
Process Engine Selection Support

Simon Harrer

Distributed Systems Group, University of Bamberg, Germany
simon.harrer@uni-bamberg.de

Abstract. Nowadays, business processes and their execution are corner stones in
modern IT landscapes, as multiple process languages and corresponding engines
for these languages have emerged. In practice, it is not feasible to select the best
fitting engine, as engine capabilities are mostly hidden in the engine implemen-
tation and a comparison is hampered by the large differences and high adoption
costs of the engines. We aim to overcome these problems by a) introducing an
abstract layer to access the functionality of the engines uniformly, b) by revealing
the engine capabilities through automated and isolated tests for typical require-
ments, and c) support the user in their selection of a process engine by determining
and explaining the fitness of the engines for a single process or a given set of
processes using policy matching against previously revealed engine capabilities.
Early results show the general feasibility of our approach for BPEL engines for a
single capability.

Keywords: BPM, process engines, engine selection, execution requirements,
testing

1 Introduction

Today, process-centric information systems [11] are corner stones in the current IT land-
scapes in industry, creating a $6.6 billion dollar market of Business Process Management
(BPM) solutions [1]. Within this market, at least 19 different business process modeling
languages have emerged [6]. Typically, these languages define execution semantics,
are implemented in process engines onto which processes are deployed, and instances
of these processes are executed by interacting with the engines through message pass-
ing. In this work, we focus on such executable process languages, e.g., the OASIS
standard BPEL [7] and the OMG standard Business Process Modeling and Notation
2.0 (BPMN) [8], as both are defined in a standard, widely used, executable, and have
multiple implementations. There are at least 31 BPMN engines1 and more than ten BPEL
engines available on the market, which vary greatly in their feature set [2]. Hence, the
selection of an engine for a given process is a real practical issue in various situations.
A typical scenario is that a developer requires an engine with a small footprint which
may have slow performance for development whereas the production server may use
an engine with a large footprint but with high performance characteristics, hence, the
best engine depends on more than functional properties of the process. And a company
may use more than one engine, as having multiple runtimes is typical in state-of-the-art

1 See http://www.bpmn.org/#tabs-implementers.

http://www.bpmn.org/#tabs-implementers

practice and feasible with current cloud and virtualization techniques. In a typical web
application, multiple programming languages, database systems and different cloud
services are already used extensively.

To foster a constant improvement of processes in industry, it is standard practice
to apply the Business Process Management (BPM) lifecycle, which consists of four
steps within a closed loop. First, the process is modeled using the vocabulary of a
process language. Second, the engine, i.e., the runtime environment, is selected, setup
and configured in the system configuration step. Third, the process is deployed onto and
its instances are executed on the previously provisioned engine, the so called process
enactment. Fourth, the execution of the process instances is diagnosed via audit trails,
which are used to model an improved process in the next iteration.

The issue of this BPM lifecycle is that while we design processes using a standardized
process language, the selection of the best fitting engine for a given process is not
feasible at the current status-quo. For both BPEL and BPMN, there are many engines
that vary greatly in their capabilities, including the level of standard conformance,
performance, robustness, installability, security, monitoring functionality, licensing cost
and vendor support available. Hence, a model once, run anywhere paradigm does not
hold here, requiring adaption costs. What is more, due to the complexity of these process
languages and their engines, a comparison is very time intensive and requires detailed
knowledge of the engines. Moreover, although these engines support standard conform
and vendor-independent processes, the management of the engines is vendor-dependent,
i.e., every engine has its custom installation, startup and shutdown routines, and different
deployment methods as well as descriptors. Hence, an automated selection of an engine
for a given process and its execution on the selected engine is not feasible to date,
resulting in ill-informed selection decisions for engines with possible hidden costs.

In this work, we aim to overcome these problems by improving the system configura-
tion step of the BPM lifecycle. Hence, we tackle the research question: How to determine
and explain the fitness of a set of engines for a set of processes?

This work is structured as follows. In Sect. 2, related work is outlined. The research
hypotheses are given in Sect. 3, and the approach is explained in Sect. 4. The preliminary
results are given in Sect. 5, followed by an evaluation in Sect. 6. A discussion and future
work is outlined in Sect. 7. Section 8 concludes this work.

