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Abstract—Service orchestrations are a powerful tool for
implementing intra– and interorganizational business processes
that base on services. Several heterogeneous orchestration
languages can be found in contemporary IT landscapes. While
the Web Services Business Process Execution Language (BPEL)
is the de facto standard, others gain attention, including Win-
dows Workflow (WF) in the .NET segment. When integrating
orchestrations, incompatibilities between them can easily arise.
In this paper, we investigate an automated Petri net–based
integration between BPEL and WF to solve these issues with
behavioral adapter services. We provide a mapping of WF to
Open Workflow Nets (oWFNs) and implement it in a compiler.
Thereby, we integrate our approach with existing approaches
for BPEL and adapter synthesis and validate the integration
with a standards–based case study using the two languages.

Keywords-Orchestration, WF, BPEL, Adapter, Petri Nets,
Service Integration

I. INTRODUCTION

In the last decade, information systems have become
process–aware, with processes serving as a starting point for
an implementation of intra– and interorganizational systems
[1]. At the same time, there is an increasing acceptance of
Service–oriented Architectures (SOAs) and Web Services
as a suitable architectural paradigm and implementation
technology for these systems [2]. Here, processes are im-
plemented as composite services using orchestration lan-
guages. Within the scope of Web Services–based orches-
tration languages, BPEL [3] is the de facto standard, but
other languages are gaining attention, especially WF [4] in
the Windows segment.

To achieve a high degree of automation in a company’s
business processes as well as in B2Bi, such orchestrations
need to be integrated. Basically, two integration strategies
exist: top–down integration, where orchestrations are derived
during the implementation phase, and bottom–up integration,
where preexisting orchestrations need to communicate. Here,
we focus on bottom–up integration. During this type of
integration, incompatibilities such as unexpected blocking
and deadlocks between the different orchestrations may
occur.

Most process languages, including BPEL and WF, are
informally defined and therefore are insufficient for formally

tackling these issues. This can be solved by a transfor-
mation into an analyzable representation. Petri nets have
proven to be applicable in the modeling and analysis of
business processes [5], [6], [7]. However, current trans-
formation approaches only cover BPEL [8], [9], [10] and
omit several relevant languages, including WF. Adapter
services that bridge the incompatibilites between existing
orchestrations have been proposed for some time [11], [12],
[13], [14], [15], [16]. In [11], oWFNs are used as basis for
adapter synthesis. We extend the application of Petri net–
based analysis methods and synthesis to WF by defining
a transformation from WF to equivalent Petri net patterns,
thereby integrating WF into the existing approaches. We
have implemented this transformation in a compiler that
is publicly available1. Moreover, we verify the practical
applicability of our approach with an integration between
BPEL and WF by means of oWFNs.

In Sec. II, we introduce underlying formalisms, including
oWFNs and an algorithm for adapter synthesis. Moreover,
we give an overview of Windows Workflow and associated
concepts. Sec. III presents a subset of the derived Petri net
patterns of our WF mapping. In Sec. IV, we describe a
use case that integrates BPEL and WF processes based on
existing tools and our WF compiler implementation. Finally,
in Sec. V, we draw conclusions and discuss future work.

II. BASICS AND RELATED WORK

A. Adapter Synthesis and oWFNs

Typical sources of incompatibilities that can occur when
integrating existing orchestrations are [17]:

• names of the message types
• encoding of similar message types
• semantics of similar message types
• order in which messages are expected or transmitted

In such a scenario it is possible to solve incompatibilities
by exchanging incompatible services with compatible ones,
changing the implementation of services or introducing
adapter services that solve the problems. In most of the
situations only the latter can be applied because existing

1The project homepage is https://github.com/uniba-dsg/wf2owfn



implementations should not be changed. [18], [11] propose
an approach for the synthesis of appropriate adapter services.
The specification of an adapter includes the models of
the services, and as behavioral property deadlock–freedom
of the resulting composition. To be sure that the adapter
only uses adequate message transformations and does not
randomly delete or create messages, those can be specified
through the Specification of Elementary Adapter Activities
(SEA). Fig. 1 shows the proposed synthesis concept.
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Figure 1. Conceptual adapter structure from [11]: The Services N1 and
N2 denote two services that are integrated by an adapter that consists of
an engine E and a controller C.

