
Configurable Analysis of Sequential Multi-Party Choreographies

Andreas Schönberger and Guido Wirtz
Distributed and Mobile Systems Group

University of Bamberg
Bamberg, Germany

{andreas.schoenberger|guido.wirtz}@uni-bamberg.de

Abstract—For Business-To-Business integration
(B2Bi) scenarios, the application of choreography
and orchestration technology has become a core
technique for resolving discrepancies between the
interaction logic of individual partners and the
intended overall message flow. While orchestrations
govern the message exchanges of each single partner,
choreographies define constraints and requirements
for the message flow between all partners. Using
choreographies, B2Bi scenarios can be analyzed from
a global perspective before the business services of
the integration partners for implementing orchestra-
tions are developed.
So far, B2Bi choreographies mostly have been binary,
i.e., performed by exactly two partners. This paper
shows how multi-party B2Bi choreographies can
be composed from binary choreographies, how the
multi-party perspective lends itself to attacking the
so-called partial termination problem in a config-
urable way and how projections for the individual
partners can be derived. Additionally, an algorithm
for merging multiple projections of the same partner
as well as rules for further reducing projections are
given.

Keywords-multi-party choreographies; business
services; business process management; B2Bi;
ebXML BPSS

I. INTRODUCTION

The choreography-orchestration tool-chain is a
natural candidate to be applied to Business-to-
Business integration (B2Bi). Choreographies may
be used for modeling the interactions between in-
tegration partners from a global point of view and
thus for defining and agreeing upon the business
documents to be exchanged and the sequence of
these exchanges. In a second step, each integra-
tion partner can leverage orchestration technology
for implementing its obligations defined by the
choreography. Thus, defining and analyzing chore-
ographies has become an important method for
defining the requirements and setting the context
of the implementation of integration services. In
the B2Bi domain, many approaches ([1], [2], [3],
[4]) focus on strictly binary choreographies, i.e.,
on interactions between exactly two integration
partners. While binary choreographies cover the
majority of current B2Bi scenarios, multi-party
scenarios actually are an implication of the con-
cepts of supply chains/supply networks. Conse-
quently, Huemer and Hofreiter argue [5] that in-
teractions with more than one business partner

at least have to be defined locally. Moreover,
there are some real world examples that are not
binary. For example, RosettaNet, a leading supply
chain community of the ICT industry, defines the
so-called “Order-To-Cash With Logistics Service
Provider Scenario”1 depicted in figure 1. In this
scenario, a Customer, a Supplier and a Logis-
tics Service Provider (LSP) role (represented by
BPMN pools) are using RosettaNet PIPs (visual-
ized as small cuboids labeled 3A4, 3A8 and so
on) for exchanging business documents. Moreover,
the local actions of each role for processing the
business documents exchanged via PIPs are given.
However, figure 1 only describes the intended flow
of interactions and leaves out what happens if
communication errors occur or if, for example,
the Supplier and LSP role are not able to agree
upon the provision of transportation services. Note
that such technical/business errors only affect two
of the three roles immediately (send and receive
actions are defined for one role only). This raises
the question whether or not erroneous behavior
may have an effect on the remaining role and how
to detect problematic execution paths.
In order to provide a widely applicable solution to
this problem, this paper defines how multi-party
choreographies can be composed from existing bi-
nary choreographies. Further, the negative effect of
technical/business errors between two partners2 on
the remaining partners is captured as the so-called
partial termination problem and a configurable
algorithm for identifying problematic execution
paths is sketched. A second algorithm for deriving
role projections from multi-party choreographies
is given for fostering straightforward systems de-
velopment. Additionally, an algorithm for merging
multiple projections (if existent) of the same role is
given as well as rules for simplifying projections.
This paper is an extended version of [6] and the
main new material is the following:
• Configuration options are added to the al-

gorithm for analyzing the partial termination
problem in order to distinguish between in-

1http://www.rosettanet.org/Support/
ImplementingRosettaNetStandards/
eBusinessProcessScenarioLibrary/OrdertoCash/tabid/3320/
Default.aspx

2The terms ‘partner’ and ‘role’ will be used interchangeably

http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/eBusinessProcessScenarioLibrary/OrdertoCash/tabid/3320/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/eBusinessProcessScenarioLibrary/OrdertoCash/tabid/3320/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/eBusinessProcessScenarioLibrary/OrdertoCash/tabid/3320/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/eBusinessProcessScenarioLibrary/OrdertoCash/tabid/3320/Default.aspx

Figure 1. RosettaNet Order to Cash with Logistic Service Provider Scenario (from RosettaNet1)

teractions after which roles still expect to
participate again and those after which they
do not.

• The algorithm for deriving role projections is
modified such that the projection of a state
is independent of the path through which the
state is discovered.

• An additional algorithm for merging multi-
ple projections of the same role is provided
and the behavioral equivalence between the
merge of projections and the set of individ-
ual projections is proven. This algorithm is
complemented by rules for further reducing
projections.

The paper proceeds as follows: Section II pins
down the notion of B2Bi choreography used here.
Section III introduces sequential multi-party (Se-
qMP) choreographies as new class of multi-party
B2Bi choreographies. Also, the partial termination
and role projection problems are introduced and
their solutions are described. Finally, section IV
discusses related work and section V concludes
and points out directions for future work.

II. B2BI CHOREOGRAPHIES

ebXML BPSS (ebBP, [7]) is the leading B2Bi
choreography interchange format. The availability
of domain specific concepts such as support for
community-defined business document libraries or
B2Bi Quality-of-Service (QoS) parameters like
security and reliability make ebBP particularly
useful for capturing the specification of B2Bi
scenarios. ebBP concentrates on the interactions
between integration partners, i.e., the sequence and
types of business document exchanges (e.g., PIP
cuboids in figure 1) and not on the local activities
of integration partners for sending, receiving and
processing these (e.g., activities within the BPMN

pools in figure 1). In the terminology coined in
[8], this corresponds to the specification of inter-
action choreographies instead of interconnection
choreographies. For the purpose of the work at
hand, it is sufficient to know that the concept of
ebBP BusinessCollaborations (BC) can be used
to capture the choreography of business document
exchanges (the PIPs of figure 1) between two or
more integration partner roles. ebBP BusinessCol-
laborationActivities (BCA) can be used to specify
the execution of an existing BC within another BC,
i.e., for composing BCs from existing BCs. This
work builds upon the concept of binary BCAs, i.e.,
BCAs with exactly two roles. These are performed
subsequently according to some guards that dis-
tinguish between the results of a BCA. As long
as these concepts are available, this work is also
applicable to other interaction-style choreography
languages.
Note that ebBP is an XML-based B2Bi chore-
ography interchange format and therefore needs
a visual language to be useful for B2Bi mod-
eling. The UN/CEFACT Modeling Methodology
(UMM, [9]), the Business Choreography Language
(BCL, [10]) as well as BPMN 2.0 choreographies
([11], section 11) are visual B2Bi choreography
languages.
Figure 2 shows the use case of figure 1 in BPMN
choreography notation. The use case is remodeled
as a series of binary BCAs that are composed of
1 to 3 PIPs. The binary choreographies (BCAs)
are modeled as so-called BPMN Collapsed Call
Choreographies and visualized as rounded rectan-
gles with a ‘+’ at the bottom. The two bands at the
top and at the bottom contain the integration part-
ner roles participating in the call choreographies.
The text in the middle contains an id (c1...c4),
a name and the PIP types contained in the call

2

Figure 2. SeqMP model of the RosettaNet use case

choreographies (3A4, 3A8 and so on). Using the
PIP types, it is easy to identify which call chore-
ography corresponds to which part of the original
RosettaNet choreography definition of figure 1.
For defining the detailed structure of each binary
call choreography, existing approaches are ready
for use (cf. [4], [12], [13]).

III. SEQ-MP CHOREOGRAPHIES

This section first motivates the class of sequen-
tial multi-party (SeqMP) choreographies and gives
its formal definition in subsection III-A. Subsec-
tion III-B then identifies two important problems
in SeqMP choreographies and subsection III-C
provides algorithms for solving these.

A. Definition

The class of SeqMP choreographies is tailored
to the needs of B2Bi. By analyzing 100 scenarios
of the publicly available RosettaNet implementa-
tion guidelines (for implementing B2Bi processes),
we have discovered that the majority of interac-
tions is binary (84 scenarios), i.e., are performed
between exactly two integration partners. This is
in line with academic research (cf. section I). The
remaining multi-party interactions of our analysis
can be split up into binary interactions. We have
identified two factors that foster decomposability
into binary interactions. First, the atomic build-
ing blocks of many B2Bi processes are binary
transaction-like concepts for the exchange of re-
quest business documents and optional response
business documents. In the case of RosettaNet,
these atomic building blocks are called Partner
Interface Processes (PIP) and despite the simple
structure of PIPs the economic value exchanged
using PIPs is worth billions of dollars (RosettaNet
Standards Assessment 20083). Similar ‘atomic
building blocks’ can also be found in ebBP, UMM
or BCL. Second, the control flow defined typically
is fairly simple, i.e., does not apply concepts like
parallel structures or hierarchical decomposition.

