
Measuring the Portability of Executable Service-Oriented Processes

Jörg Lenhard and Guido Wirtz
Distributed Systems Group

University of Bamberg
Bamberg, Germany

{joerg.lenhard,guido.wirtz}@uni-bamberg.de

Abstract—A key promise of process languages based on open
standards, such as the Web Services Business Process Execution
Language, is the avoidance of vendor lock-in through the
portability of process definitions among runtime environments.
Despite the fact that today, various runtimes claim to support
this language, every runtime implements a different subset,
thus hampering portability and locking in their users. In this
paper, we intend to improve this situation by enabling the
measurement of the degree of portability of process definitions.
This helps developers to assess their process definitions and to
decide if it is feasible to invest in the effort of porting a process
definition to another runtime. We define several software
quality metrics that quantify the degree of portability a process
definition provides from different viewpoints. We validate
these metrics theoretically with two validation frameworks and
empirically with a large set of process definitions coming from
several process libraries.

Keywords-SOA, BPEL, portability, metrics

I. INTRODUCTION

Software portability is a central characteristic of software
quality [1] and is part of various software quality models
[2], [3], [4]. Portability is the ability to move software
among different runtime platforms without having to rewrite
it partly or fully. Service-oriented systems address the com-
munication and interoperation of heterogeneous runtimes
[5]. Because of this diversity in runtime platforms, porta-
bility is of major importance and is the prerequisite for
building truly agile and flexible systems that do not lock
in their users. Especially since the arrival of cloud-based
services, work on services portability is gaining momentum,
as demonstrated by standardization initiatives for portability,
such as the Topology and Orchestration Specification for
Cloud Applications1 [6] by OASIS.

Portable services can be built by implementing them in
a platform-independent language. Process languages address
the aspect of portability and recent languages [7], [8], [9]
make heavy use of services technology. The Web Services
Business Process Execution Language (BPEL) [7], which
can be used to build stateful services by orchestrating other
services using a control- and data-flow definition between
the different invocations, provides a platform-independent

1See http://www.tosca-open.org/ for more information. Revision 1.0 [6]
suggests to use BPEL as one alternative language for defining plans.

format and has attracted a huge amount of interest in service-
oriented computing. In previous work [10], we presented
a tool for benchmarking BPEL engines and could show
that current engines are limited in terms of their support
for the language specification and the portability of process
definitions among them cannot be taken for granted. As a
consequence, even services that are designed to be portable
by being implemented in BPEL, tend not to be so. In this
paper, we mitigate this problem by making the degree of
portability provided by a process definition quantifiable.
Thus, we support the development of portable process def-
initions. We define, formalize and validate a set of metrics
for assessing process definitions, in contrast to engines as in
[10]. Benchmarking results from the tool are one of several
factors fed into the metrics computation (cf. section III).
Finally, the data set used in this paper is a considerable
extension of the data underlying [10], by roughly 30%.
Although we build on BPEL, the approach we take for
measurement and the metrics we propose are independent
of it and applicable to service-oriented processes in general.
Specifically, we are trying to answer the question:

How to measure the degree of portability of an executable
service-oriented process?

Even though portability is recognized as a quality property
of software for a long time [3], [4], it is hard to quantify
with justifiable effort [11]. In general, it is measured by
contrasting the effort required for porting a piece of software
to the effort of rewriting it from scratch. Determining this
effort empirically is difficult and an automated calculation is
desirable. For this reason, existing and universally applicable
metrics use a lines of code-based calculation. However, they
are rather coarse and their meaningfulness is limited. Here,
we take into account domain knowledge of the languages
and environments the programs are written in and run on
to provide a more accurate measurement of portability. We
map existing metrics for program portability to service-
and process-oriented programs, in particular BPEL process
definitions, and define metrics that consider the typical
characteristics of these programs. We combine the metrics
with empirical data on language support in current runtimes
as a crucial ingredient of the metrics calculation. The
feasibility of their computation is demonstrated in a proof-
of-concept prototype that calculates the metrics for existing



programs. Finally, we assess the validity of the metrics from
a theoretical point of view using two validation frameworks
[12], [13] and complement the validation with an evaluation
of four process libraries.

In the next section, we outline related work. Thereafter,
we present our methodology and formal definitions of the
metrics. Next, they are validated theoretically and empiri-
cally. Finally, we present areas of future work.

II. RELATED WORK

Process definition languages and BPEL [7] have attracted
a lot of interest in service-oriented systems during the last
decade. Related work separates in three areas: i) work
on process languages, executable or not, for building and
porting process-oriented programs, ii) approaches that ad-
dress portability issues of BPEL programs specifically, and
iii) metrics for measuring properties of service-oriented
systems and portability of software in general.

A. Related Process Languages

Considerable effort has been put into XML-based process
languages like BPEL. Notable competitors are the XML
Process Definition Language 2.2 (XPDL) [9] and the Busi-
ness Process Model and Notation 2.0 (BPMN) [8]. Enabling
the portability of processes among editors and runtimes is
the very reason for these languages to provide an XML
serialization format. Each of them has specific areas of
focus. We must emphasize that our focus here is executable
process definitions; that is actually executable programs.

The focus of XPDL is the storage and interchange of
process models. This means, it is specifically tailored to
porting process models between tools of different vendors.
However, its main purposes are documentation, monitoring,
and simulation [9, p. 10] and not primarily execution. For
that reason, and a lack of runtimes that use XPDL as
execution language, we address BPEL instead of XPDL.
Basically, the same applies to BPMN, as its main focus is
visualization and communication. BPMN does provide an
XML serialization format and addresses execution semantics
of process definitions in its current revision 2.0, but actual
BPMN runtimes are not yet widely available2. BPEL has
been in place for several years longer which means that
a larger set of runtimes is available and, as indicated by
interoperability issues in recent BPMN runtimes [14], these
have reached a higher state of maturity. This maturity makes
the observation of portability problems, which despite the
time still exist, more valuable.