To model services, we use oWFNs [19], [20] that gener-
alize classical workflow nets [5]. Services are represented as
distinct nets with an internal part and explicitly declared in-
terface places to allow for asynchronous interaction between
different nets.

Definition 2.1: oWFN [11]: An oWFN N consists of
• two finite and disjoint sets P (of places) and T (of

transitions),
• two disjoint subsets Pi (of input places) and Po (of

output places) of P ,
• a flow relation F such that F ⊆ ((P \Po)×T )∪ (T ×

(P \ Pi)),
• an initial marking m0 such that m0.p = 0 for all p ∈

Pi ∪ Po, and
• a set Ω of final markings such that no final marking

enables any transition in T , and such that m.p = 0 for
all m ∈ Ω and for all p ∈ Pi ∪ Po.

Several oWFN services can be composed by merging their
equally named, interface–compatible places. The composi-
tion is called controllable if the resulting net is deadlock–
free. The adapter between the services consists of a compo-
sition of the engine and a suitable controller. The engine
in particular encodes the elementary activities, being the
permissable message transformations. The controller deter-
mines the order in which the transformations can be applied.
A controller can be synthesized as an arbitrary service
that results in a controllable composition between itself,
the services, and the engine. If the entire composition of
the services and the adapter is deadlock–free, the adapter
is correct by design. For details regarding the synthesis
algorithm, we refer to [18], [11]. The tool MARLENE2

implements this algorithm.
To apply the algorithm to orchestration languages, it is

necessary to map their, mostly XML–based, representation

2Available at http://download.gna.org/service-tech/marlene/

to equivalent oWFNs. In case of BPEL there exists a feature–
complete semantics [8] as well as corresponding tools for
transforming BPEL to and from oWFNs3. We integrate WF
into the toolchain by supplying a transformation to oWFNs.
This transformation extends that of BPEL by a support for
cyclic graph structures and state machines.

B. Windows Workflow

WF is a technology that allows to implement long running
processes as workflows within the .NET framework. It sup-
ports Web Services–based communication which makes it a
natural candidate for building orchestrations. WF was first
introduced with .NET Framework 3. Our research covers
the latest available version 4.03. WF is tightly integrated
into the .NET framework and the Visual Studio development
environment featuring a workflow designer and a workflow
engine. WF contains numerous built–in standard activities
and the possiblity to create user–defined custom activi-
ties through code classes or the orchestration of existing
activities. In contrast to most other workflow languages
[21], WF provides several different modeling techniques to
describe the control– and data–flow. Besides the commonly
used block–structured style, termed sequential in WF, the
language also supports a graph–based style (Flowchart)
and finite state machines (StateMachine). Its control–
flow expressiveness has been thoroughly examined [22],
[23] and its applicability has been demonstrated in several
settings, such as dynamic workflow adaption [24]. WF is
mapped to the Extensible Application Markup Language4

(XAML) and leverages a derivation of the vocabulary of the
XAML language to describe control– and data–flow. Unlike
in the case of BPEL, no semi–formal specification of WF’s
vocabulary is publicly available yet. Microsoft recently pub-
lished the general specification of the XAML language and
released several concrete vocabularies5, which indicates that
WF may also be disclosed later on. No public specification
being available, we determined a semi–formal specification
of the activities through unit tests and WF’s API reference6.
Based on this, we develop a mapping of the WF activities to
equivalent oWFN patterns. Combined with the existing work
for BPEL, this enables us to extend the approach for adapter
synthesis to scenarios that involve the implementations of
orchestrations in heterogeneous language settings.

III. NET PATTERN AND TRANSFORMATION

The start of an integration of WF into current approaches
for adapter synthesis is a translation of orchestration models
in that language to an oWFN representation. Here, we adapt
the hierarchical approach from [8] and use the same serial-
ization formats which enables to rely on existing toolchains.

3The tools are available at http://www.service-technology.org
4See http://www.microsoft.com/en-us/download/details.aspx?id=19600
5Examples are Windows Presentation Foundation (WPF) and Silverlight.
6Available at https://github.com/uniba-dsg/wf2owfn/downloads/



A WF process is built by orchestrating several WF ac-
tivities. Similar to [8], we provide a pattern, an equivalent
oWFN representation, for each WF activity. All patterns
share a uniform interface (see Fig. 2). The translation process
first compiles each activity into its oWFN representation and
then joins all nets with the help of their interfaces.

initialized

closed

Activity

cancel

canceled

faulted

Figure 2. The interface places derived from the activity states [4, p.572]:
initialized, closed, cancel, canceled, and faulted. The initialized place starts
an activity and upon faultless completion of the activity, the closed place
is marked. Both of these places are bold as they mark the successful
completion of an activity. The places cancel and canceled model the
premature termination of an activity. Faults are signaled by marking the
faulted place.