3http://www.rosettanet.org.my/Download/
2009 ImplementationStatistics 05.26.09.pdf

This, in turn, is in line with a multi-case study
of Reijers et al. [14] who report the results of
an investigation of 16 business processes from six
Dutch organizations: “Business processes turned
out to be completely sequential structures. Their
routing complexity was only determined by choice
constructs and iterations.” This finding is also
backed by the B2Bi models created for the eBIZ-
TCF project (http://www.moda-ml.net/moda-ml/
repository/ebbp/v2008-1/en/, 10/24/2010) that do
not use concurrent behavior.
Now, as control flow of B2Bi interactions tends
to be simple and the atomic building blocks are
binary, multi-party choreographies can be viewed
as sequences of binary choreographies, i.e., as
binary BCAs.
The advantage of using binary BCAs as building
blocks for multi-party choreographies is that inte-
gration partners can be assumed to have agreed
upon the result of the binary BCA. Also, both
partners start and terminate the BCA more or less
in lock-step. Consequently, the result of the binary
BCAs can be used for routing the control flow of
the multi-party choreography. In figure 2, this is
indicated by guards (expressions placed in brack-
ets) that are attached to the transitions. The guard
[PO-confirmed] after BCA c1 captures con-
firmation of the purchase order exchanged whereas
[PO-rejected] captures rejection. The corre-
sponding transitions of these guards link to BCA
c2 or end state f1 accordingly. The annotations
in curly braces are explained later. This con-
cept of defining multi-party choreographies as se-
quentially performed binary BCAs with branching
structures for defining control flow is reflected in
the following definition.

Definition 3.1 (SeqMP Choreography):
A SeqMP choreography is a directed graph SeqMP
(s0,F,SBCA,T,R,RA) with the following elements:

• s0 the (unique) start state.
• F a non-empty set of final states.
• SBCA a non-empty set of binary BCAs.
• T the union of the following transition sets

– Tstart = {(s0,true,bca)}, bca ∈ SBCA

3

http://www.rosettanet.org.my/Download/2009 ImplementationStatistics 05.26.09.pdf
http://www.rosettanet.org.my/Download/2009 ImplementationStatistics 05.26.09.pdf
http://www.moda-ml.net/moda-ml/repository/ebbp/v2008-1/en/
http://www.moda-ml.net/moda-ml/repository/ebbp/v2008-1/en/

Figure 3. Seq-MP model of a complex use case (conflated visualization)

– Tend ⊆ SBCA × G × F
– Tflow ⊆ SBCA × G × SBCA

where G is a set of boolean guards consisting
of the constants {true, else} and any disjunc-
tion of terms that consist of the names of the
possible results of the BCA just performed. A
term is evaluated upon termination of a BCA
and becomes true when the BCA produces
the corresponding result. ‘else’ becomes true
if all guards of all other transitions with the
same source become false.

• R the set of roles of the SeqMP process.
• RA: SBCA→ R2, a role assignment function

that assigns exactly two roles to each BCA.
�

Further, the following auxiliary functions are de-
fined.

Definition 3.2 (SeqMP Auxiliary Functions):

• .-notation/#-notation is used for accessing the
components of a tuple by name/index.

• namesB the function that computes the names
of the results of a BCA.

• namesG the function that computes the names
contained in a guard.

• A path path(a,b) between two nodes a,b
∈ {s0} ∪ F ∪ SBCA is a sequence of
nodes a,n1..x,b such that for all i=1...x-1,
(ni,gi,ni+1) ∧ (a,ga,n1) ∧ (nx,gx,b) ∈ T.
The length of a path(a,b) length(path(a,b)) is
the number of nodes in the sequence. Let
Path(a,b) be the set of all paths between a
and b. �

Based on this definition, it is possible to charac-
terize the validity of SeqMP processes using the
following three conditions.

Definition 3.3 (Valid SeqMP Choreography):
A SeqMP choreography smp is valid iff the fol-
lowing three conditions hold:

1) Subsequent role participation:
∀ (s1, g, s2) ∈ smp.Tflow: RA(s1) ∩ RA(s2)
6= ∅, i.e., for two subsequent BCAs at least
one of the assigned roles must be the same
(thence enabling synchronization between
terminating one BCA and starting the next).

2) Guard validity:
Let SUCCbca ⊆ smp.T be the set of outgoing
transitions from some bca ∈ smp.BCA with:
∀ t (t#1, t#2, t#3) ∈ SUCCbca: t#1 = bca.
Then, the guards of bca are valid iff:
(|SUCCbca| = 1 ∧ for {t} = SUCCbca:
t#2 = true) ∨ (∀ t ∈ SUCCbca: t#2
6= true ∧ ((

⋃
t∈SUCCbca

namesG(t#2) =
namesB(bca))∨ (

⋃
t∈SUCCbca

namesG(t#2)
⊂ namesB(bca) ∧ ∃ t1 ∈ SUCCbca: t1#2
= else ∧ @ t2 ∈ SUCCbca, t1 6= t2: t2#2
= else)) ∧ ∀ t3, t4 ∈ SUCCbca, t3 6= t4:
namesG(t3#2) ∩ namesG(t4#2) = ∅)

3) Connectedness:
(∀ f ∈ smp.F: Path(smp.s0, f) 6= ∅) ∧ ∀ bca
∈ smp.SBCA: Path(smp.s0, bca) 6= ∅ ∧ ∃ f
∈ smp.F: Path(bca, f) 6= ∅. �

Actually, it would not be hard to extend this
definition to using multi-party BCAs as building
blocks (and even the algorithms in section III-C
would work) as long as an agreed-upon result

4

among all participants of the BCAs would be
guaranteed. This, however, does not seem to hold
true for many real-world scenarios.

B. Problems in Multi-Party Choreographies
Remodeling the RosettaNet Order-To-Cash use

case as depicted in figure 2 immediately reveals
two important problems, partial termination and
creation of role projections.
Partial termination becomes obvious when look-
ing at the transitions that lead into final states
f3, f4 and f5 of figure 2. As the source states
of these transitions are binary BCAs, only those
roles participating in the respective BCA will be
aware of the termination of the overall SeqMP
choreography. However, the Customer role (in case
of BCA c2 Arrange Shipping) or the Supplier
role (in case of BCA c3 Perform Shipping) may
still wait for some interaction to happen. This may
not be a problem in case the individual BCAs of
a SeqMP choreography are independent of each
other, but the business semantics of RosettaNet’s
Order-To-Cash scenario contradicts independence
of, for example, c1 and c4. One possibility to
attack this problem is adding additional BCAs im-
plementing exception handling routines. However,
modeling such multi-party choreographies may
be hard because such exception handling BCAs
may fail as well and suitable business documents
for communicating exception handling semantics
are not always available in business document
libraries. Further, a business level problem like
disagreeing on the conditions of shipping between
Supplier and LSP may require business escalation
routines between Supplier and Customer that are
not intended to be implemented using business-
document based choreographies. In essence, not
defining explicit handling routines for arbitrary
exceptional circumstances is a natural thing in
process specification and hence partial termination
is an integral problem of multi-party processes.
Note that the different representations of the same
use case in figures 1 and 2 do not have an influence
on the actual existence of the partial termination
problem. It is just not as obvious in the original
RosettaNet representation of figure 1 because only
the intended flow of interactions is modeled.
Creation of role projections is an obvious problem
when considering that some roles may not par-
ticipate in every BCA of a SeqMP choreography.
Hence, the possible sequences of BCA executions
with participation of a particular role r must be
derived from the overall choreography and the
BCAs without participation of r must be suitably
abstracted.
Both problems are not hard to solve if the use case
is as simple as in figure 2. However, more complex
SeqMP choreographies such as the artificial use
case depicted in figure 3 may be more challenging.
The use case depicts a multi-party order-to-cash

choreography between a Customer, a Seller, a Lo-
gistics Service Provider (LSP), a Financial Service
Provider (FSP) and an Escort Service Provider
(ESP). Due to space limitations, the BPMN chore-
ography notation has been conflated in an ad-hoc
manner by only showing the participating roles
and an id for each call choreography. The business
semantics of the use case may be derived to some
extent from the guards on the transitions, but, for
the purpose of this paper, the control flow of the
use case is decisive. One striking observation is
that partial termination is not a problem associated
to final states only, but actually to transitions that
partition a SeqMP choreography in parts with
or without possible participation of a particular
role. For example, by firing the transition between
c6 and c8 as depicted in figure 3, there is no
possibility that the FSP role will become active
in the particular SeqMP instance anymore whereas
participation still would be possible in c6.

