
Approaching Interoperability Testing of QoS
based on WS-* Standards Implementations

Johannes Schwalb1, Andreas Schönberger2?, and Guido Wirtz2

1 Senacor Technologies AG, Schwaig b. Nürnberg, Germany
johannes.schwalb@senacor.com

2 Distributed Systems Group, University of Bamberg, Bamberg, Germany
{andreas.schoenberger,guido.wirtz}@uni-bamberg.de

Abstract. The maturity of Web services has increased significantly dur-
ing the last years and thus allows to use this technology even for enter-
prise purposes. One important factor for that are the so-called WS-*
standards, Web services extensions providing essential QoS properties
like security and reliability.
While these features clearly are a prerequisite for enterprise use, their
complexity also is a threat to the interoperability of Web services plat-
forms. However, interoperability is a core promise of the Web services
technology. So far, little research work has been put into assessing in-
teroperability of WS-* implementations. This work targets at filling
this gap by operationalizing the interoperability notion and proposing
a test method targeted at WS-* standards. The approach has been
validated by testing the interoperability of the WS-Security and WS-
ReliableMessaging modules of two major Web services stack implemen-
tations.

Keywords: WS-Security, WS-ReliableMessaging, Quality-of-Service, In-
teroperability, Web Services, Testing

1 Introduction

During the last years, Web services have matured significantly. Implementations
of Web services standards are available on almost any platform and for almost
any programming language. Major IT solution providers leverage Web services
technology for a variety of application domains. Business-to-business (B2B) com-
munities like RosettaNet3 even propagate Web services for the implementation
of inter-organizational business processes (cf. [13,14]). The most important rea-
son for that probably is that Web services, as an interface technology, allow
for the connection of software components developed on different platforms and
with different programming languages in an interoperable way. Another impor-
tant factor for the use of Web services in an enterprise setting is the availability
of essential QoS properties like reliability or security which are brought to the

? corresponding author
3 http://www.rosettanet.org

http://www.rosettanet.org

Web services world by a series of Web services extensions, the so-called WS-*
standards. These extensions are provided as separate standards like WS-Security
[7] or WS-ReliableMessaging [9] and define a rich feature set for accommodat-
ing a variety of application scenarios. However, these additional features come
at the price of complexity which challenges other important QoS properties of
services such as adherence to standards and the obligations imposed on service
clients and service providers. In order to ensure adherence to standards and to
get a grasp on the effort that results from implementing QoS features based on
WS-* standards for service clients/providers, research in interoperability testing
of WS-* standards is an essential need.
This paper contributes to this research field by answering the following questions:

– What is the meaning of interoperability for WS-* standards?
– What is a reasonable method for testing WS-* implementation interoper-

ability?

The paper proceeds as follows: Section 2 pins down the notion of WS-* standards
and section 3 operationalizes the notion of interoperability for the purpose of this
work. A method for interoperability testing of WS-* standards is described in
section 4 and evaluated for the case of WS-Security and WS-ReliableMessaging
in section 5. Section 6 discusses related work and section 7 concludes and points
out directions for future work.

2 WS-* Standards

For the purpose of this paper, the most important elements of a Web services
stack are illustrated in figure 1. Starting at the bottom, widespread Internet pro-
tocols like HTTP, SMTP and TCP/IP are designated to be used at the transport
level. In turn, the SOAP protocol [21] is designated to leverage a transport level
protocol for exchanging XML messages that are packaged within SOAP con-
tainers/messages. Using SOAP, message exchanges may be performed between
a SOAP sender, multiple SOAP intermediaries and an eventual SOAP receiver.
At this level, which we will denote the SOAP level/messaging level in the fol-
lowing, WS-Addressing [20] can be used to correlate SOAP messages. On top
of the SOAP level/messaging level, several Web services extensions are defined
for realizing non-functional attributes such as reliability, transactional integrity
or security. Those QoS standards typically are defined in terms of processing
instructions for SOAP messages. For example, WS-Security describes how to
use XML Signature [23] or XML Encryption [19] for signing/encrypting SOAP
header or body elements. Also, QoS standards may use several SOAP messages
for implementing a feature for a single payload XML message where the indi-
vidual SOAP messages can be correlated using WS-Addressing. For example,
WS-ReliableMessaging uses a whole protocol for exchanging a payload message
(cf. fig. 2). The description of services is done using the well-known Web Ser-
vices Description Language (WSDL4, [18]). While WSDL provides the means to

4 Although WSDL 2.0 is available since several years now, WSDL 1.1 still is more
frequently employed in industry and academia.