Although we operationalize the approach for measur-
ing portability in this paper with BPEL, it is language-
independent. So, it can be tailored to BPMN or XPDL,

2An example of a BPMN runtime is Activiti. Most vendors, however, do
not use BPMN as an execution language. Instead, they use it to visualize a
process and map the visualization to another language for execution. Often,
BPEL or a proprietary dialect of it are used as the execution platform. This
approach is for example applied in ActiveVOS or Oracle SOA Suite.

given that these languages become of major importance for
building directly executable service-oriented processes.

B. Approaches Addressing Portability Issues in BPEL

The BPEL specification is an informal standard speci-
fication and as a consequence, it is not completely free
of ambiguities. According to [15], this is a major reason
for why portability issues do exist. [15] try to tackle this
problem by providing a formal definition for BPEL that re-
fines ambiguous aspects. The formalization is accomplished
by a formal language called Blite. This language can be
compiled to executable BPEL for a specific engine [15].
This approach of pre-compilation can preempt portability
problems. However, the user of such an approach needs to
learn another language besides BPEL. Here, we do not try
to preempt portability issues, but instead to quantify them.
We do not define a new language, but propose metrics for
calculating the effort required to port code.

An alternative approach, taken by [16], is to consider the
implementation of the standard in practice for improving the
standard specification itself. Problems of ambiguity in the
specification can be resolved by adopting the interpretation
a majority of runtimes use in practice. Although we consider
the way runtimes implement the standard in practice here
as well, it is not our intent to refine and change the
specification, as in [16]. Instead, we determine which aspects
of a process definition, although being standard-conformant,
cause portability issues and quantify these issues.

C. Services and Processes Metrics

Service-oriented systems have been addressed by classical
object-oriented metrics and evaluations. Examples are cohe-
sion and coupling metrics coming from object-oriented de-
sign [17], [18]. Also performance metrics, such as through-
put and response times [19], [20], have attracted a lot of
interest. To the best of our knowledge, portability has not
yet been measured for service-oriented systems.

An overview of the usage of metrics in business process
modeling and execution can be found in [21]. Quality
metrics for process models also build upon classical object-
oriented metrics [22], relate to the static complexity of
the model during build-time, or the dynamic complexity
of the program during run-time [23]. Complexity metrics
specifically tailored to BPEL also exist [24]. Measuring
portability, however, has been neglected so far.

Portability is notoriously hard to measure in a quantita-
tive fashion [11]. Original definitions of portability metrics
[3], [4] are still valid today and indicated in international
quality standards of the ISO/IEC series [25]3. This series
also defines several subcharacteristics of portability, being
installability, replaceability, and adaptability. Here, we limit

3ISO/IEC CD 25023 is intended to revise the preceding ISO/IEC stan-
dards that define quality metrics, ISO/IEC TR 9126-2:2003 and ISO/IEC
TR 9126-3:2003, and at the time of writing is still under development.



the scope to the direct portability of program code among
runtime environments, but the consideration of replaceability
or adaptability of nondirectly portable code is complemen-
tary to our approach. Direct portability can be measured
as the relation between the effort to port the software to
a new platform and the effort to rewrite it newly from
scratch. Although this approach of quantifying portability
is not difficult to understand, the computation of the effort
values is. Moreover, the quantification is language- and
system-dependent, and requires a high degree of in-depth
knowledge. For these reasons, the computation of existing
portability metrics is often not feasible or, if performed in a
high-level language-independent fashion, not very meaning-
ful. Our contribution here is to provide several metrics that
are specifically tailored to BPEL process definitions. The
metrics are constructed based on language runtime bench-
marks which increases their meaningfulness and relevance
to practice.

III. MEASURING PORTABILITY

The portability of a program is strongly tailored to the
runtimes of that program. Only program elements that are
supported by a majority, or all, runtimes can be considered
to be portable. As a consequence, the measurement of the
portability of executable process definitions should take the
runtimes for said process definitions into account, and not
base on a theoretical consideration of the problem only. If

Figure 1. Schema of Language Support

all runtimes available support all of the language elements
available in the same manner with respect to semantics, then
any compilable program will be portable to any runtime
and there are no portability issues. Language runtimes for
Java come close to this property, but for BPEL and service-
oriented process languages in general, the situation is rather
different, as demonstrated in recent benchmarks [10]. There,
each runtime typically supports a specific language subset,
as outlined in Fig. 1, causing portability issues. On the one
hand, there is a basic subset of the total language that is
fully portable. On the other hand, several language elements
are only portable in certain configurations or are limited to
a subset of runtimes. The more runtimes support a language
element, the more portable it can be considered.

The first step towards measuring the portability of a
process is to calculate the degree of portability for each

language element and its configuration. This degree can
be identified by the number of runtimes that support an
element (i.e., to determine the subset the element occupies
in Fig. 1). The smaller the amount of runtimes supporting
a language element, the harder it will be to port code
that uses this element. To calculate this number for all
language elements of BPEL, we performed a benchmark
of the BPEL support of seven BPEL engines using the
tool betsy4 [26]. The benchmark comprises the engines
ActiveBPEL, bpel-g, Apache ODE, OpenESB Sun BPEL
Service Engine, Orchestra, EasyBPEL, and a proprietary
engine from a major middleware vendor, whose identity we
cannot disclose for licensing reasons. It produces a data set
which lists for every language element of BPEL, whether it
is supported by a given engine. It could also be beneficial to
consider combinations of language elements, because certain
combinations might result in added portability issues. So
far however, we could not find such combinations and,
therefore, consider only elements in isolation here. The
benchmark is fully automated and reproducible, so this data
can be replicated. This enables us to statically check BPEL
process definitions for elements that are not supported by
all engines, as discovered by the benchmark. The portability
metrics we propose in the following section describe differ-
ent aggregations of the support for every language element
used in a process definition to a portability value for the
overall process definition.