C. Seq-MP Algorithms

This section presents algorithms for dealing with
the partial termination and the role projection
problem identified in the last section. Note that the
algorithms are defined for SeqMP choreographies
which are defined for binary BCAs as building
blocks. However, the algorithms themselves also
would work for multi-party BCAs as building
blocks. For validation, the algorithms for calcu-
lating escalation sets as well as role projections
have been implemented for an abstract model of
SeqMP in Java. The prototype implementation
together with the test graphs for figure 2 and 3
are available4.

1) Computing Escalation Sets: As really safe
multi-party choreographies that specify exception
handling logic in full (cf. above) are hard to
design, we propose the computation of so-called
escalation sets for tackling the partial termination
problem. Intuitively, escalation sets are sets of
participation expectations that cannot be fulfilled
any more upon firing a particular transition. Con-
sider the transition (c2-f4) of figure 2 again. The
Customer has participated in BCA c1 and then
waits for BCA c4 to begin. So, a participation
expectation has been created for the Customer.
When firing (c2-f4), this expectation cannot be
satisfied any more, but it could in c2. Additionally,
the Customer does not participate in c2 and so
she is not informed about that. Hence, firing (c2-
f4) creates a partial termination problem for the
Customer and the string ‘Customer’ is added to
the escalation set of (c2-f4) (represented as curly
braces added to the transition in figure 2) to specify
that fact. For analogous reasons, ‘Customer’ is
added to (c2-f3) and ‘Seller’ is added to (c3-f5).

4http://www.uni-bamberg.de/pi/confSeqMP-Algorithms

5

http://www.uni-bamberg.de/pi/confSeqMP-Algorithms

To capture this intuition more precisely, we de-
fine the concepts of ‘Expectation’ and ‘Escalation
Assignment’.

Definition 3.4 (Expectation):
An expectation is a 2-tuple E(r,en) where r ∈
smp.R of some SeqMP choreography smp and en
is a name. �

Definition 3.5 (Escalation Assignment):
An escalation assignment is a function ESA:
smp.T → 2E that, for a SeqMP choreography
smp and a set of expectations E, assigns to each
transition t ∈ smp.T a set of expectations se ⊆ E.
�
Then, informally, escalation sets can be character-
ized as follows:

If an expectation (r,en) may have been created
on some path to BCA bca and if the expectation
still may be satisfied by some reachable BCAs
and transitions and if the expectation may not be
satisfied any more by taking a particular outgoing
transition of bca and if r /∈ RA(bca) (because r
would have full information otherwise) then the
expectation goes into the escalation set of that
transition.

Note that this informal definition does not refer
to the concrete path that is taken at run-time
for determining expectations. Instead, all paths
that may have been taken for reaching bca are
considered. That means that the participants of
a SeqMP choreography can find out at design
time which transitions potentially suffer from the
partial termination problem at runtime. Based on
this information, they may agree on appropriate
actions for dealing with this issue, e.g., informing
their integration partners via mail or phone. In so
far, escalation sets are a means for analyzing the
partial termination problem in multi-party chore-
ographies, but not a fully automatic solution to the
problem. Further, when firing a problematic transi-
tion at runtime the defined escalation set has to be
compared to the actual expectations created during
that particular process instance (which could easily
be implemented by some logging feature).

So far, the details of when expectations are
created and when these are satisfiable have not
been discussed. We have identified three distinct
strategies (or modes), namely ‘ALWAYS’, ‘SE-
LECTED’, and ‘RESOLVABLE’, for accomplish-
ing this task. The escalation sets then can be
computed according to the ‘Escalation Set Compu-
tation’ algorithm as specified in algorithm objects
1 and 2. Below, we discuss the different strategies:

Strategy ALWAYS:
This strategy basically assumes that an

expectation is created whenever a role r
participates in a BCA and that it is satisfiable
as long as r may still participate in some future
BCA. The escalation criterion is (relative to some
SeqMP smp) for some t ∈ smp.T:

Algorithm 1: Compute Escalation Set: Part1
input :
smp , a valid SeqMP choreography;
mode , the operating mode;
rsa , a role selection assignm. //SELECTED mode;
epa , an expectation assignm. //RESOLVABLE mode;
rea , a resolution assignm. //RESOLVABLE mode;

output :
esa , an escalation assignm.;

variables :
// Maps for capturing reachable states/transitions;
Map<State,Set<State>> mapStFwd , mapStBwd ;
Map<State,Set<Trans>> mapTrFwd ,
mapTrBwd ;
// Result map for mapping transitions to expectations;
Map<Trans,Set<Expectation>> mapEsc;

procedure: compExpect(State s) :
1 if mode = ALWAYS then
2 Set<State> bwds = mapStBwd .get(s);
3 return

⋃
st∈bwdsRA(st) × {‘ALWAYS’};

4 else if mode = SELECTED then
5 Set<Trans> bwdtr = mapTrBwd .get(s);
6 return

⋃
t∈bwdtrrsa(t) × {‘SELECTED’}

× t .id();
7 else if mode = RESOLVABLE then
8 Set<Trans> bwdtr = mapTrBwd .get(s);
9 return

⋃
t∈bwdtrepa(t);

10 end
11 end procedure

procedure: compResolve(Set<Expectation>
resolveSet, State s, Trans t) :

12 Set<Expectation> theRes = new Set();
13 State search = s;
14 if t 6= null then search = t #3;
15 foreach Expectation e in resolveSet do
16 if mode ∈ {ALWAYS,SELECTED} OR (mode

= RESOLVABLE AND rea(e) = ∅) then
// check resolution via role participation

17 Set<State> fwds =
mapStFwd .get(search);

18 if t 6= null then fwds .add(t #3);
19 Set<Role> roles =

⋃
st∈fwdsRA(st);

20 if e #1 ∈ roles then theRes .add(e);
21 else if mode = RESOLVABLE AND rea(e)

6= ∅ then
// check resolution via reachable transitions

22 Set<Trans> fwdtr =
mapTrFwd .get(search);

23 if t 6= null then fwdtr .add(t);
24 if ∃ res ∈ rea(e). res ⊆ fwdtr then
25 theRes .add(e)
26 end
27
28 end
29 return theRes;
30 end procedure // continue...

ESA(t(t#1,t#2,t#3)) = {(r,‘ALWAYS’) | (∃ path(s1,
t#1), s1 ∈ smp.SBCA, length(path) > 1: r ∈
RA(s1)) ∧ (∃ path(t#1, s2), s2 ∈ smp.SBCA,
length(path) > 1: r ∈ RA(s2)) ∧ (∀ path(t#3, s3),
s3 ∈ smp.SBCA, length(path) > 1: r /∈ RA(s3)) }
The advantage of this strategy is that users can
apply this strategy to a valid SeqMP choreography

6

Algorithm 2: Compute Escalation Set: Part2
algorithm :

// continue...
1 foreach State s in in a traversal of smp do

// Comp. states/transitions reachable in
forward/backward direction; s is not part of the
reachability set

2 mapStFwd .put(s,compStateFwd(s));
3 mapStBwd .put(s,compStateBwd(s));
4 mapTrFwd .put(s,compTransFwd(s));
5 mapTrBwd .put(s,compTransBwd(s));
6 end

// Actual escalation assignment calculation
7 foreach State s in in a traversal of smp do
8 Set<Expectation> eSet = compExpect(s);

// Remove entries of roles participating in s
9 foreach (r,e) ∈ eSet do

10 if r ∈ RA(s) then eSet = eSet \ {(r ,e)};
11 end

// Determine resolvable expectations from s onwards
12 Set<Expectation> allRes =

compResolve(eSet,s,null);
// Compare allRes to resolvable expectations of

outgoing transitions
13 foreach Trans t ∈ SUCCs do
14 Set<Expectation> trRes =

compResolve(allRes,null,t);
15 if allRes = trRes then
16 mapEsc .put(t,new Set());
17 else
18 Set<Expectation> noRes =

copy(allRes);
19 noRes = noRes \ trRes;
20 mapEsc .put(t,noRes);
21 end
22 end
23 end
24 return mapEsc;

as is, i.e., no additional configuration is needed.
The disadvantage is that the strategy ignores that
the execution of some BCAs does not create
expectations whereas others do.
The result of applying this strategy is reflected
in the use cases of figures 2 and 3 where the
escalation sets are attached to each transition by
enumerating the according roles in curly braces.
For figure 3, only the initial letters of each
role are given and the string ‘ALWAYS’ is left
out for presentation purposes. For example, the
escalation set {F} of the transition between c6
and c9 of figure 3 says for the Financial Service
Provider (FSP) role that it may have participated
in an instance of the depicted SeqMP graph (if
c2 or c5 were on the path to c6), that the
FSP role still could be triggered (via the path
(c6,c10,c12,c13,c3,c5)) and that it cannot be
triggered any more when the transition has been
fired (because from c9 no BCA with participation
of FSP can be reached). This may or may not be
an issue depending on whether or not the FSP
considers each BCA c5 instance as a completely
independent business case. The LSP role, in turn,

is not included in the escalation set between c6
and c9 because it knows from the [shipped]
outcome and the global SeqMP model that there
is no way of being involved in the current SeqMP
instance any more.