Fig. 1. Important elements of a Web services stack

describe the functionality of a Web service in terms of which messages can be
exchanged and how, WS-Policy [22] provides a framework for asserting QoS prop-
erties for Web services message exchanges. Typically, dedicated policy standards
like Web Services Reliable Messaging Policy Assertion [8] or WS-SecurityPolicy
[11] extend the WS-Policy framework for providing specific policy expressions
for the respective QoS standard. An application programmer would expose the
functionality of a software component via Web services by binding its interface
to a WSDL interface using a Web services stack implementation. Additionally,
she would use WS-Policy expressions for requiring the Web services stack to pro-
vide QoS features as defined by the processing instructions of the QoS standard.
For the purpose of this work, the term “WS-* standard” is defined to be a Web
services extension that implements a QoS feature for Web services interactions
by defining detailed SOAP message processing instructions. Also, a set of WS-
Policy expressions for asserting the respective features is assumed to be available
for a “WS-* standard”.

3 Interoperability

In [24], interoperability is defined as follows:

Fig. 2. Part of a WS-ReliableMessaging protocol run, adapted from [9]

“Interoperability is the ability of two or more software components to
cooperate despite differences in language, interface, and execution plat-
form.”

While this definition is good enough for an abstract characterization of interop-
erability in arbitrary systems, it can be refined for the purpose of WS-* interop-
erability testing in order to distinguish the different sources of interoperability
issues between two Web services stack implementations (WS stack implementa-
tions in the following). First, one of the WS stack implementations under con-
sideration may not know/refuse a particular WS-Policy expression that specifies
a particular communication feature. Second, one of the WS stack implemen-
tations may accept a WS-Policy expression, but ignore it. Third, a WS stack
implementation may deviate from one or more of the processing instructions
that are specified by a WS-* standard for the implementation of a particular
WS-Policy expression. Considering these sources of interoperability issues and
taking into account that a Web service interaction typically takes place between
a client role and a server role, we define interoperability in terms of 12 different
interoperability levels for the purpose of this paper as follows.

1. Server refuses WS-Policy: The server does not accept the policy of the
service, i.e., the service cannot be deployed on the server, or the server states
to ignore the feature under test.

2. Server cannot process WS-Policy correctly: It is possible to deploy
the sample service on the server, but the WSDL file containing the policy
cannot be retrieved.

3. Client refuses WS-Policy: The client can retrieve the WSDL file but
cannot process the policy and therefore no request is sent to the server, or
the client states to ignore the feature under test.

4. Client cannot process WS-Policy correctly: The client can retrieve
the WSDL file but cannot process the policy, and therefore a SOAP message
without WS-* extensions is sent to the server. The server returns an error
code.

5. Server and client ignore WS-Policy: Both, server and client ignore the
published policy. The client sends a SOAP message without WS-* exten-
sions, the server responds to this message with a regular SOAP message,
i.e., neither an error code nor a message including WS-* extensions are re-
turned from the server. This case also includes that parts of the policy are
ignored by server and client.

6. Server cannot process the initiating client message (initial request)
correctly: The client sends a SOAP message to the server observing the pol-
icy requirements, but the server is not able to process this message correctly
and responds with an error code to the client request.

7. Client cannot process the initiating server message (response to
initial request) correctly: The client sends a SOAP message to the server
observing the policy requirements, the server responds to this message ob-
serving the policy requirements, but the client is not able to process the
response from the server.

8. Client terminates communication prematurely: The protocol initia-
tion (client request, server response) has been performed without problems,
but the client terminates the message exchange with a terminate message,
specified in the according WS-* standard, before the whole communication
protocol has been completed.