2 Related Work

The selection or comparison of process engines is neglected in research so far, except for
our preliminary work which is explained in Sect. 5. Engines have only been compared
according to their support for workflow patterns. Such a pattern is a reusable solution to
a reoccurring problem in a specific context and the support of a pattern is determined
by the effort required to implement it. A plethora of pattern catalogs and corresponding
evaluations exist2, e.g., the control-flow [10] patterns. Such evaluations reveal helpful
engine capabilities, but render only partially relevant for our case as this would require
determining the used patterns in a given process. In addition, they only focus on the
functionality of a process, neglecting non-functional aspects.

2 See http://www.workflowpatterns.com/.

http://www.workflowpatterns.com/

Instead of selecting engines, there are studies to compare and select process languages
which we aim to learn from. While Kopp et al. [4] distinguish between block- or graph-
based process modeling languages, Lu et al. [5] categorize several business process
modeling approaches as either rule-based or graph-based approaches, and then compare
them with five different criteria. In [9], the fitness of a process language for a given set
of requirements is evaluated.

3 Research Hypotheses

The research question formulated in Sect. 1 is translated into the following three research
hypotheses which build on one another.
H1: Uniform Process Engine Management The lifecycle and management function-
ality of different engines and their processes is vendor-dependent, but can be managed
uniformly and vendor-independently.
H2: Revealing Engine Capabilities Through Tests Methodically created tests are
suitable to reveal functional and non-functional capabilities of engines.
H3: Explained Engine Selection Through Policy Matching Policies are suitable to
formalize the execution requirements of a process and the engine capabilities, and
therefore can be used to determine and explain the fitness of process engines for a set of
processes.

4 Approach

In this section, we elaborate the overall approach to support the hypothesis from Sect. 3
and how they build upon another.

We propose to support H1 by introducing a Uniform Process Management Layer
(UPML) for managing engines uniformly. UPML provides mappings for the engines in
different versions, different configurations (e.g., executing processes in-memory or not),
and different environments (e.g., locally, in a virtual machine or in the cloud). Such a
layer is required for the BPM lifecycle steps system configuration and process enactment,
as both require that the selected engine has to be available (installed, configured and
started) and the process has to be executed (deployed and instances of it executed). Hence,
our layer includes lifecycle methods of the engine (install, start, stop, and uninstall) and
of the process (deploy and undeploy).

To support H2, we use a methodical approach to determine engine capabilities
through tests. For each typical process requirement, we create executable tests that are
executed on top of the UPML via a testing tool. A test consists of a process, a list of
messages the process that are going to be sent as requests along with expectations to the
corresponding responses. This method consists of a generic part applicable for every
requirement and a customized part which has to be fitted for each requirement. The
produced test results are converted to engine capabilities which conform to the policy
type that provides a mean to formalize different degrees of fulfillment of the typical
process requirement. To ensure that we cover the right requirements, we conduct a
literature study, create tests for the found requirements, and execute them reusing the
UPML.

H3 is supported by providing a framework that allows formalizing the process
requirements in terms of policies. A policy contains constraints, e.g., a specific language
feature has to be available, or the engine must start in less than 5 seconds. By encoding
all the engine capabilities and the process requirements as XML-based policies, we
can determine the fitness of an engine for a process, as well as provide estimations
on adaption costs for possible alternatives , e.g., portability costs to change a process
for another engine. The latter is especially interesting in the cases of finding no or
more than one engine that is considered fit, as well as finding a single one which is not
acceptable for the user. When determining the fitness for a set of processes, we will
aggregate the atomic fitness results to enable informed decisions as well. We use the
policy serialization and matching algorithm of Web Services Policy 1.5 Framework [12]
for our needs.

5 Preliminary Results

To validate the approach outlined in Sect. 4, we conducted a case study for BPEL
engines in [3] which builds upon additional previous work cited there. We showed that it
is possible to overcome the huge API differences of seven open source BPEL engines
by means of a uniform management API (H1), to determine standard conformance
capabilities of engines using automated tests (H2), to select the best fitting engine for
a process using previously revealed standard conformance capabilities as well as to
automatically execute the process on the selected engine (H3).