For the next strategy the concept of ‘Role Se-
lection Assignment’ is introduced:

Definition 3.6 (Role Selection Assignment):
A role selection assignment is a function RSA:
smp.T → 2smp.R that, for a SeqMP choreography
smp, assigns to each transition t ∈ smp.T the set
of roles sr ⊆ {r| r ∈ RA(t#1)} for which the
expectation to participate once more during the
choreography is created upon firing t. �

Strategy SELECTED:
This strategy is similar to the ‘ALWAYS’ strategy
but not every outgoing transition of a BCA cre-
ates an expectation but only those transitions that
the user configures by specifying a role selection
assignment. Additionally, the user has the option
to specify for which of the participating roles of
a BCA a particular outgoing transition creates an
expectation. Expectations are satisfiable as long as
r may still participate in some future BCA. The
escalation criterion is (relative to some SeqMP
smp and role selection assignment RSA) for some
t,t′ ∈ smp.T:
ESA(t(t#1,t#2,t#3)) = {(r,‘SELECTED’+t.id()) | (∃
path(s1, t#1), s1 ∈ smp.SBCA: r ∈ RSA(t′) with
t′#3 = s1) ∧ (∃ path(t#1, s2), s2 ∈ smp.SBCA,
length(path) > 1: r ∈ RA(s2)) ∧ (∀ path(t#3, s3),
s3 ∈ smp.SBCA, length(path) > 1: r /∈ RA(s3)) }
The advantage of this strategy is that it imposes a
moderate configuration burden on the user while
offering the possibility to exclude transitions from
expectation creation. The disadvantage of this
strategy is that the user has no control about the
events that lead to the satisfaction of an expecta-
tion.

Figure 4 shows the result of applying the
SELECTED strategy to the complex use case
of figure 3 with the following role selection
assignment RSA:
RSA = {(c1-c3,{customer, seller}), (c3-c6,{esp,
seller}), (c4-c7,{lsp, seller})}
There are three major differences to observe
when comparing this result to the result of the
ALWAYS strategy as shown in figure 3: First, the
Customer role is not included in the escalation
sets of transitions (c2-f3), (c4-f6) and (c4-f7)
because only transition (c1-c3) is configured to
create an expectation for the Customer and this
transition is not reachable in backward direction
of those transitions. Second, as there are no
expectations configured for the Financial Service
Provider this role is not included in any escalation
set. Third, multiple expectations are created for
the Seller role. The transitions have been added

7

Figure 4. SELECTED Strategy Applied to the Use Case of Figure 3

to the role names in figure 4 to distinguish
between the various expectations, e.g., ‘S(c1-c3)’,
‘S(c3-c6)’ or ‘S(c4-c7)’. The escalation sets then
reflect which of those expectations potentially
are violated. So, there are three violated Seller
expectations for (c11-f16) whereas there are only
two violated Seller expectations for (c12-f17).
Note that these results highly depend on the role
selection assignment provided by the user and
therefore the business meaning of escalation sets
is heavily influenced by the user. For example,
not configuring an expectation for the FSP role
may mean that the BCAs with FSP participation
are completely independent of other BCAs or it
may mean that the user just did not want to focus
on the FSP role.

For the last strategy, the definitions of ‘Expec-
tation Assignment’ and ‘Resolution Assignment’
are needed:

Definition 3.7 (Expectation Assignment):
An expectation assignment is a function EPA:
smp.T→ 2E that, for a SeqMP choreography smp
and a set of expectation names EN, assigns to each
transition t ∈ smp.T the set of expectations se ⊆
E={(r,en)| r ∈ RA(t#1), en ∈ EN} that is created
upon firing t. �

Definition 3.8 (Resolution Assignment):
A resolution assignment is a function REA: E →
22smp.T

that, for a SeqMP choreography smp and
a set of expectations E, assigns to each expectation
e ∈ E the set of sets of transitions setRes ⊆ 2smp.T

for which each element resolves e. �

Strategy RESOLVABLE:
The last strategy offers the possibility to create
multiple expectations per role upon firing a transi-
tion and to define sets of sets of transitions that
need to be fired to satisfy an expectation. The
escalation criterion is (relative to some SeqMP
smp, expectation assignment EPA and resolution
assignment REA) for some t,t′ ∈ smp.T:
ESA(t(t#1,t#2,t#3)) = {ep ∈ EPA(t′) | (∃ path(s1,
t#1), s1 ∈ smp.SBCA: t′#3 = s1) ∧ (∃ a sequence
of transitions t1,...,tn ∈ rp.T. (t1#1 = t#1 ∧ ∃ reSet
∈ REA(ep). reSet ⊆ t1,...,tn)) ∧ (@ a sequence of
transitions t1,...,tn ∈ rp.T. (t1#1 = t#3 ∧ ∃ reSet ∈
REA(ep). reSet ⊆ t1,...,tn)) }
While this strategy places considerable burden
upon the user to define comparatively complex
expectation and resolution assignments, it allows
for fine-grained configuration possibilities to de-
fine when expectations are created and satisfied.
Additionally, users may choose to avoid the spec-
ification of complete expectation and resolution
assignments by focusing in on only selected ex-
pectations and resolutions.

Figure 5 shows the result of applying the
RESOLVABLE strategy to the complex use
case of figure 3 with the following expectation
assignment EPA and resolution assignment REA:
EPA =
{(c1-c3,{(Customer,ReceiveProduct),
(Customer,PayProduct)}),
(c1-c2,{(Customer,EscortedProduct)}),
(c6-c10,{(Customer,ResolveDamage)}),
(c10-c12,{(Customer,SendBack)}),

8

Figure 5. RESOLVABLE Strategy Applied to the Use Case of Figure 3

(c8-c7,{(Customer,ReceiveEscort)})}
REA =

{((Customer,ReceiveProduct),{{(c6-c8)},{(c6-
c9)}}), ((Customer,PayProduct),{{(c9-f13)}}),
((Customer,EscortedProduct),{{(c11-c9),(c9-
f13)}}),
((Customer,ResolveDamage),{{(c6-c8)},{(c6-
c9)}}),
((Customer,SendBack),{{(c12-c13)}}),
((Customer,ReceiveEscort),{{(c11-c9)}})}

When comparing the RESOLVABLE strategy
to the first two strategies observe the following
extensions: First, there may be multiple
expectations per transition for the same role.
For example, upon firing (c1-c3) the expectations
named ‘ReceiveProduct’ and ‘PayProduct’
are created for the Customer role. Second, the
resolution of expectations is configurable and does
not depend on role participation during BCAs.
For example, transition (c9-f13) is configured to
resolve the PayProduct expectation whereas either
(c6-c8) or (c6-c9) can resolve ReceiveProduct.
Therefore, (Customer, PayProduct) is part of the
escalation set of (c7-f10) whereas (Customer,
ReceiveProduct) is not. The reason is that neither
(c6-c9) or (c6-c8) are reachable in forward
direction from BCA c7. So firing (c7-f10) does
not cut off any resolution of ReceiveProduct and
therefore ReceiveProduct does not go into the
escalation set of (c7-f10). Note that the result of
the RESOLVABLE strategy highly depends on the
expectation and resolution assignment provided

by the user and thus allows a fine-grained analysis
of SeqMP choreographies.

2) Computing Role Projections: Role projec-
tions of multi-party choreographies are useful for
focusing on the relevant behavior of a particular
role r. Our approach for computing projections of
a SeqMP smp for r is based on abstracting inter-
actions without participation of r using so-called
event-based choices (EBCs). So, if a BCA without
participation follows a BCA with participation of
r then the second BCA is replaced by an EBC.
The EBC then is the new target of the transition
between the two BCAs. Conversely, if a BCA with
participation of r follows a BCA without partici-
pation then the transition between the two BCAs
is removed and a new transition between the EBC
for abstracting the former BCA and the BCA with
participation of r is created. In figures 6, 7, 8 and
9, black vertical bars are used to represent EBCs.
Consider figure 6 which shows the projection of
the use case of figure 3 for the Customer role.
As the Customer does no participate in BCA c3
it is abstracted by EBC ebc1 and transition (c1-
c3) is linked to ebc1. c5 is then conflated with
ebc1 because the Customer does not participate in
c5 either. ebc1 then is linked to BCA c6 as this
is the next BCA with participation of Customer.
The guard of this transition is "true" because it is
transparent for the Customer what happens in the
meantime. Note that EBCs may also be created if
the predecessor is not a BCA with participation of

9

Figure 6. Projection for the Customer Role (Use Case of Figure 3)

Figure 7. 1 out of 2 Possible Projections for the LSP Role (Use Case of Figure 3)

the focal role. For example, BCAs c2 and c4 are
represented by ebc4. When processing transition
(c4-c7) an extra EBC (ebc3) is created because c7
is reachable via c8 as well. Merging ebc4 and ebc3
would put the behavioral integrity of the projection
at risk because then all outgoing transitions of
ebc4 would be reachable via c8 as well. Note that
in [6], we chose to merge EBCs in such a case
and to simply introduce an additional EBC for
the path via c8. We have changed the behavior of
the algorithm because the new algorithm creates
more compact projections and provides that the
projection of a state is independent of the path
through which it is discovered.
Definitions 3.9 and 3.10 formally capture role
projections and some auxiliary functions.