9. Client aborts communication: The protocol initiation has been per-
formed without problems, but the client aborts the communication with
an unexpected fault before protocol completion.

10. Server terminates communication prematurely: Symmetric to level 8.
11. Server aborts communication: Symmetric to level 9.
12. Protocol success: The communication protocol has been performed suc-

cessfully.

Note: The level numbers are aligned with the progress of a Web service call and
do not express an order of interoperability in a semantic sense. So, level 5 does
not express better or lower interoperability than level 1, but an issue at level 5
is detected at a later point in time than at level 1. Obviously, level 12 expresses
full interoperability since no issues were detected.

4 Test Method

Testing WS-* implementations is a relatively new field in software testing. Al-
though several authors have examined robustness or performance issues of Web
services and even WS-* frameworks in homogeneous and heterogeneous environ-
ments (see section 6), there have only been few publications about interoperabil-
ity issues of different Web services platforms. For this reason, the test method
of this work employs concepts from protocol and software testing.

Since the tests focus on QoS features, i.e., non-functional properties of a system,
the test approach is to perform functional testing of the non-functional proper-
ties. The tests are executed on the basis of the specification of the corresponding
WS-* standards (specification-based, cf. [27], page 370) and are designed to cover
any defined assertion/element of the WS-* standards (structural testing, cf. [27],
page 371). Therefore, the test cases are defined as specification-based structural
testing (cf. [27], page 383). However, these test cases are not able to achieve the
same results as a formal analysis of the standards and implementations. Never-
theless, they are an adequate way to determine which functions are interoperable
and which are not. In addition, the results of the tests do not only provide a
compatibility analysis of WS-* implementations, but also an analysis of the ex-
tent the WS-* frameworks under test implement the features specified by the
corresponding standards (coverage analysis).
Figure 3 visualizes our approach to apply specification-based structural testing

Fig. 3. Setup of test environment

to WS-* standards. In order to determine whether two WS-* framework imple-
mentations are compatible, policies (according to WS-Policy) are used to specify
concrete test cases. For each test case, the WSDL of a sample Web service is
extended with a WS-Policy definition to be used by the Web services stacks of
the Web service client and provider for determining the number, sequence and
contents of the SOAP messages to be exchanged (upper part of figure 3). The
interoperability levels identified in section 3 apply to each test case. Some of the
interoperability levels can be verified without examining the SOAP messages
exchanged, e.g., refusal of the policy by the server. The analysis and determi-
nation of other interoperability levels require the use of network analysis tools

like Wireshark5 that enable capturing the SOAP messages exchanged (lower
part of figure 3). However, we do not check the strict conformance of SOAP
messages to WS-* standards in our interoperability testing approach. Instead,
SOAP messages are only analyzed for the existence of WS-* headers (for deter-
mining interoperability level 5) as well as for unexpected errors and premature
terminations (for determining levels 8-11). Not checking conformance allows for
the possibility of ‘interoperable’ communication that violates WS-* standards.
However, from our experience, this is a purely theoretical limitation for hetero-
geneous environments.
Assuming the test setup described, sections 4.1 and 4.2 show how to derive and
perform test cases for WS-* interoperability testing.

4.1 Derivation of Test Cases

The derivation of test cases for a selection of WS-* standards is a far from trivial
task. This is due to the number of functionalities, intricate relationships between
individual functionalities of the same standard and possible interferences be-
tween functionalities of WS-* standard combinations. In order to manage com-
plexity, we propose to classify test cases into isolated test cases for capturing
atomic functionalities, combined test cases for capturing the interactions be-
tween atomic functionalities and practicability test cases for capturing relevance
for practice as described below.