We have implemented a static checker, the bpp tool,
that uses the results from the benchmark to automatically
check BPEL code and calculate portability metrics5. The
tool works similar to the testing tools of the Web Services
Interoperability Organization. It uses a scheme of test asser-
tions to statically check process definitions for problematic
elements. Each test assertion defines a normative require-
ment that should be respected to achieve portability. There
is one test assertion for every problematic language ele-
ment or configuration thereof. Additionally, each assertion
is associated with a degree (Dta), which is a quantitative
representation of its severity in terms of portability. The
degree represents the number of engines that do not support
the feature (i.e., language element or specific configuration
thereof) an assertion is checking. That means, the degree
identifies the position of the language element in Fig. 1.
A high degree value means that the usage of the language
element is an obstacle to portability. With this calculation,
all engines are considered of equal practical importance,
which is a questionable assumption. That way, the impact
of experimental engines is larger than justified from their
practical usage. As we lack independent data on engine

4Betsy is a conformance testing tool for BPEL. For more information,
see https://github.com/uniba-dsg/betsy. The tool has also been used in [10].
The data underlying this paper is an extension of [10] by two engines.

5See the project page https://github.com/uniba-dsg/bpp for more infor-
mation and a description on how to use the tool.



usage, however, we cannot construct an objective weighting
here. Therefore, we consider the equal weighting of all
engines a reasonable compromise.

IV. PORTABILITY METRICS

In the following sections, we present several metrics that
measure the portability of BPEL process definitions from
different viewpoints. These are a high-level view, typical
for classical portability metrics, a process-oriented view and
a service-oriented view. In combination, these metrics form
a comprehensive framework for quantifying portability.

The scheme of calculating metrics explained in the previ-
ous section uses empirical data as a crucial ingredient for the
weighting of the metrics. If this data, describing the language
support in engines, changes, also the metrics values change.
We claim that this is valuable, because it takes into account
the evolution of runtimes which are the decisive factor for
program portability, and produces more meaningful results
than purely theoretically founded metrics.

A. Basic Portability Metric

As discussed in related work (cf. section II-C), portability
metrics quantify the relation between the cost or effort of
porting software and rewriting it from scratch [11]. As such,
a portability metric for service-oriented processes can be
based on the following equation:

Mport(p) = 1− Cport(p)

Cnew(p)
(1)

Mport(p) is a metric that quantifies the degree of porta-
bility for a process definition p. A process definition can
be characterized as a tuple of three sets, < E,A, S >,
where E is the set of elements of the process definition,
A the set of activities, and S the set of communication
activities. Activities are also elements, so A ⊂ E and
also S ⊂ A applies. This distinction is necessary for the
following metrics. Cport(p) is the cost of modifying the
process definition so that it can run on another platform.
Cnew(p) is the cost of rewriting it completely for a new
platform. Equation (1) is based on the assumption that the
cost of a rewrite is always at least as high as the cost of
modification. This implies that the metric value ranges in the
interval of zero and one, where zero indicates no portability
and one full portability. The difficulty in this equation is
how to actually determine the cost. The different metrics
presented here propose different ways of calculating these
values. Realistically, the cost of porting or rewriting software
is also dependent on the skill of the people carrying out this
task. A precise effort prediction for a certain team, would
require the extension of the metric with a multiplying factor
that characterizes the skill of the team. Here, we abstract
from this human aspect and omit such a multiplier.

A universally applicable way of calculating Cport(p) and
Cnew(p), which we denote as the basic portability metric

Mb, is to take into account the lines of code that have to be
rewritten for porting the software (as indicated in [3], [4]). If
it is to be redeveloped from scratch, all lines will have to be
rewritten, so Cnew(p) amounts to the total lines of code of
the program. Cport(p) in turn amounts to the lines of code
that have to be rewritten when porting it. As the number of
lines that have to be rewritten for porting cannot be larger
than the number of lines that do actually exist, Cport(p) ≤
Cnew(p) always applies. In the most extreme case, where
all lines are nonportable, Cport(p) will be equal to Cnew(p)
and consequently Mb(p) = 0, indicating no portability at all.
In the other extreme, no line will have to be rewritten and
Mb(p) = 1. The metric is undefined for an empty program,
where Cnew(p) = 0.

To automatically calculate Cport(p) and Cnew(p) in this
setting, one more assumption has to be made. The language
under consideration is an XML dialect and as such abstracts
from the notion of lines of code. Instead, XML elements are
the crucial unit, identifying a single statement or instruction.
For that reason, we base the calculations on XML elements
instead of lines of code. For Mb, Cnew(p) refers to the total
amount of elements in a process definition, denoted as Nel

being the cardinality of set E, and Cport(p) to the number
of elements from E for which problems could be detected.

B. Weighted Elements Portability Metric

Mb transfers the classical abstract portability metric [11]
to the area of XML-languages. However, it is not tailored
to service-oriented or process-oriented programs and does
not make full use of the empirical data at hand. To be
precise, it only confronts the amount of fully portable
elements of a process definition to all of them. Using the
degree Dta (cf. section III), it is possible to relativize this
observation, resulting in a more accurate metric value. This
is the principle underlying this and the following metrics.