Definition 3.9 (Role Projection):
A role projection rpr for role r of a SeqMP
choreography smp is a directed graph Proj (s0,S,T)
with the following elements:

• s0 = smp.s0 the (unique) start state.
• S = s0 ∪ EBC ∪ F ∪ SBCA the states

of the projection with EBC a set of event-
based choice states, F ⊆ smp.F, SBCA
⊆ smp.SBCA with ∀ bca ∈ SBCA. r ∈
smp.RA(bca).

• T ⊆ S × smp.G × S the set of transitions
where for each t ∈ T. t ∈ EBC × {true}
× EBC ∨ t ∈ smp.T ∨ (∃t′ ∈ smp.T.
(t=(t′#1,t′#2,e) ∨ t=(e,true,t′#3)) ∧ e ∈ EBC).
�

Definition 3.10 (Projection Auxiliary Functions):
The auxiliary functions defined for SeqMP
choreographies in definition 3.2 are
correspondingly defined for role projections.
In particular, a pathr(a,b) is a path between two
nodes a and b in projection rp and Pathr(a,b) is
the set of all paths between a and b in projection
rp. If rp.s0 links to an event-based choice then
rp.initEBC can be used to refer to that event-based
choice. �

The role projection algorithm presented in algo-
rithm objects 3, 4 and 5 gives the details of
computing role projections. Note that there may
be more than one projection per role. We choose
deliberately to allow for multiple projections of
a particular SeqMP smp for a particular role r
because different branches of a multi-party chore-
ography potentially may comprise completely un-
related BCAs of r. Consider figure 3 and the LSP
role. If an instance of the choreography began with
BCAs c1, c2 and c4 then only the BCAs of figure 7

10

would be possible for the LSP role. Assume further
there was no transition between c8 and c7. Then,
depending on whether transition (c2-c4) or (c2-
c3) is taken, completely disjoint sets of BCAs with
LSP-participation are possible. In that situation, we
believe that integration participants should not be
forced to view unrelated BCAs as part of a single
collaboration. We use algorithm 3 for identifying
potentially disjoint projections for a particular role
r. Once the first BCA with participation of r is
found that could be the starting point of such
a projection, the computation of a role-specific
projection at a particular state is started (algorithm
objects 4 and 5). For the case of the LSP role of
the use case of figure 3, this approach leads to two
individual projections that overlap. In this case,
the individual projections still may be considered
to be two different use cases or may be merged
which depends on the system setting of the inte-
gration participant. Algorithm object 6 shows how
two distinct projections of the same role can be
merged such that the individual projections and the
corresponding merge are behaviorally equivalent.
The algorithm is defined for two projections, but
it can be applied iteratively to cover the case of
more than two projections.

Algorithm 3: Projection Computation
input :
A valid SeqMP smp to be analyzed
output :
A mapping of roles to their projections: smp .R →

Set<State>
variables :
Set<State> computed ;
//initially maps each role of smp to an empty set of
projections;
Map<Role,Set<State>> projs;
Boolean processBegin;

algorithm:
1 processBegin = true;
2 foreach State s of each path without loop in a depth

first traversal of smp do
3 Set<Role> known =⋃

r∈states on the current path \ sRA(r);
4 Set<Role> curr = RA(s);
5 curr = curr \ known;
6 if curr 6= ∅ ∧ s /∈ computed then
7 foreach Role r in curr do

// Add role projection for r starting at s
8 projs .get(r).add(doProjection(r,

s, processBegin));
9 end

10 computed .add(s);
11 end
12 if processBegin then processBegin = false;
13 end
14 return projs;

For reasoning about behavioral equivalence, def-
initions 3.11 and 3.12 introduce the concepts of
‘Boundary Overlap Node’ and ‘Execution Traces’.

Algorithm 4: Role Projection - State s: Part 1
input :
State s and Role r of a valid SeqMP smp;
boolean first , true if s is the first BCA in smp
output :
The first state of the role projection sout
variables :
Map<String, State> proj //state ids to projected
states;
Map<State,State> visitMap //source states to
projected states;

procedure: walk(State curr) :
1 State mSelf = visitMap .get(curr);
2 foreach Trans t =(t #1,t #2,t #3) in SUCCcurr do
3 State mTarg = visitMap .get(t #3);
4 if mTarg 6= null then
5 if mSelf is an EBCState AND mTarg /∈

SUCCmSelf then //define transition between
#1 and #3 with guard #2

6 trans(mSelf, "true", mTarg);
7 else
8 trans(mSelf, t #2, mTarg);
9 end

10 else
11 if t#3 is a FinalState ∨ r ∈ RA(t#3) then

//copy state
12 State nextCopy = t#3.scopy();
13 visitMap .put(t#3, nextCopy);
14 proj .put(t#3.id(), nextCopy);
15 if mSelf is an EBCState then
16 trans(mSelf, "true",

nextCopy);
17 else
18 trans(mSelf, t#2, nextCopy);
19 end
20 else //abstract by event-based choice
21 if mSelf is an EBCState then

// alternative path to t #3?
22 if ∃ bca ∈ smp.BCA. r ∈ RA(bca)

∧ Path(bca,t #3) 6= ∅ then
23 EBCState ebc = new

EBCState();
visitMap .put(t#3, ebc);

24 proj .put(ebc.id(), ebc);
25 trans(mSelf, "true", ebc);
26 else
27 visitMap .put(t#3, mSelf);
28 end
29 else
30 EBCState ebc = new

EBCState();
visitMap .put(t#3, ebc);

31 proj .put(ebc.id(), ebc);
32 trans(mSelf, t#2, ebc);
33 end
34 end
35 walk(t#3);
36 end
37 end
38 end procedure // continue...

Theorem 3.1 then formally captures behavioral
equivalence and lemmata 3.1, 3.2 and 3.3 are used
during its proof.

Definition 3.11 (Boundary Overlap Node):
A boundary overlap node of two role pro-
jections rp1 and rp2 is a BCA bca such
that bca ∈ rp1.SBCA ∧ bca ∈ rp2.SBCA
∧ ((@bca′ ∈ rp2.SBCA. ∃ path(rp1.s0,bca′),

11

Algorithm 5: Role Projection - State s: Part 2
algorithm:
// ...continue

1 sout = new StartState("s1");
2 State currCopy = s.scopy() // copy s without

transitions
3 proj .put("s1", sout);
4 proj .put(s.id(), currCopy);
5 if first then
6 trans (proj .get("s1"), "true",

proj .get(s.id()));
7 else
8 proj .put("ebc0", new EBCState("ebc0"));

// define transition between #1 and #3 with guard #2
9 trans (sout, "true", proj .get("ebc0"));

10 trans (proj .get("ebc0"), "true",
proj .get(s.id()));

11 end
12 visitMap .put(s, currCopy);
13 walk(s);
14 return sout;

Algorithm 6: Projection Merge
input :
State rp1, rp2, two projections of the same role;

output :
State rpm, the merged role projection;

algorithm :
1 rpm = rp1.deepCopy()// copy of complete

projection of rp1

// insert extra leading event-based choice to avoid new
traces by loops back to rp1.initEBC

2 State mergeEBC = new() EBCState();
3 rpm.S .add(mergeEBC);

// use prj(state) to get the copy of state
4 rpm.T .del((prj(rp1.s0),"true",prj(rp1.initEBC)));

5 rpm.T .add((prj(rp1.s0),"true",mergeEBC));
6 rpm.T .add((mergeEBC,"true",prj(rp1.initEBC)));

// prepare adding rp2

7 rpm.T .add((mergeEBC,"true",rp2.initEBC.copy()));

8 foreach Trans t =(t #1,t #2,t #3) in a breadth first
traversal starting from rp2.initEBC do

9 if t #3.id() /∈ rpm.S.ids() then
10 rpm.S .add(t #3.copy());
11 end

// copy transitions
12 rpm.T .add({(prj(t #1),t #2,prj(t #3))});