Isolated Test Cases In order to provide a thorough coverage of the func-
tionalities of a WS-* standard, the first step in deriving test cases should be the
identification of the most atomic functionality of a standard that can be tested on
a WS stack implementation in isolation. However, the concept of a functionality
as described in a WS-* standard (and assertable via WS-Policy) and a function-
ality that can be tested in isolation is not the same. Considering WS-Security,
a protection assertion such as signing or encrypting SOAP message parts can-
not be tested without declaring assertions for a valid security binding (options
for so-called Asymmetric-/Symmetric-/TransportBindings). However, the num-
ber of combinations of assertion options that must be selected for defining an
executable test case is not tractable for semi-automatic processes. Considering
the encryption of SOAP message parts, at least the definition of the ‘encryption
parts’ (3 options + number of named header elements, cf. [11, section 4.2.1]),
a token type for ‘initiator and recipient ’ (54 options each, cf. [11, section 5.4]),
an ‘algorithm suite’ (23 options, cf. [11, section 6.1]) and a ‘header layout con-
figuration’ (4 options, cf. [11, section 6.7]) is necessary. This would lead to at
least 14904 test cases if the same token type would be assumed to be used for
initiator and recipient and several hundred thousand test cases if not. This basic
calculation shows that the notion of ‘atomic functionality’ to be tested cannot
be tied to the executability of the resulting test cases.

5 www.wireshark.org

www.wireshark.org

Instead, we propose to leverage the concept of a WS-Policy assertion for iden-
tifying the atomic features to be tested. For example, the number of different
policy assertion options for a X509 Token is just 12 resulting in 12 test cases.
However, for being able to execute these test cases, the X509 Token assertions
have to be embedded within an initial executable WS-Policy configuration (that
also contains algorithm suite, encryption parts definition etc.). As the configura-
tion options of WS-Policy assertions we have tested are almost orthogonal to the
options of other WS-Policy assertions, the 12 executable test cases for a X509

Token assertion then can be derived by permuting the X509 Token assertion op-
tions of the initial WS-Policy configuration only. Clearly, this approach implies
giving up complete coverage of all possible configuration combinations (by tying
the notion of a test case to executability) in favor of a manageable amount of test
cases (by tying the notion of a test case to a WS-Policy assertion). Note that,
in practice, it is not too hard to come up with an initial executable WS-Policy
configuration because Web services solution providers frequently publish sample
configurations for a variety of application scenarios6.

Listing 1. Structure definition of RMAssertion (cf. [8])

1 <wsrmp:RMAssertion (wsp:Optional="true")? ... >
2 <wsp:Policy >
3 (<wsrmp:SequenceSTR /> |
4 <wsrmp:SequenceTransportSecurity />) ?
5

6 <wsrmp:DeliveryAssurance >
7 <wsp:Policy >
8 (<wsrmp:ExactlyOnce /> |
9 <wsrmp:AtLeastOnce /> |

10 <wsrmp:AtMostOnce />)
11 <wsrmp:InOrder /> ?
12 </wsp:Policy >
13 </wsrmp:DeliveryAssurance > ?
14 </wsp:Policy >
15 ...
16 </wsrmp:RMAssertion >

For deriving the configuration options for a single policy assertion, we propose
to make use of the assertion structure definitions that are published in the WS-
Policy extension standards. Listing 1 shows the structure definition of the WS-
ReliableMessaging Policy standard’s RMAssertion assertion (note that usual reg-
ular expression operators are used to define structural constraints on the asser-
tion). This assertion basically says that delivery semantics options ExactlyOnce,
AtLeastOnce and AtMostOnce of WS-ReliableMessaging must be combined with
either InOrder delivery or not.
For making use of this structure definition, we propose to first write down the
policy assertion options in a configuration option matrix and then to derive
the individual test cases from that matrix. This process starts with first not-
ing the multiplicity of each WS-Policy assertion option in the matrix where the

6 for example, see https://wsit-docs.dev.java.net/releases/1.1/ahici.html

https://wsit-docs.dev.java.net/releases/1.1/ahici.html

available multiplicity options are derived from the policy standard’s structure
definition: ‘0/1’ (none or exactly one occurrence), ‘1’ (exactly one occurrence),
‘0*’ (no occurrence or more), and ‘1*’ (at least one occurrence). Then, for each
structure definition constraint, expressing that two assertion options mutually
exclude each other, must be combined or may be freely combined, the opera-
tors ‘XOR’,‘AND’ or ‘OR’ are inserted into the matrix spanning the respective
assertion options. Table 1 shows how an according configuration option matrix
looks like for WS-ReliableMessaging Policy’s RMAssertion feature. Table 2, in
turn, shows the resulting test cases for the RMAssertion feature that are derived
from table 1 by simply resolving the assertion options’ combination operators
and multiplicities.