6 Evaluation

We use multiple methods to ensure the validity of the results. Regarding H1, we evaluate
the correctness of UPML by checking whether both, the simplest possible process and
the process that only uses features that are supported by every engine, can be deployed
and executed on every of the supported engines. Regarding H2, we focus on ensuring
that the tests are correct by checking syntax and semantics via XML and XML Schema
validations automatically, test the correct features by conducting peer-reviews within
our group and with engine experts, and produce the correct results by fully automating
the test procedure for reproducible results, repeating the test procedure multiple times
to prevent any alternations, providing a fresh engine instance for each single test to
avoid side-effects between tests, and compare the results to one another to detect any
anomalies, e.g., take the log files into account for tests that are not successful on any
engine. Regarding H3, we evaluate the produced prototype with a large set of processes
as training data to test the correctness of the selection procedure.

7 Discussion and Future Work

Instead of using only workflow patterns for a manual comparison of engines, we provide
an approach that reveals the capabilities of engines and determines the fitness of a set of
engines for a given set of processes, and can automatically execute them on the selected

engine. In the future, we aim to complete the BPEL case study in Sect. 5 for multiple
engine capabilities. Furthermore, we aim to conduct a second case study using BPMN,
proving the applicability of our approach on processes and engines using another process
language.

8 Conclusion

We have presented an approach to help in the selection of the best fitting engine for
processes and their execution on selected engines, enabling to use the best available
runtime for given processes, or provide guidance for process adaption to target other
engines. Early results show the general feasibility of the approach for the process
language BPEL, seven open source BPEL engines and the selection criteria standard
conformance, hence, answering the research question partly.

References

1. C. L. Clair, A. Cullen, and J. Keenan. Prepare For 2013’s Shifting BPM Landscape. Technical
report, Forrester Research, January 2013.

2. S. Harrer, J. Lenhard, and G. Wirtz. BPEL Conformance in Open Source Engines. In
Proceedings of the 5th IEEE International Conference on Service-Oriented Computing and
Applications (SOCA’12), Taipei, Taiwan, pages 1–8. IEEE, 17–19 December 2012.

3. S. Harrer, J. Lenhard, G. Wirtz, and T. van Lessen. Towards Uniform BPEL Engine Manage-
ment in the Cloud. In INFORMATIK, September 2014. (to appear).

4. O. Kopp, D. Martin, D. Wutke, and F. Leymann. The Difference Between Graph-Based
and Block-Structured Business Process Modelling Languages. Enterprise Modelling and
Information Systems Architectures, 4(1):3–13, 2009.

5. R. Lu and S. Sadiq. A Survey of Comparative Business Process Modeling Approaches. In In
Proceedings 10th International Conference on Business Information Systems (BIS), number
4439 in LNCS, pages 82–94. Springer, 2007.

6. H. Mili, G. Tremblay, G. B. Jaoude, E. Lefebvre, L. Elabed, and G. E. Boussaidi. Business
Process Modeling Languages: Sorting Through the Alphabet Soup. ACM Comput. Surv.,
43(1):4:1–4:56, December 2010.

7. OASIS. Web Services Business Process Execution Language, April 2007. v2.0.
8. OMG. Business Process Model and Notation, January 2011. v2.0.
9. S. Thöne, R. Depke, and G. Engels. Process-oriented, flexible composition of web services

with UML. In Advanced Conceptual Modeling Techniques, pages 390–401. Springer, 2003.
10. W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow Patterns.

Distributed and Parallel Databases, 14(1):5–51, July 2003.
11. W. M. P. van der Aalst, A. H. ter Hofstede, and M. Weske. Business Process Management: A

Survey. In Proceedings of the International Conference on Business Process Management,
Eindhoven, The Netherlands, 2003. Springer Berlin Heidelberg.

12. W3C. Web Services Policy Framework (WS-Policy), September 2007. v1.5.

	Process Engine Selection Support