The weighted elements portability metric Me takes the
degree Dta of elements into account. Here, the cost of
rewriting a process definition Cnew is defined as follows:

Cnew(p) = Nel ∗Nengines (2)

This cost is identical to the amount of elements Nel (as
in the basic portability metric) multiplied with the number
of engines under consideration Nengines. Effectively, every
element is treated as if it is unsupported by any engine and
has to be rewritten when being ported, resembling the worst
case. The cost of porting Cport is defined as follows:

Cport(p) =

Nel∑
i=1

Cel(eli) (3)

The cost of porting Cport of a process definition p is
the sum of the element cost Cel for each element eli from
E. The element cost Cel for an element eli of process
definition p is defined as follows:



Cel(eli) = max
j=1...Nta

(V (taj , eli) ∗Dta(taj)) (4)

V (taj , eli) denotes the testing function that returns 1 if
eli violates a test assertion taj and 0 otherwise. Dta(taj)
denotes the degree of the test assertion taj (i.e., the number
of engines that do not support the feature tested by a test
assertion taj). This means if an element eli does not violate
taj (i.e., V (taj , eli) = 0), the element cost for the combina-
tion of the two amounts to zero. If eli violates the assertion,
the element cost depends on the amount of engines that do
not support the feature tested by the assertion. The more
engines that support the feature, the less the cost of porting it
will be. The lower the amount of engines, the higher the cost.
The max function takes into account that a single element
can violate multiple assertions. This can happen if there are
multiple different problematic configurations of the element.
An example of such an element in BPEL is the reply
activity. The activity may be used to report a fault to a
client of the process, by setting its faultName attribute
and it may be linked to a receive activity by setting its
messageExchange attribute. Both of these attributes are
independent of each other, but not fully portable. We select
the maximum of the degrees based on the assumption that
the least portable part of the element will have the highest
impact. This is a design decision and alternative schemes
are possible. For instance, the degrees of all violations could
be summed up and normalized. We tested several schemes
for aggregating degrees when evaluating the metrics (cf.
section V-C), but could not find significant differences in the
metric values and therefore selected the simplest approach
(i.e., the max function) here.

Summarizing the above discussion, the weighted elements
metric Me is calculated as follows:

Me(p) = 1−

∑Nel

i=1 max
j=1...Nta

(V (taj , eli) ∗Dta(taj))

Nel ∗Nengines
(5)

C. Activity Portability Metric

The most central building block of process or workflow
languages in general, and BPEL in particular, are activities.
Activities are typically basic atomic steps of computation.
In graph-based languages, they are connected in a process
graph by defining control dependencies between them. In
block-structured languages, composite activities group other
activities and thereby define the control-flow [27]. BPEL
provides both types of control-flow definition, either through
direct control links or structured activities. In process com-
plexity measures [22], [23], activities and the transitions
among them are the dominant factor.

Apart from activities, process definitions include a variety
of other elements such as variable definitions. Considering
the conceptual importance of activities, it could be expected
that the impact of using problematic activities on portability

is critical. Having to alter the flow of control for porting a
process affects its behaviour which is not desirable.

To provide an activity-oriented view on portability, we
define the activity portability metric Ma as a variation of
the weighted elements metric. Here, instead of elements,
we only consider activities and problematic configurations
thereof (i.e., the elements of set A) when computing the
portability metric. The elements that count as activities are
defined as such in the BPEL specification [7, pp. 84–146].
Portability issues that are detected for subelements directly
belonging to a specific activity, as for example for copy
elements of an assign activity, are counted as issues
for that activity. Issues that cannot be linked to a specific
activity, as for example process-level import statements,
are omitted in the consideration of this metric. For Ma, Cnew

changes to:

Cnew(p) = Na ∗Nengines (6)

where Na denotes the total amount of activities, the cardi-
nality of A, in the process definition. Cport changes to:

Cport(p) =

Na∑
i=1

Cel(ai) (7)

This means that only the element cost Cel of the activities
in p is considered.

D. Service Communication Portability Metric

Communication and composition relations among services
are a decisive factor for service-oriented systems and metrics
for such systems center on these properties [17]. Com-
munication relationships describe the observable behaviour
of services; that is, the messages they send and receive.
The distinction between the description of observable and
internal behaviour is the discriminating factor for different
types of service composition languages [28]. Composing
services through message sending and reception is the main
purpose of service orchestration languages, such as BPEL.
This task is performed using the specific activities for send-
ing, receiving and replying messages. In terms of portability,
these activities are most critical. Single elements and perhaps
even the control-flow structure of a process may be changed
for porting in a way that does not affect the observable
behaviour. However, this is unlikely if the activities that have
to be changed, concern communication. In this case, these
activities directly affect the observable behaviour of a pro-
cess. Changing them (to enable portability) and consequently
changing the observable behaviour influences other systems
that interact with the process, which is generally undesirable.

The service communication portability metric Ms allows
to view the impact of communication related activities on
portability. For this metric, the calculation of Cnew and
Cport is changed to include only the activities relating to



Table I
SUMMARY OF PROPOSED METRICS

Portability Metric Description
Basic, Mb Relates number of problematic elements to

total number of elements
Weighed Elements, Me Extends Mb by considering the degree of an

element
Activity, Ma Similar to Me, but is limited to activities

instead of elements
Service Communica-
tion, Ms

Similar to Me, but is limited to activities for
service communication instead of elements

service interaction (i.e., the elements of set S):

Cnew(p) = Ns ∗Nengines (8)

Cport(p) =

Ns∑
i=1

Cel(si) (9)

Effectively, this is an extension of Ma that focuses solely
on activities for service interaction. Ns refers to the total
amount of activities for service interaction, the cardinality
of S. Cport is limited to only consider the element cost of
these activities.

Table I summarizes the different metrics proposed.