Since our transformation approach is based on [8], it also
shares the same constraints. Being low–level nets, oWFNs
and our derived patterns abstract from data and time–related
aspects. Data–dependent decisions, as used in looping activ-
ities, are therefore modeled nondeterministically, due to the
indistinguishability of the tokens. This behavior only weakly
preserves controllability of the initial process. If an oWFN
is controllable then the original process is also controllable.
The opposite does not hold in general. A process may
be controllable because of the data aspects involved in
the decisions, the transformed oWFN may be not, because
aspects relevant to the control–flow were abstracted in the
low–level representation. Moreover, currently only faultless
behavior is modeled.

Our transformation focuses on WF’s control–flow activ-
ities, except ForEach<T> and ParallelForEach<T>.
These looping activities depend on a collection data struc-
ture. Their patterns are undecidable because of the possibly
infinite data domain that determines the loop count [8].
All other activities can be covered with existing patterns
or are out of the current scope (fault, compensation, and
termination handling). We cannot present all derived patterns
here due to space restrictions. Therefore, we limit the
coverage to those activities that are relevant for the use case
in Sec. IV and the modeling styles that are special for WF,
Flowchart and StateMachine.

A. Primitive Activities

Primitive activities perform atomic tasks such as sending
or receiving a message. Focusing on normal control–flow,
the primitive activities (WriteLine, Delay, Assign)
can be reduced to the pattern given in Fig. 3(a). The
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Figure 3. Primitives and Messaging Patterns

Receive activity models the reception of a single message
and the Send activity the transmission, as demonstrated in
Figs. 3(b) and 3(c). Moreover, there exist two activities that
provide a combination of both – ReceiveAndSendReply
and SendAndReceiveReply. These activities model a
request–response pattern between two services. The patterns
of both can be decomposed into a sequential combination
of the single message patterns shown in Fig. 3.

B. Sequential Style

Structured activities describe the control–flow of a process
in a block–structured way. The simplest activity is the
Sequence (see Fig. 4). Its purpose is to execute the
contained activities one after another. In this pattern, the final
place of an activity is also the initial place of the subsequent
activity.
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Figure 4. Sequence Pattern

The If activity is used to implement conditional branch-
ing in a process, based on a boolean condition. In the pattern
(see Fig. 5) the decision of which path to take is modeled
nondeterministically due to the indistinguishability of the
tokens.
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Figure 5. If Pattern

The Pick activity is designed to react to external events,
such as incoming messages. It can include alternative
branches (PickBranches) that include a trigger and an
action activity. Upon completion of this trigger, all other
branches are disabled and the corresponding action activity
is executed. In contrast to BPEL, where only incoming
messages or timing events are allowed as a trigger [3,
pp.100-102], any activity can be used in WF. All triggers are
scheduled for parallel execution. The trigger that completes
its execution first determines the branch that is activated.
This can be problematic if a trigger activity has side–effects.
For this reason, Microsoft advises to only use a single atomic
task as a trigger activity7. In order to avoid such problems
due to partial execution of trigger activities, we reflect this
situation in the pattern by modeling the pick activity as if
only one trigger can actually fire. As a consequence, the
Pick activity behaves in the same fashion as the pick
in BPEL. Fig. 6 shows the Petri net pattern for the Pick
activity. Both initial trigger places are merged with the initial
place of the activity to only allow one trigger to fire.