// Stop upon encountering an overlap node
13 if t #3.id() ∈ rp1.S.ids() then
14 stopTraversalBranch();
15 end
16 end
17 return rpm;

path(bca′,bca). bca ∈ path(rp1.s0,bca′)) ∨ (@bca′ ∈
rp1.SBCA. ∃ path(rp2.s0,bca′), path(bca′,bca). bca
∈ path(rp2.s0,bca′))). �

Definition 3.12 (Execution Traces):
An execution trace trace(a,b) between two states
a and b of a role projection rp is a sequence of

states a,st0,...,stn,b that is derivable from some
path(a,b) by removing all event-based choices. Let
Trace(a,b) be the set of all traces between a and
b. For some state s ∈ rp.S of projection rp, the set
of leading traces is Tracelead(s) = Trace(rp.s0,s)
and the set of trailing traces is Tracetrail(s) =⋃

f∈rp.FTrace(s,f). �

Theorem 3.1 (Behavior Preservation of Merge):
Consider two non-identical projections rp1 and rp2
for the same role r of a valid SeqMP choreography
smp and the merge rpm of rp1 and rp2 as derived
by algorithm 6. Then Tracetrail(rpm.s0) =
Tracetrail(rp1.s0) ∪ Tracetrail(rp2.s0). �

Proof 3.1:
The proof is split up into two parts:
Part 1: rpm produces all traces contained in rp1
and rp2.
By lemma 3.3 and the definition of execution
traces, it is sufficient to consider the forward
subgraphs of rp1, rp2 starting with rp1.initEBC,
rp2.initEBC respectively. The subgraph starting
with rp1.initEBC is a subgraph of rpm. So, rpm

produces all traces of rp1. Further, let B be the
set of boundary nodes of rp1 and rp2. By algo-
rithm 6, lines 9 to 12, all states and transitions
not connected to a boundary node are copied to
rpm without modification. Otherwise, consider an
arbitrary path p = rp2.initEBC,...,bca′,...,b with b
∈ B. If bca′ ∈ rp1.SBCA then bca′ is not copied
to rpm (line 9 of algorithm 6). However, by lemma
3.2, the forward graph of bca′ is already contained
in rpm.
Conversely, if bca′ /∈ rp1.SBCA then bca′ /∈
Path(b′,f) for any b′ ∈ B and f ∈ smp.F
because every forward reachable state is vis-
ited in a projection of b′. Then @ bca′′. (∃
path(rp2.initEBC,bca′′),path(bca′′,bca′) ∧ bca′′ ∈
Path(b′,f) for any b′ ∈ B and f ∈ smp.F). Then
all states and transitions visited on p between
rp2.initEBC and bca′ are copied to rpm. �

Part 2: rpm produces no trace that is neither
contained in rp1 nor rp2.
For part 2, assume the opposite. Then, there would
have to be some BCA or transition in rpm that
adds to a new trace and that is neither contained
in rp1 nor in rp2. During copying rp1 (line 1), no
new states or transitions are created. As long as
no boundary node is encountered, copying tran-
sitions and states of rp2 just reproduces rp2. For
a boundary node b however Path(rp2.initEBC,b) is
retained without structural modification in rpm and
Tracetrailrpm

(b) = Tracetrailrp2
(b) by means of lemma

3.2 �

Lemma 3.1 (Path Independent State Mapping):
Consider some state s ∈ smp.s0 ∪ smp.SBCA
∪ smp.F of a valid SeqMP choreography smp.
Then, its mapping to a state s’ ∈ rp.S of some
role projection rp of smp created according to
the projection algorithm (algorithm objects 4 and

12

5) does not depend on the path on which s is
discovered. �

Proof 3.2:
When creating a projection rp of SeqMP chore-
ography smp for role r, the following types of
transitions have to be considered. Thereby, note
that upon processing transitions of cases 2-7, the
source state already has been mapped.
Case 1: t(smp.s0,"true",bca), bca ∈ smp.SBCA
There is no path that starts before smp.s0, so the
claim holds for smp.s0 and bca.
Case 2: t(bca1,t#2,bca2), bca1,bca2 ∈ smp.SBCA
∧ r ∈ RA(bca1) ∧ r ∈ RA(bca2)
If bca2 has not been mapped before, then a copy
of bca2 is created. Otherwise, its copy is retrieved
(cf. algorithm objects 4 and 5). So, the mapping
of bca2 and of t is unique.
Case 3: t(bca1,t#2,f), bca1 ∈ smp.SBCA ∧ f ∈
smp.F ∧ r ∈ RA(bca1)
Analogous to case 2.
Case 4: t(bca1,t#2,bca2), bca1,bca2 ∈ smp.SBCA
∧ r ∈ RA(bca1) ∧ r /∈ RA(bca2)
Assume bca2 is not reachable via a second path.
Then an event-based choice is created for bca2.
Otherwise, if bca2 has not yet been mapped then
a dedicated new event-based choice is created as
well. If bca2 already has been mapped then by
line 22 of algorithm 4 a dedicated new event-
based choice has been created for bca2 as well.
Transition t then is created between the mapping of
bca1 and the event-based choice. So, the mapping
of bca2 and t is unique.
Case 5: t(bca1,t#2,bca2), bca1,bca2 ∈ smp.SBCA
∧ r /∈ RA(bca1) ∧ r ∈ RA(bca2)
If bca2 has not been mapped before, then a copy
of bca2 is created. Otherwise, its copy is retrieved
and a transition between the event-based choice
for abstracting bca1 and the copy of bca2 with t#2
as guard is created. So, the mapping of bca2 and
t is unique.
Case 6: t(bca1,t#2,f), bca1 ∈ smp.SBCA ∧ f ∈
smp.F ∧ r /∈ RA(bca1)
Analogous to case 5.
Case 7: t(bca1,t#2,bca2), bca1,bca2 ∈ smp.SBCA
∧ r /∈ RA(bca1) ∧ r /∈ RA(bca2)
Assume, bca2 is not reachable via a second path.
Then bca2 is mapped to the event-based choice
used for abstracting bca1, t is not mapped, and
the mapping is unique. Otherwise, if bca2 has not
yet been mapped then by line 22 of algorithm 4 a
dedicated new event-based choice is created. If it
already has been mapped a dedicated new event-
based choice has been created for bca2 by the same
argument. So, the mapping of bca2 and t is unique.
�

Lemma 3.2 (Isomorphic Subgraph Mappings):
Consider some state s ∈ smp.s0 ∪ smp.SBCA
∪ smp.F of a valid SeqMP choreography smp.
Then the graph that results from mapping the

forward reachable subgraph of s during some role
projection rp of smp is isomorphic for all paths
on which s may be discovered. �

Proof 3.3:
Iteratively apply lemma 3.1 during a forward
traversal of the graph. �

Lemma 3.3 (Unique Projection Start Pattern):
Consider multiple projections rp1,...,rpn of a valid
SeqMP choreography smp for the same role r.
Then, all of these projections rpi start with the
initial state linking only to an event-based choice:
rpi.s0 = smp.s0 ∧ (∃ t(s0,"true",e) ∈ rpi.T. e ∈
rpi.EBC ∧ (@t′ ∈ rpi.T. t′ 6= t1 ∧ t′#1 = rpi.s0)).
�

Proof 3.4:
If there are multiple projections rp1,...,rpn for role
r then r does not participate in the first BCA of
smp and hence smp.s0 is connected to an event-
based choice as of algorithm 5. Otherwise, there
would be only a single projection as every state of
a valid SeqMP choreography is reachable via the
first BCA. �

While all BCAs without participation of the
focal role are abstracted away by means of the
projection algorithm, the representation of projec-
tions still can be optimized. Figure 8 shows one
out of two possible projections for the FSP role of
the use case depicted in figure 3. It contains only
one BCA, but five EBCs and thirteen final states
are included to describe permissible behavior. The
following five reduction rules have been identified
to simplify projections. Rules 3.1, 3.2 and 3.3
do not affect the set of execution traces in the
strict formal sense. Rules 3.4 and 3.5 do affect
the set of execution traces because final states are
removed from the projections and final states are
accounted for in execution traces. However, this
can be justified by the following consideration:
If an EBC links to multiple final states then the
focal role is not aware of which final state is
reached at runtime (without notification outside
the choreography definition). So, the focal role
just has the information that the process may be
terminated, but it does not know when and with
which result. Consequently, all the focal role needs
to know is that the process may be terminated after
an event-based choice and hence multiple final
states after an EBC can be conflated.
By applying the following reduction rules the
projection depicted in figure 8 with five EBCs
and thirteen final states can be reduced to the
projection depicted in figure 9 with only two EBCs
and two final states.