V. EVALUATION AND VALIDATION

Validation of new proposed metrics is crucial [29], both
from the theoretical and from the practical point of view.
A theoretical validation clarifies the properties of metrics
and thus helps to determine when the metrics can be used
in a meaningful way. An empirical validation demonstrates
the applicability of the metrics and exemplifies their in-
terpretation. In the next sections, we validate our metrics
theoretically and empirically using different frameworks,
following the methodology applied in similar studies [30].

A. Validating Construct Validity

We validate the metrics theoretically using two well-
known validation frameworks [12], [13]. The first [13]
focuses on construct validity and is to be used to define
the scope of a metric. It specifies ten aspects that should
be discussed for metrics to clarify their purpose and crucial
characteristics, which we do in the following for all of our
metrics in combination. For each aspect, typically a set of
different properties is available and suggested by [13], one
or more of which can be applicable for a metric. By the term
attribute, [13] refer to the property that is to be measured, in
our case portability. By the term measurement instrument,
they refer to the tool used to compute metric values, in our
case the static checker (cf. section III).

1) Purpose of the metrics: The metrics inform developers
and system administrators about the portability characteris-
tics of their software. When the change of a runtime system
becomes necessary, they help to make a decision on whether
to invest in porting or rewriting software.

2) Scope of the metrics: The metrics are of technical
nature and are applicable during and after development.
Their scope is typically a single (service and process-
oriented) project of one workgroup.

3) Measured attribute: The metrics address a quality
attribute of service- and process-oriented software. Specifi-
cally, they address its portability.

4) Natural scale of the attribute: Portability of software
naturally ranges between two poles, full portability without
a single modification and no portability of any part of the
program. This resembles an interval scale.

5) Natural variability of the attribute: Being a technical
attribute, portability is not subject to variations that are
common for attributes involving human factors, such as the
performance of a person depending on the time of the day.
We can only determine the variability of the attribute by
observing it in practice and considering the ranges in which
in typically varies. Therefore, we defer this discussion to the
empirical evaluation in section V-C.

6) Definition of the metrics: The metrics and the func-
tions for computing them have been formally defined in
sections IV-A to IV-D. The measurement instrument used
is counting (i.e., counting of portability issues in code). The
measurement is automated.

7) Natural scale of the metrics: The metrics have a
rational scale, ranging in the interval between zero and one.

8) Natural variability of the instrument: This aspect
refers to the measurement error of the metrics. Our metrics
rely on empirical data of language support in engines.
As a consequence, the main source of measurement error
in the instrument stems from incomplete or faulty data.
We did not benchmark all engines that exist for BPEL,
which is hardly feasible due to the effort associated with
benchmarking and the licensing cost and strategy of several
engine vendors. Hence, the data is not fully complete and
strongly increasing the number of engines may also lead to
a differing output of the measurement instrument. Another
source of measurement error could come from faults in the
benchmark that indicate portability issues where there are
none (false-positives) or do not discover certain issues (false-
negatives). It is not possible to prove that no such errors
exist. As the benchmark code is available to public scrutiny
and has indeed been corrected by experts from other groups,
we have confidence that this error rate is negligible.

9) Relationship between metrics and attribute: Our met-
rics are directly related to the measured attribute, portability.
If for instance a non-standard extension element is intro-
duced in the code, this will limit the overall portability of
the process definition. The usage of this element will be
detected by our measurement instrument and influence the
metric values accordingly.

10) Natural side effects of using the instrument: As a
general rule, the results of a measurement may change
depending on the effort put into the measurement process



itself. Especially manual measurement is prone to this error,
as for example more time spent in measuring might result
in more desirable metric values without any change in the
underlying attribute. As we have automated the measurement
process fully, there is no room for human bias in the
measurement instrument.

B. Validating Metric Properties

The second theoretical validation framework [12] is
grounded in measurement theory and defines certain types
of metrics as well as the mathematical properties that should
be satisfied by each type of metric. The model underlying
[12] is that of a system which contains elements, relations
between elements, and modules. In our case, elements map
to elements of the process, relations to their ordering in the
process graph and modules to sets of connected elements.
The metric types are size, length, complexity, cohesion, and
coupling metrics. Although there is no direct fit of the
metrics proposed here to this framework, it is beneficial
to discuss what kind of properties our metrics fulfill. The
metrics presented here are formed by the relation of two
metrics Cport and Cnew, with different ways of calculating
them. These metrics are complexity metrics in the sense of
[12]. This means they fulfill the properties of non-negativity,
null value, symmetry, additivity, and monotonicity. The pur-
pose of relating Cport and Cnew is to obtain a normalization
which enables the comparison of programs of different
sizes concerning their portability. Hence, our metrics are
normalized complexity metrics which do no longer fulfill all
properties of classical complexity metrics. In the following,
we discuss each of the different properties.

1) Non-negativity: Both, Cport and Cnew, are obtained
by adding up positive numbers, so they are always positive.
From this follows that the property of non-negativity also
applies to the normalized metrics:

Mport(p) ≥ 0 (10)

2) Null value: The null value property requires that the
complexity of an empty system, or in our case program,
must be null. For an empty program the cost values will be
zero. As a consequence, the normalized metrics result in a
division by zero and are undefined. Therefore, the metrics
do not fulfill the property of null value, precisely because
they are normalized. As a general rule, the application of
the metrics on empty programs is not meaningful.