C. Flowchart Style

Using the Flowchart modeling style, WF supports
graph–based control–flow definition. Here, control–flow is
specified by directly linking activities. Since a Flowchart
is a normal activity in WF, this enables the combina-
tion of the several modeling styles in a single orchestra-
tion. On the conceptual level, a Flowchart consists of
several different FlowNodes connected with each other.
A FlowNode is an abstract super class for the con-
crete manifestations FlowStep, FlowDecision, and
FlowSwitch<T>. FlowStep acts as a container for
any WF activity. It can be directly linked to another

7See http://msdn.microsoft.com/en-us/library/ee358746.aspx
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Figure 6. Pick Pattern with Two PickBranches

node in the graph. FlowDecision and FlowSwitch<T>
model conditional branching in the context of Flowchart
workflows. Fig. 7 shows an exemplary pattern containing
these constructs. FlowDecision implements branching
in a fashion that is equivalent to an If activity, whereas
FlowSwitch<T> introduces several possible cases includ-
ing an optional default case.
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Figure 7. Exemplary Flowchart Pattern

D. State Machine Style

Third comes WF’s representation for state machines. In
this style, states and event–based transitions among them are
defined. Fig. 8 shows an exemplary pattern for a specific
state machine. It consists of four states that are linked with
each other. Links represent transitions among the states. The



state machine can be refined to patterns for a particular state
and for included transitions.

initialized

p1

p1

p2

p5

closed

State

p2

p4

State

p3

p4

State

p3

p4

p5

State

Figure 8. Exemplary Pattern of a StateMachine

Fig. 9 depicts the pattern of a state including two transi-
tions. At first an entry activity is executed. After that, the
state machine waits for an event to fire one of the transi-
tions8. After a transition has completed, the state machine
waits for the execution of an exit activity and traverses to
the next state.
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Figure 9. State Pattern with Two Transitions

A transition is by default assembled of a trigger activity,
an expression that is evaluated before the transition fires, and
an action activity which will be executed in case of success.

8Here, the same constraints regarding the trigger activities apply as stated
for the Pick activity in Sec. III-B.
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Figure 10. Transition Patterns

There do exist three variations of this default case: uncon-
ditional trigger, shared trigger, and null trigger. Fig. 10(a)
shows the default behavior. Similar to the Pick activity
a transition is fired by a trigger activity. Additionally, an
expression is evaluated before the action is executed. If the
expression does not evaluate to true, the flow of control is
returned to its initial place. Several transitions may also
share the same trigger activity, forming a shared trigger.
Here, each transition is associated with an expression. These
expressions are evaluated in order of their definition. Every
transition has an action which is executed for the first
transition for which the expression evaluates to true. If none
of the expressions evaluate to true, the trigger behaves as
in the default case. It is possible to omit the expression.
This is an unconditional trigger (see Fig. 10(b)). After the
completion of the trigger activity, the action is executed
immediately. As a last variation, it is allowed to have at most
one transition in a state that has no trigger and no expression.
This null trigger immediately transfers the state to the next
one after the entry activity of the state has completed.

E. Prototype

We have implemented the patterns of the activities9 above
and several more in the compiler WF2OWFN10. This com-
piler demonstrates the feasibility of the patterns and can be
integrated with other toolchains11 to synthesize adapters for

9The implemented patterns already include further net optimizations.
Moreover, for enhanced readability, the use case’s nets were manually
abbreviated in this paper.

10Available at https://github.com/uniba-dsg/wf2owfn
11See http://www.service-technology.org for an overview



composite services built in different languages. It is licensed
under LGPL and is modularly structured in order to allow
a simple extensibility with custom activities or the addition
of further standard activities. A large set of test cases for all
activities supported by the compiler is also provided and it
has been tested with two process libraries12.

IV. USE CASE

To evaluate the toolchain with a realistic scenario, we
have implemented the complete adapter synthesis using a
process from the Universal Business Language Specification
2.1 (UBL) [26] draft. In particular, we used the ordering
process which models order processing between two parties
(see Fig. 11). UBL is an open specification of business doc-
uments developed by OASIS. To overcome interoperability
issues, UBL defines a generic extendable XML–format for
business documents, and also defines processes in which
these documents can be used. We use a slightly modified
version of the ordering process depicted in Fig. 11.
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update order?
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cancel
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Receive Response

Receive Response

Receive Response

Change Order

Cancel Order

Accept Order

process order

Change Order

Add Detail

Reject Order

Receive Order

Accept Order

Cancel Order

Figure 11. UBL Ordering Process [26].

In this process, two parties, a buyer and a seller, interact
with each other to place an order. They do this by using
several UBL–defined documents (in rectangulars). An order
by the buyer may be accepted or rejected by the seller.
Moreover, both parties may modify the order and add details
to it, and the buyer may also cancel it. UBL provides
normative semantics for the documents exchanged, but does
not extend this requirement to the control–flow of the
exemplary processes. We have implemented two concrete
process definitions for the partners, one in BPEL and one in
WF that are a priori incompatible and solve this issue later
on with an adapter.