Op1 Op2 Mul Setting Definition

1 - - 1 Basic RMAssertion [8, lines 132-134]

2 XOR -
0/1 SequenceSTR

[8, lines 141-144]
[8, lines 263-277]

0/1 SequenceTransportSecurity
[8, lines 145-149]
[8, lines 278-307]

3 AND
XOR

1 ExactlyOnce [8, lines 166/167]
1 AtLeastOnce [8, lines 168/169]
1 AtMosttOnce [8, lines 170/171]

0/1 InOrder [8, lines 172/173]

Table 1. Configuration Matrix for WS-ReliableMessaging Policy’s RMAssertion

Feature Case Settings

1 Basic RMAssertion 1.0 -

2 Sequence Security
2.1 SequenceSTR

2.2 SequenceTransportSecurity

3 Delivery Assurance

3.1 ExactlyOnce

3.2 AtLeastOnce

3.3 AtMostOnce

3.4 ExactlyOnce + InOrder

3.5 AtLeastOnce + InOrder

3.6 AtMostOnce + InOrder

Table 2. Test cases derived for WS-ReliableMessaging Policy’s RMAssertion

Combined Test Cases For the identification of test cases consisting of more
than one functionality of a WS-* standard, structure definitions similar to the
isolated test cases are not available. This means that the derivation of combined
test cases must rely on the WS-* standard documentation and the test engineer’s

ability to combine the isolated functionalities in a sensible way. In this process,
two problems stand out:
First, the results of a test case identification process that relies on a standard
specification given in prose and the ability of test engineers are ambiguous and
not easily reproducible. Consequently, the test cases derived are likely to miss
important combinations or to produce combinations of features that are not
meant to work together. The problem is even worse when it comes to combining
features of different WS-* standards where no documentation of the relation-
ships between features may be available at all. However, alternative solutions
require extra effort of the standardization organizations (cf. section 5).
Second, similar to the problem of defining executable test cases, the number of
configuration options for the individual WS-* features may lead to a prohibitive
amount of combined test cases. However, the solution of looking for sample con-
figurations that can be used as starting point for permuting individual policy as-
sertions is not applicable here because the actual subject of investigation are not
the individual assertions but the interplay of assertions. At this point, complete
coverage of the assertion combination possibilities cannot be the goal of testing.
Instead, classes of interchangeable assertions must be defined, the most impor-
tant representatives of these classes must be selected and then be combined with
each other. Clearly, ‘importance’ must be operationalized for the purpose of test-
ing. Considering WS-Security, the assertion classes protection assertions, token
assertions, security bindings, supporting tokens and global WS-Security options
can be identified where a tuple of representatives from the first three classes al-
ways leads to an executable test case. A test engineer then must apply some rank-
ing algorithm for choosing between, e.g., testing all flavors of protection asser-
tions (signing/encrypting header/body/elements/attachments) combined with a
limited amount of token assertions (X509/Username/SecureConversation) and a
single security binding or testing ‘signing headers’ only combined with all flavors
of token assertions and security bindings.