3) Symmetry: Symmetry for complexity metrics requires
that the complexity value does not depend on the labeling
used for the relationships between elements. In our case, the
relationship between elements translates to their ordering in
the process graph. This means that two process definitions
p and p−1 with an identical set of elements E that have dif-
ferent orders order and order−1 with the same control-flow
semantics, should have the same metric values Mport(p)
and Mport(p

−1). Reordering is possible for a variety of

elements, for example when used for parallel processing or
event handling. The cost metrics calculate the cost on a per-
element basis, so the ordering is irrelevant and the metrics
are symmetrical. As a consequence, also the normalized
metrics are symmetrical. In the notation of [12]:

(p=<E, order> ∧ p−1=<E, order−1>)

⇒Mport(p) = Mport(p
−1) (11)

4) Additivity: Additivity requires that the complexity of a
program that is composed of two disjoint modules is equal to
the sum of their complexity. Although this applies to Cport

and Cnew, summing up the normalized portability metrics
is meaningless, due to normalization.

5) Monotonicity: Monotonicity requires that the com-
plexity of a program is no less than the sum of the com-
plexity of two unrelated parts of it. In our case this can
be illustrated by two parallel branches, p1 and p2 of the
program p. The complexity of the overall program should
be at least as high as the sum of the complexity of the
two branches. For Cport and Cnew, this property clearly
holds. However, this does not apply for the normalized
metrics. Due to the normalization, the metric value Mport(p)
always is in the interval of Mport(p

1) and Mport(p
2) and

not equal or higher than the sum of the two. Nevertheless, it
is still monotonic. For instance, let Cport(p

1) < Cport(p
2),

Cnew(p
1) < Cnew(p

2), and Mport(p
1) < Mport(p

2). From
the additivity of complexity metrics we get:

Mport(p) =
(Cport(p

1) + Cport(p
2))

(Cnew(p1) + Cnew(p2))

>
Cport(p

1)

Cnew(p1)
= Mport(p

1) (12)

From this follows that Mport(p) > Mport(p
1): The porta-

bility of the program will always be larger than the lower
bound of the portability of two disjoint parts of it.

Summarizing the discussion, we can see that the metrics
are normalized complexity metrics which fulfill the prop-
erties of non-negativity, symmetry, and monotonicity. They
fail to satisfy the properties null value and additivity due to
normalization.

C. Empirical Evaluation

For an empirical evaluation, we need data in the form
of concrete process definitions for which the metrics can be
computed. Here, we use four libraries of process definitions,
three of them coming from different BPEL vendors, being
ActiveEndpoints, Apache ODE and Oracle. These libraries
are freely available and serve as documentation and tests
for the respective engines. We obtained the fourth collection
from a set of different and more heterogeneous sources
where BPEL process definitions are publicly available, such
as the BPELUnit mailing list, Stackoverflow, and a collection
of workflow patterns in BPEL [31]. We pseudonymize the



libraries, because of licensing reasons for one of them. In
total, the amount of process definitions adds up to a set
of 215 process definitions. The processes vary strongly in
complexity, ranging from eight to 168 elements, and cover
all features of BPEL. The size of each library is listed in
Table II and varies from 22 to 86.

Figure 2. Basic Portability for Process Libraries

1) Natural Variability of Portability: Table II shows de-
scriptive statistics for the process libraries with the differ-
ent metrics. Additionally, Fig. 2 depicts boxplots for the
different process libraries and their basic portability. For
all metrics and process libraries, mean portability values
are relatively high, ranging at values of 0.9. All standard
deviations are relatively low, with the highest value of 0.13
for L1 and Mb. This indicates that the processes of each
library do not deviate strongly and, despite their differences
in functionality, do share a common level of portability. At
a first glance, this level may seem high. It is important to
keep in mind, that the language and systems we consider
here specifically aim to produce portable code. The question
is what can be considered as high in this domain, or, in the
terms of [13], what the natural variability of the attribute
is here (cf. section V-A5). With the data at hand, we can
provide a hint for the natural variability of the portability
of service-oriented processes. Considering the aggregated
means and standard deviations of the different metrics for
all processes, listed in the last column of Table II, the data
indicate that the portability naturally ranges at 0.94 and
varies with a deviation of 0.07. Anything below this niveau
can be considered as to be of lower quality.

In [10], even the top three engines in terms of successful
conformance tests share only 45 % of the total test set. This
implies that engines implement relatively disjoint sets of the

language (cf. Fig. 1) and as a result lower portability values
than the ones discussed here could be expected. However,
disjointedness in language support only results in portability
issues if processes use features that are not well supported.
If they mainly use features of the basic language subset that
is widely supported (i.e., that are in the set of 45 %), higher
portability will be the result. The latter is the case for all of
the four libraries.

2) Description of the Process Libraries: Looking at L1,
relatively low values for Mb and Me with values of 0.84
and 0.87 respectively, along with relatively high standard
deviations, contrast high values for Ma and Ms. This reveals
that the main portability issues do not lie in the control-
flow and communication activities of the processes, these are
indeed almost fully portable. The issues here reside mostly
in the usage of non-standard extensions. Such issues, as they
relate to extensions for logging, etc., tend to be fixable.

For L2, values of Ma and Ms are lower in total, and also
lower than Me. This indicates the opposite structure than
for L1. Portability issues mainly originate from the activ-
ities and the control-flow definition. Whereas the process
definitions do not make heavy use of language extensions,
they rely on configurations that are of limited portability.
Porting this process library will be comparatively harder.

L3 achieves high and similar values for all metrics. Low
standard deviations along with a high number of processes
provides confidence that the process library as a whole is of
high quality. The only exception is Ms, where a comparably
low portability value of 0.93 is combined with a relatively
high standard deviation of 0.12. This shows that there are a
few outliers with low portability to be found.

Finally, L4 shows similar values as L1, although with
lower numbers in total. Portability issues mainly come from
non-standard elements that do not directly relate to activities
or communication aspects.

In total, L3 scores best when it comes to portability in
general and a final decision is indicated by the aggregated
metric values in the last column of Table II. This is also
illustrated by Fig. 2, which shows the basic portability of
the libraries, where L3 clearly ranges at the top. The other
libraries lie at the border of an acceptable level, with L1
scoring lowest and showing the highest degree of variation.
Focusing on the process and communication view (Ma and
Ms), L3 is overtaken by all but L2.