Rule 3.1 (Subsequent Event-Based Choices):
Let ebc1, ebc2 be event-based choices of a role
projection rp of some role r, Tinter = {t ∈ rp.T |
(t#1 = ebc1 ∧ t#3 = ebc2) ∨ (t#1 = ebc2 ∧ t#3 =

13

Figure 8. 1 out of 2 Possible Projections for the FSP Role (Use Case of Figure 3)

Figure 9. Projection of Figure 8 after Applying Reduction Rules

ebc1)}, Tfwd
ebc1

= {t ∈ rp.T | t#1 = ebc1} \ Tinter,
Tfwd
ebc2

= {t ∈ rp.T | t#1 = ebc2} \ Tinter such that
@ t ∈ rp.T \ Tinter. t#3 = ebc2. Then, rp can be
simplified without affecting the execution traces
of r by performing the following modifications in
order:

1) rp.T = rp.T \ Tinter

2) ∀ t ∈ Tfwd
ebc2

:
rp.T = rp.T ∪ {(ebc1,t#2,t#3)}

3) rp.T = rp.T \ Tfwd
ebc2

4) rp.EBC = rp.EBC \ ebc2
This reduction rule can be applied to conflate ebc1
and ebc2 of figure 8. The informal argument for its
correctness is that firing transitions between ebc1
and ebc2 is transparent to the user.

Rule 3.2 (Multiple Event-Based Choices):
Let MEBC = ebc1,...,ebcn be a set of event-based
choices of a role projection rp of some role r
indexed by I = [1;n], Tinter = {t ∈ rp.T | t#1
= ebci ∧ t#3 = ebcj ∧ i,j ∈ I ∧ i 6=j}, Tfwd

ebci
= {t ∈

rp.T | t#1 = ebci} \ Tinter for i ∈ I such that (∀
i ∈ [2;n]. ∃ t ∈ Tinter. t#1 = ebc1 ∧ t#3 = ebci)
∧ (∀ i ∈ [2;n]. @ t ∈ rp.T \ Tinter. t#3 = ebci).
Then, rp can be simplified without affecting the
execution traces of r by performing the following
modifications in order:

1) rp.T = rp.T \ Tinter

2) ∀ t ∈
⋃

i∈[2;n] Tfwd
ebci

:
rp.T = rp.T ∪ {(ebc1,t#2,t#3)}

3) rp.T = rp.T \
⋃

i∈[2;n] Tfwd
ebci

4) rp.EBC = rp.EBC \ (MEBC \ {ebc1})
This reduction rule can be applied to conflate ebc1,
ebc3 and ebc4 of figure 8 and the argument for
its correctness is analogous to rule 3.1. Strictly
speaking this rule is the generalized form of rule
3.1.

Rule 3.3 (Loop):
Let bca be a BCA and MEBC = ebc1,...,ebcn be a
set of event-based choices of a role projection rp
of some role r indexed by I = [1;n], PREDbca =
{t ∈ rp.T | t#3 = bca}, Tinter = {t ∈ rp.T | t#1 =
s1 ∧ t#3 = s2 ∧ s1, s2 ∈ MEBC ∪ {bca} ∧ s1 6=
s2}, Tfwd

ebci
= {t ∈ rp.T | t#1 = ebci} \ Tinter for i

∈ I such that (∀ i ∈ [2;n]. ∃ t ∈ Tinter. t#1 = ebc1
∧ t#3 = ebci) ∧ (∀ i ∈ [2;n]. ∃ t ∈ Tinter. t#1 =
ebci ∧ t#3 = ebc1) ∧ (∀ i ∈ [2;n]. ∃ t ∈ Tinter.
t#1 = bca ∧ t#3 = ebci) ∧ (∃ t ∈ rp.T. t#1 = ebc1
∧ t#3 = bca) ∧ (∀ i ∈ [2;n]. @ t ∈ rp.T \ Tinter.
t#3 = ebci). Then, rp can be simplified without
affecting the execution traces of r by performing
the following modifications in order:

1) rp.T = rp.T \ ((Tinter \ PREDbca) \
SUCCbca)

2) ∀ t ∈
⋃

i∈[2;n] Tfwd
ebci

:

14

rp.T = rp.T ∪ {(ebc1,t#2,t#3)}
3) ∀ t ∈ (SUCCbca ∩ Tinter)

rp.T = rp.T ∪ {(t#1,t#2,ebc1)}
4) rp.T = rp.T \

⋃
i∈[2;n] Tfwd

ebci

5) rp.T = rp.T \ (SUCCbca ∩ (Tinter \ {t ∈
Tinter | t#3 = ebc1}))

6) rp.EBC = rp.EBC \ (MEBC \ {ebc1})
This rule is not reflected in the projections of
figures 6, 7, 8.

Rule 3.4 (Multiple Final States):
Let ebc be an event-based choice of a role projec-
tion rp of some role r, Tf a set of transitions such
that ∀ t ∈ Tf . t#1 = ebc ∧ t#3 ∈ rp.F ∧ (@ t′ ∈
rp.T. t′ 6= t ∧ t′#3 = t#3, and Talt a non-empty set
of transitions such that ∀ t ∈ Talt. t#1 = ebc ∧ t#3
/∈ rp.F. Then, rp can be simplified by performing
the following modifications in order:

1) rp.T = rp.T \ Tf

2) rp.F = rp.F \ {f| ∃ t ∈ Tf . t#3 = f}
3) rp.F = rp.F ∪ f, f a new FinalState
4) rp.T = rp.T ∪ {(ebc,"true",f)}

This reduction rule can be applied to conflate all
final states of figure 8 connected to ebc1, ebc2,
ebc3 and ebc4 after having applied rules 3.2 and
3.1. The rationale for doing so has been explained
above.

Rule 3.5 (Event-Based Choice and Final States):
Let ebc be an event-based choice of a role
projection rp of some role r, PREDebc = {t ∈ rp.T
| t#3 = ebc}, Tfinal = {t ∈ rp.T | t#1 = ebc ∧
t#3 ∈ rp.F} such that @ t′ in rp.T \ Tfinal. t′#1
= ebc ∨ t′#3 = t#3 for some t ∈ Tfinal. Then,
rp can be simplified by performing the following
modifications in order:

1) rp.T = rp.T \ Tfinal

2) rp.F = rp.F \ {s| ∃ t ∈ Tfinal. t#3 = s}
3) rp.F = rp.F ∪ f, f a new FinalState
4) ∀ t ∈ PREDebc:

rp.T = rp.T ∪ {(t#1,t#2,f)},
rp.T = rp.T \ {t}

5) rp.EBC = rp.EBC \ {ebc}
This rule can be applied to conflate ebc1, f12, f13,
and f14 of figure 7.

IV. RELATED WORK

Generally speaking, the work at hand belongs
to the domain of business process management. In
this domain, research on developing implementa-
tions or analyzing artifacts at the implementation
level as presented in [15], [16] or [17] is very com-
mon. However, our work is substantially different.
We provide a framework for analyzing multi-party
choreographies at an abstract level. This work
neither strives for automatically solving the partial
termination problem nor for deriving implemen-
tations of the choreographies or of choreography
projections.
The problems identified in section III-B are quite

different from several problems identified in dif-
ferent choreography research. In reports such as
[18], [19], [20], [21], problems like enforceability
or realizability are researched. The according ap-
proaches have in common that the atomic building
blocks of choreographies are single message ex-
changes and it is then researched whether or not
the message sequences in the choreographies can
be enforced by the local role-specific projections
of interaction partners, and whether or not the
sequence of message exchanges is the same for
synchronous or asynchronous communication. In
the work at hand, these problems are not relevant.
By using BCAs instead of single message ex-
changes, we can be sure that the state of integration
partners is aligned at the end of each BCA (cf. [4],
[13]). BCAs are performed using according proto-
col machines that ensure alignment and therefore
are not comparable to single messages in some
communication buffer that may cause diverging
states or deadlocks. Moreover, due to the Subse-
quent role participation condition, valid SeqMPs
do not suffer from a local enforceability problem.
To the best of our knowledge, partial termination
as defined above has first been identified as multi-
party choreography problem in [6].
However, deriving role projections of multi-party
interactions has been a research topic for a long
time. For example, van der Aalst and Weske [22]
describe an approach for dissecting Petri Nets that
contain role specific behavior. However, commu-
nication between participants is modeled as send-
and receive-transitions that already are associated
with roles. This corresponds to dissecting intercon-
nection style choreographies and is representative
for more recent research on interconnection style
choreographies. However, we are considering the
problem of deriving role projections from inter-
action style choreographies. At first sight, the
proposal for deriving role projections of Let’s
Dance models as described in [18] is comparable
to that problem. However, Let’s Dance applies
a block-structured approach for modeling loops
which is different from the class of SeqMP models
with arbitrary loops. In [23], so-called Interaction
Petri nets that enable multi-party interactions by
modeling binary message exchanges as transitions
of Petri nets, are analyzed. The model of [23]
therefore can be considered to be comparable for
the role projection problem of the work at hand
and an algorithm for calculating role projections
is presented as well. However, the problem there
is defined for Petri Nets and therefore the algo-
rithm is not directly amenable to SeqMP models.
Further, the algorithm in [23] introduces dupli-
cate transitions for flattening parallelism. However,
transitions correspond to message exchanges in
[23] and to BCAs for SeqMP. The business seman-
tics of duplicate message exchanges (or duplicate

15

BCAs for SeqMP) is not clear, though.
Apart from that, interesting choreography work
has been presented in [5] where so-called local
choreographies are used to model the sequence of
interactions of one integration partner in multiple
global choreographies. The perspective is different
from the work at hand by focusing on a partner that
participates in more than one choreography where
the participants of the respective choreographies
may only know the focal integration partner. A
typical scenario for that type of integration is a
manufacturer that employs a sub-contractor pro-
ducing parts of a product without the customer
knowing the sub-contractor. While there may be
valid reasons for not revealing the interactions with
business partners to different business partners, the
type of integration in [5] leaves out the opportunity
to perform analyses like escalation set computation
that rely on a global view on choreographies.

