on Information Integration and
Web-based Applications & Services, 14.-16. December 2009,
Kuala Lumpur, Malaysia. ACM, December 2009.

[13] H. A. Reijers and W. M. van der Aalst, “The effectiveness
of workflow management systems: Predictions and lessons
learned,” International Journal of Information Management,
vol. 25, no. 5, pp. 458 – 472, 2005.

[14] J. Zaha, M. Dumas, A. ter Hofstede, A. Barros, and G. Decker,
“Bridging global and local models of service-oriented sys-
tems,” Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Trans., vol. 38, no. 3, may 2008.

[15] G. Decker, A. Barros, F. M. Kraft, and N. Lohmann, “Non-
desynchronizable service choreographies,” in ICSOC 2008:
Proc. of the 6th Int. Conf. on Service-Oriented Computing.
Springer, pp. 331–346.

[16] T. Bultan, J. Su, and X. Fu, “Analyzing conversations of web
services,” IEEE Internet Comp., vol. 10, no. 1, pp. 18–25, 2006.

[17] V. Kozyura, A. Roth, and W. Wei, “Local enforceability and
inconsumable messages in choreography models,” in Proceed-
ings of 4th South-East European Workshop on Formal Methods
(SEEFM’09),Thessaloniki, Greece, 2009.

[18] W. M. P. van der Aalst and M. Weske, “The p2p approach to
interorganizational workflows,” in Proc. of the 13th Int. Conf.
on Advanced Information Systems Engineering 2001, London,
UK, pp. 140–156.

[19] G. Decker and M. Weske, “Local enforceability in interaction
petri nets,” in Proceedings of the 5th International Conference
on Business Process Management (BPM 2007), Brisbane,
Australia, September 24-28, 2007, pp. 305–319.

http://www.omg.org/cgi-bin/doc?dtc/10-06-04
http://www.omg.org/cgi-bin/doc?dtc/10-06-04

	I Introduction
	II B2Bi choreographies
	III Seq-MP Choreographies
	III-A Definition
	III-B Problems in Multi-Party Choreographies
	III-C Seq-MP Algorithms
	III-C1 Computing Escalation Sets
	III-C2 Computing Role Projections

	IV Related Work
	V Conclusion and Future Work
	References