3) Effect of Code Size: Especially complexity metrics are
prone to a distorting effect due to code size [32]. Metrics
tend to vary for systems of differing size and therefore are
unsuitable for the comparison of arbitrary programs. It is a
quality property of a metric to be resilient to changes in code
size. To compare the effect of code size on our metrics, we
extract two groups of processes, large and small processes,
from all of the libraries. Large processes come from the
fourth quartile in terms of the number of elements (i.e.,
the 25% largest processes) and small processes from the



Table II
DESCRIPTIVE STATISTICS FOR PROCESS LIBRARIES

Collection N Statistics Mb Me Ma Ms Ø

L1 22 Mean 0.84 0.87 0.99 0.99 0.92
Std. Dev. 0.13 0.11 0.02 0.06 0.11

L2 25 Mean 0.90 0.97 0.92 0.94 0.93
Std. Dev. 0.03 0.01 0.04 0.08 0.05

L3 82 Mean 0.95 0.98 0.96 0.93 0.95
Std. Dev. 0.06 0.02 0.05 0.12 0.07

L4 86 Mean 0.90 0.93 0.96 0.97 0.94
Std. Dev. 0.04 0.03 0.06 0.09 0.07

All 215 Mean 0.91 0.95 0.96 0.95 0.94
Std. Dev. 0.07 0.06 0.05 0.10 0.07

Small Processes, Q1 56 Mean 0.91 0.94 0.98 0.99 0.96
Std. Dev. 0.11 0.09 0.03 0.03 0.08

Large Processes, Q4 55 Mean 0.91 0.95 0.94 0.94 0.94
Std. Dev. 0.06 0.04 0.07 0.11 0.07

Table III
R2 FOR THE METRICS

Mb Me Ma Ms

Mb 0.73 0.07 0.02
Me 0.01 0.00
Ma 0.29

first quartile (i.e., the 25% smallest processes). Table II lists
descriptive statistics for these sets in the last two rows. The
mean values for large and small processes are very similar
for all metrics and even identical for Mb. Differences in
standard deviation are stronger, but only up to 0.08 which
is still quite small. From this we can conclude that the effect
of code size or changes to that size are negligible.

4) Information Carried by the Metrics: An important
property of the different metrics is their ability to provide di-
verse information. This can be determined by looking at their
correlation. If all metrics correlate strongly to each other,
then strictly speaking they all carry similar information. If
they all carry similar information, then there is no point in
computing all of them. Instead, the simplest one is sufficient
and the remaining ones can be discarded. The square of
the linear correlation coefficient R2 is suggested in [29] to
evaluate correlation. Table III outlines R2 for the different
metrics. Except for Mb and Me, all combinations show
only a weak correlation. This means that they really provide
different information and therefore it is beneficial to compute
and consider them all. Mb and Me show a strong correlation
which can be attributed to the strong similarity in their
computation. So, from an information-theoretic viewpoint,
Me is not superior to Mb. It is still beneficial to look at Me,
for reasons discussed in the following.

5) Discriminative Power: A central purpose of quality
metrics is the ability to discriminate between different pieces
of software. This ability is called the discriminative power
of a metric. A metric that often assigns the same values to
different pieces of software is not desirable, as it lacks this
central property. Discriminative power can be measured by
calculating the amount of unique metric values in the total

set of values. The higher the amount of unique values, the
better the metric is able to discriminate between different
pieces of software. For Mb the discriminate power amounts
to 103/215 = 0.48, for Me it is 133/215 = 0.62, for
Ma: 67/215 = 0.31, and for Ms: 28/215 = 0.13. Clearly,
Me has the highest degree of discriminative power. In
combination with the fact that it correlates highly to Mb, we
claim that for that reason, Me is preferable to Mb and the
specialized metric indeed does have an added value. Both,
Ma and Ms, have a more limited degree of discriminative
power which is expected as they abstract from certain
aspects compared to Mb. However, as demonstrated in the
previous paragraph, they do carry information different from
Mb and Me and highlight more critical portability issues.

VI. SUMMARY AND FUTURE WORK

In this paper, we presented a measurement framework
for quantifying the portability of executable service-oriented
processes, in particular BPEL process definitions. This
framework provides an answer to the research question: How
can portability be measured for service-oriented processes?
The idea of using the amount of runtimes supporting certain
language elements is an extension to classical portability
metrics. Our measurement framework considers the portabil-
ity of processes from different viewpoints that vary in their
severity. We provide an extensive evaluation of the metrics,
both from a theoretical and a practical angle. The theoretical
validation confirms construct validity and shows that our
metrics are normalized complexity metrics. The practical
evaluation demonstrates their application.

One area of future work is the improvement of the mea-
surement framework. A higher amount of engines included
in the benchmark would enhance the quality of the metrics
calculation. Especially commercial engines are of interest
and the benchmark of several of these is ongoing work.
Another area where work is needed is the quantification
of further perspectives of the portability of service-oriented
software. For instance, characteristics such as replaceability,
installability or adaptability are defined as subcharacteristics



of portability [2] and should be measured as well. Replace-
ability could be incorporated in this framework by modi-
fying the degree for elements that have multiple alternative
representations in the language, such as looping structures.

REFERENCES

[1] M. Ortega, M. Pérez, and T. Rojas, “Construction of a
Systemic Quality Model for evaluating a Software Product,”
Software Quality Journal, vol. 11, no. 3, pp. 219–242, 2003.

[2] ISO/IEC, Systems and software engineering – System and
software Quality Requirements and Evaluation (SQuaRE) –
System and software quality models, 2011, 25010:2011.