12Tested with Microsoft’s WF 4 samples from http://www.microsoft.com/
en-us/download/details.aspx?id=21459 and WF pattern implementations
from [25].

To introduce incompatibility between the services, we
removed the support for a buyer–initiated order modification
in the seller process and implemented it in WF. Moreover,
we added a confirmation message for a modified order from
the seller in the buyer process. Otherwise, the buyer process
was implemented in BPEL as defined. With the help of the
tool BPEL2OWFN13 we translated the BPEL process into
an oWFN (see Fig. 12). Fig. 13 shows the corresponding
oWFN of the seller, translated using our compiler and the
patterns described in Sec. III.

PlaceOrder

OrderResponse

OrderResponseSimple

AcceptOrder

CancelOrder

ChangeOrder

accepted canceled

repeat

cancel acceptchange

Figure 12. Buyer oWFN

As expected, the nets are not yet compatible. The buyer
supports the possibility to modify an order of the seller,
whereas the seller does not, resulting in a deadlock on
the buyer side. All other operations are supported by both
partners. To generate an adapter, the definition of all le-
gitimate message transformations, the SEA, by the adapter
is still required. These rules currently need to be specified
manually [11]. To enable adapters to intercept all messages,
the interfaces of the given services have to be disjoint [11].
Therefore, all input and output places are prefixed by their
services (i.e. b for buyer and s for seller). As a consequence,
even when using the same message types we need to supply
virtual transformation rules. Rules one to five in Table I
define the correct transfer of the messages from partner
to partner. The lack of support for a modification of the
seller’s offer by the buyer must be solved with the adapter.
One way is to allow the adapter to automatically cancel
the buyer’s request. As the seller on his part requires an

13Available at http://download.gna.org/service-tech/bpel2owfn/
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Figure 13. Seller oWFN

answer for his modified order, the adapter also needs to
generate a cancelation for this request. This resolves the
incompatibility, leading to a termination of both partners
with an order cancelation. Rule six implements this by
splitting an OrderChange into a cancelation message for both
the buyer and the seller.

Table I
SEA ORDERING ADAPTER

1 s.OrderResponseSimple 7→ b.OrderResponseSimple
2 s.OrderResponse 7→ b.OrderResponse
3 b.PlaceOrder 7→ s.PlaceOrder
4 b.AcceptOrder 7→ s.AcceptOrder
5 b.CancelOrder 7→ s.CancelOrder
6 b.ChangeOrder 7→ s.CancelOrder,

b.OrderResponseSimple

Using these rules, it is possible to create a correct adapter
with the help of the tool MARLENE (see Sec. II). Fig. 14
shows the generated adapter net.

In order to get the composition running, we manually
transformed the generated Petri net adapter into an ex-
ecutable WF process and tested the correctness of the
interaction during operation. Moreover, we used the tool
OWFN2BPEL14 to automatically transform the net into an
abstract BPEL process and implemented it.

14Available at http://download.gna.org/service-tech/owfn2bpel/
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Figure 14. Adapter net that solves the issues between the buyer and seller
nets.

Apart from several technical flaws in the compiler
OWFN2BPEL, this integration proved to be feasible under
the present restrictions. However, as the general approach
does abstract from data and time, this can actually lead to
false negative results as it only weakly preserves controlla-
bility of the initial process (see Sec. III). This particularly
concerns data–dependent constructs like looping activities
which may lead to uncontrollable nets due to the loss of
potentially control–flow relevant data decisions. Therefore,
we state that for true practical applicability the concept has
to be broadened to include data and time.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an automated Petri net–based
integration between two process–based systems running
BPEL and WF. We provided Petri net patterns for a large
set of WF’s standard activities, enabling it to work with
current toolchains for adapter synthesis and implemented
the translation of WF to oWFN patterns with the compiler
WF2OWFN. As an evaluation of the applicability of the
toolchain, we used a realistic ordering process from the UBL
[26]. In the future we intend to add missing activities to



provide a feature–complete semantics for WF. Moreover, we
want to extend all activities with fault and cancelation logic
to depict the complete control–flow. Finally, the semantics
should be extended to capture data and time aspects to
fully preserve controllability between the executable and the
analyzable representations.
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