V. CONCLUSION AND FUTURE WORK

This paper introduces an approach for creat-
ing multi-party B2Bi choreographies from binary
B2Bi choreographies. The identification of the
partial termination and the role projection prob-
lem show the potential of SeqMP for optimizing
multi-party B2Bi scenarios. We have provided an
algorithm that allows for analyzing the partial
termination problem using three distinct strategies
that trade off effort for the user and configurability
and we have provided an algorithm for creating
role specific projections. Both algorithms have
been validated using a prototype implementation.
Additionally, we have shown how to merge mul-
tiple projections of the same role such that the
individual projections and their merge are behav-
iorally equivalent and we have identified rules for
reducing projections.
Future work comprises defining an integration
architecture for supporting the communication of
partial termination events among the participants
of a SeqMP choreography. Moreover, the deriva-
tion and monitoring of legally binding obligations
to communicate partial termination events is still
an open issue.

REFERENCES

[1] J.-H. Kim and C. Huemer, “From an ebXML BPSS
choreography to a BPEL-based implementation,”
SIGecom Exch., vol. 5, no. 2, pp. 1–11, 2004.

[2] A. Schönberger and G. Wirtz, “Using Webservice
Choreography and Orchestration Perspectives to
Model and Evaluate B2B Interactions,” in The
2006 International Conference on Software En-
gineering Research and Practice (SERP’06), Las
Vegas, Nevada, USA, June 26-29 2006, pp. 329–
335.

[3] S. Wieczorek, A. Roth, A. Stefanescu, V. Kozyura,
A. Charfi, F. M. Kraft, and I. Schieferdecker,
“Viewpoints for modeling choreographies in
service-oriented architectures,” in Joint Working
IEEE/IFIP Conference on Software Architecture
2009 & European Conference on Software Ar-
chitecture 2009 (WICSA/ECSA), Cambridge. Los
Alamitos/Calif., 2009.

[4] A. Schönberger and G. Wirtz, “Towards execut-
ing ebBP-Reg B2Bi choreographies,” in Proceed-
ings of the 12th IEEE Conference on Commerce
and Enterprise Computing (CEC’10), Shanghai,
China. IEEE, November 10-12 2010.

[5] B. Hofreiter and C. Huemer, “A model-driven
top-down approach to inter-organizational systems:
From global choreography models to executable
BPEL,” in Joint Conference on E-Commerce Tech-
nology (CEC’08) and Enterprise Computing, E-
Commerce, and E-Services (EEE’08). Crystal
City, Washington D.C., USA: IEEE, 7 2008.

[6] A. Schönberger and G. Wirtz, “Sequential com-
position of multi-party choreographies,” in Pro-
ceedings of the IEEE International Conference
on Service-Oriented Computing and Applications
(SOCA’10), Perth, Australia. IEEE, December
13-15 2010.

[7] OASIS, ebXML Business Process Specification
Schema Technical Specification, 2nd ed.,
OASIS, December 2006. [Online]. Avail-
able: http://docs.oasis-open.org/ebxml-bp/2.0.4/
OS/spec/ebxmlbp-v2.0.4-Spec-os-en.pdf

[8] G. Decker, O. Kopp, and A. Barros, “An intro-
duction to service choreographies,” Information
Technology, vol. 50, no. 2, pp. 122–127, 2008.

[9] UN/CEFACT, UN/CEFACT’s Modeling Method-
ology (UMM): UMM Meta Model - Foundation
Module Version 1.0, 1st ed., UN/CEFACT, 10
2006.

[10] M. Zapletal, T. Motal, and H. Werthner, “The busi-
ness choreography language (BCL) - a domain-
specific language for global choreographies,” in
Proceedings of the 5th 2009 World Congress
on Services (SERVICES 2009 PART II), Interna-
tional Workshop on Services Computing for B2B
(SC4B2B), Bangalore, India. IEEE, September
2009.

[11] OMG, Business Process Model and Notation,
v2.0, OMG, January 2011. [Online]. Available:
http://www.omg.org/spec/BPMN/2.0

[12] A. Schönberger, C. Pflügler, and G. Wirtz, “Trans-
lating shared state based ebXML BPSS models
to WS-BPEL,” International Journal of Business
Intelligence and Data Mining - Special Issue: 11th
International Conference on Information Integra-
tion and Web-Based Applications and Services in
December 2009, vol. 5, no. 4, pp. 398 – 442, 2010.

[13] C. Pflügler, A. Schönberger, and G. Wirtz, “In-
troducing partner shared states into ebBP to WS-
BPEL translations,” in Proc. iiWAS2009, 11th In-
ternational Conference on Information Integration
and Web-based Applications & Services, 14.-16.
December 2009, Kuala Lumpur, Malaysia. ACM,
December 2009.

16

http://docs.oasis-open.org/ebxml-bp/2.0.4/OS/spec/ebxmlbp-v2.0.4-Spec-os-en.pdf
http://docs.oasis-open.org/ebxml-bp/2.0.4/OS/spec/ebxmlbp-v2.0.4-Spec-os-en.pdf
http://www.omg.org/spec/BPMN/2.0

[14] H. A. Reijers and W. M. van der Aalst, “The effec-
tiveness of workflow management systems: Predic-
tions and lessons learned,” International Journal of
Information Management, vol. 25, no. 5, pp. 458
– 472, 2005.

[15] N. Laranjeiro and M. Vieira, “Deploying fault
tolerant web service compositions,” International
Journal of Computer Systems Science and Engi-
neering, Special Issue:âEngineering Fault Tolerant
Systems, vol. 23, no. 5, pp. 337–348, Sep 2008.

[16] E. F.-M. Alfonso Rodrı́guez and M. Piattini,
“An MDA approach to develop secure business
processes through a UML 2.0 extension,” Inter-
national Journal of Computer Systems Science
and Engineering, Special Issue:âTrustBus 2006,
vol. 22, no. 5, pp. 307–319, Sep 2007.

[17] M. Kovács, D. Varró, and L. Gönczy, “Formal
analysis of BPEL workflows with compensation by
model checking,” International Journal of Com-
puter Systems Science and Engineering, Special
Issue: Engineering Fault Tolerant Systems, vol. 23,
no. 5, pp. 349–363, Sep 2008.

[18] J. Zaha, M. Dumas, A. ter Hofstede, A. Barros,
and G. Decker, “Bridging global and local models
of service-oriented systems,” Systems, Man, and
Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, vol. 38, no. 3, pp. 302 –
318, may 2008.

[19] G. Decker, A. Barros, F. M. Kraft, and
N. Lohmann, “Non-desynchronizable service
choreographies,” in ICSOC ’08: Proceedings of
the 6th International Conference on Service-
Oriented Computing. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 331–346.

[20] T. Bultan, J. Su, and X. Fu, “Analyzing conversa-
tions of web services,” IEEE Internet Computing,
vol. 10, no. 1, pp. 18–25, 2006.

[21] V. Kozyura, A. Roth, and W. Wei, “Local en-
forceability and inconsumable messages in chore-
ography models,” in Proceedings of 4th South-
East European Workshop on Formal Methods
(SEEFM’09),Thessaloniki, Greece, 2009.

[22] W. M. P. van der Aalst and M. Weske, “The
P2P approach to interorganizational workflows,” in
CAiSE ’01: Proceedings of the 13th International
Conference on Advanced Information Systems En-
gineering. London, UK: Springer-Verlag, 2001,
pp. 140–156.

[23] G. Decker and M. Weske, “Local enforceability
in interaction petri nets,” in Proceedings of the
5th International Conference on Business Process
Management (BPM 2007), Brisbane, Australia,
September 24-28, 2007, pp. 305–319.

17

	I Introduction
	II B2Bi choreographies
	III Seq-MP Choreographies
	III-A Definition
	III-B Problems in Multi-Party Choreographies
	III-C Seq-MP Algorithms
	III-C1 Computing Escalation Sets
	III-C2 Computing Role Projections

	IV Related Work
	V Conclusion and Future Work
	References