[3] B. Boehm, J. Brown, and M. Lipow, “Quantitive Evaluation
of Software Quality,” in 2nd Proceedings of ICSE, San
Francisco, USA, October 1976.

[4] T. Gilb, Principles of Software Engineering Management.
Addison Wesley, 1988, ISBN-13: 978-0201192469.

[5] G. Athanasopoulos, A. Tsalgatidou, and M. Pantazoglou,
“Interoperability among Heterogeneous Services,” in IEEE
SCC, Chicago, USA, September 2006.

[6] OASIS, Topology and Orchestration Specification for Cloud
Applications, March 2013, v1.0.

[7] ——, Web Services Business Process Execution Language,
April 2007, v2.0.

[8] OMG, Business Process Model and Notation (BPMN), Jan-
uary 2011, v2.0.

[9] WfMC, Process Definition Interface – XML Process Defini-
tion Language, August 2012, v2.2.

[10] S. Harrer, J. Lenhard, and G. Wirtz, “BPEL Conformance
in Open Source Engines,” in IEEE SOCA, Taipei, Taiwan,
December 2012.

[11] M. Glinz, “A Risk-Based, Value-Oriented Approach to Qual-
ity Requirements,” IEEE Computer, vol. 25, no. 8, pp. 34–41,
2008.

[12] L. Briand, S. Morasca, and V. Basily, “Property-based soft-
ware engineering measurement,” IEEE Transactions on Soft-
ware Engineering, vol. 22, no. 1, pp. 68–86, 1996.

[13] C. Kaner and W. Bond, “Software Engineering Metrics:
What Do They Measure and How Do We Know?” in 10th
International Software Metrics Symposium, Chicago, USA,
September 2004.

[14] M. Geiger and G. Wirtz, “Detecting Interoperability and
Correctness Issues in BPMN 2.0 Process Models,” in ZEUS,
Rostock, Germany, February 2013.

[15] L. Cesari, A. Lapadula, R. Pugliese, and F. Tiezzi, “A tool
for rapid development of WS-BPEL applications,” in SAC,
Sierre, Switzerland, March 2010.

[16] T. Hallwyl, F. Henglein, and T. Hildebrandt, “A standard-
driven implementation of WS-BPEL 2.0,” in SAC, Sierre,
Switzerland, March 2010.

[17] H. Hofmeister and G. Wirtz, “Supporting Service-Oriented
Design with Metrics,” in IEEE EDOC, Munich, Germany,
September 2008.

[18] M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari,
“Coupling Metrics for Predicting Maintainability in Service-
Oriented Designs,” in IEEE ASWEC, April 2007.

[19] D. Bianculli, W. Binder, and M. L. Drago, “Automated
Performance Assessment for Service-Oriented Middleware:
a Case Study on BPEL engines,” in Int. Conf. on World Wide
Web, Raleigh, North Carolina, USA, April 2010, pp. 141–150.

[20] Y. Wang, Y. Taher, and W.-J. van den Heuvel, “Towards Smart
Service Networks: An Interdisciplinary Service Assessment
Metrics,” in IEEE EDOC Workshops, September 2012.

[21] L. S. González, F. G. Rubio, F. R. González, and M. P.
Velthuis, “Measurement in business processes: a systematic
review,” Business Process Management Journal, vol. 16,
no. 91, pp. 114–134, 2010.

[22] I. Vanderfeesten, J. Cardoso, J. Mendling, H. Reijers, and
W. van der Aalst, Quality Metrics for Business Process
Models. Future Strategies, May 2007.

[23] J. Cardoso, “Business Process Quality Metrics: Log-
Based Complexity of Workflow Patterns,” in OTM CoopIS.
Springer-Verlag, 2007, pp. 427–434.

[24] G. Muketha, A. Ghani, M. Selamat, and R. Atan, “Complex-
ity Metrics for Executable Business Processes,” Information
Technology Journal, vol. 9, no. 7, pp. 1317–1326, 2010.

[25] ISO/IEC, Systems and software engineering – Systems and
software Quality Requirements and Evaluation (SQuaRE) –
Measurement of system and software product quality, 2013,
25023.

[26] S. Harrer and J. Lenhard, “Betsy – A BPEL Engine Test
System,” University of Bamberg, Bamberger Beiträge zur WI
und AI no. 90, July 2012, technical report.

[27] O. Kopp, D. Martin, D. Wutke, and F. Leymann, “The Dif-
ference Between Graph-Based and Block-Structured Business
Process Modelling Languages,” Enterprise Modelling and
Information Systems, GI, vol. 4, no. 1, pp. 3–13, 2009.

[28] C. Peltz, “Web Services Orchestration and Choreography,”
IEEE Computer, vol. 36, no. 10, pp. 46–52, October 2003.

[29] IEEE, IEEE Std 1061-1998 (R2009), IEEE Standard for a
Software Quality Metrics Methodology, 1998, revision of
IEEE Std 1061-1992.

[30] D. Basci and S. Misra, “Measuring and Evaluating a Design
Complexity Metric for XML Schema Documents,” Journal
of Information Science and Engineering, vol. 25, no. 5, pp.
1405–1425, 2009.

[31] J. Lenhard, A. Schönberger, and G. Wirtz, “Edit Distance-
Based Pattern Support Assessment of Orchestration Lan-
guages,” in OTM CoopIS, Hersonissos, Crete, October 2011.

[32] K. E. Emam, S. Benlarbi, N. Goel, and S. Rai, “The Con-
founding Effect of Class Size on the Validity of Object-
Oriented Metrics,” IEEE Transactions on Software Engineer-
ing, vol. 27, no. 7, pp. 630–650, 2001.