Practicability Test Cases While isolated and combined test cases provide a
reasonable way of achieving high coverage of WS-* standards, the application
scenario that necessitates the use of WS-* standards is not respected very well.
Note that, e.g., WS-Security is not designed to specify the implementation of
well-known security features like privacy, integrity or authentication, but sim-
ply to specify how XML Signature and XML Encryption are to be applied in a
SOAP messaging context. Therefore, test cases have to be derived that ensure
application goals like privacy, integrity or authentication of message payloads.
However, it is not easy to derive such test cases, in particular it is not easy to de-
rive test cases that ensure security related goals in a distributed communication
setting (see the attack on the Needham-Schroeder protocol as an example [6];
there are many others). It is the task of standardization organizations and in-
dustry communities to define and publish practicability test cases together with
the corresponding WS-Policy definitions that capture the needs of ‘real-world’
application scenarios. This would enable straightforward interoperability test-

ing as well as validity of the application-specific WS-Policy definitions by public
scrutiny.
Fortunately, for the case of WS-ReliableMessaging and WS-Security, the so-
called Secure WS-ReliableMessaging Scenario is available as a test case of real-
world relevance and complexity which has been proved independently by [1]
and [3] to implement privacy, integrity and authentication. However, there is no
straightforward way to identify test cases for investigating practicability without
the help of standardization organizations.

4.2 Test Case Execution

Fig. 4. Necessary Platform Configurations for Testing

For performing test cases, the different tasks that a Web service client and
Web service have in implementing a WS-* feature have to be taken into account.
For testing the interoperability of some WS stack implementations A and B, it
makes a difference whether the client is developed using platform A and the
service on platform B or the other way round. Moreover, tracing down the rea-
sons for interoperability issues requires to know whether the respective features
work in an homogeneous environment. Therefore, we propose to perform each
test case in all the platform configurations displayed in figure 4. Clearly, if a test
case cannot be performed in both homogeneous environments (A-A and B-B),
then the heterogeneous environments are not likely to work. However, if only
one of the homogeneous environments does not work, then the heterogeneous
environments are worth testing. Our practical tests show (cf. [15]) that some
features do not work in a homogeneous environment (A-A or B-B), but in a

heterogeneous one (B-A or A-B).
Having defined the relevant platform executions, we propose to apply the fol-
lowing process to isolated, combined and practicability test cases subsequently
where interoperability issues detected in isolated or combined test cases reveal
whether or not performing combined or practicability test cases is sensible:

1. Derive test cases for the WS-* standards under consideration as pointed out
in section 4.1.

2. Develop test plan containing test cases to test all the functions determined
in step 1.

3. Develop concrete implementations of the test cases in accordance with the
test plan, consisting of a Web service, a WS-Policy definition assigned to
this service, and a Web service client to invoke the service.

4. Execute the test cases:
(a) Deploy the Web service on both platforms A and B.
(b) Deploy the Web service client on both platforms A and B.
(c) Invoke the Web service with the Web service client permuting the con-

figurations of figure 4.
(d) Document and store the test output.

5. Analyze test case documentation and test output and try to identify reasons
for interoperability issues (if any).

5 Evaluation

As pointed out above, we have concentrated on WS-ReliableMessaging and WS-
Security for evaluating our WS-* interoperability testing approach. Moreover,
parts of the WS-SecureConversation [10] and WS-Trust [12] standards have
been investigated for enabling the Secure WS-ReliableMessaging Scenario. As
WS stack implementations, we have chosen two of the most reputable JAVA-
based WS stacks, namely Oracle’s (Sun’s) Metro WS-stack that comes with the
GlassFish Application Server7 and Apache’s Axis2 WS-stack that is reused in
IBM’s WebSphere Application Server8.
Due to space limitations, we concentrate on the most important results of our
interoperability tests. Details are available in a technical report [15].
Looking at the number of isolated test cases that result from the procedure de-
scribed in section 4.1, we have identified 170 test cases. This still seems to be a
high number, but is actually pretty small compared to the number of test cases
resulting from alternative procedures (cf. section 4.1). For the practical tests,
170 test cases proved to still be a manageable amount. Moreover, retrieving
sample configurations from the web that employ the policy assertions under test
was not possible for every single policy assertion. However, there was a sufficient
amount of configurations that also allowed for deriving executable test cases that
included the policy assertions under test.

7 http://glassfish.dev.java.net
8 http://www-01.ibm.com/software/webservers/appserv/was/

http://glassfish.dev.java.net
http://www-01.ibm.com/software/webservers/appserv/was/

Looking at the interoperability results for Metro and Axis2, the results were
disappointing. While 109 policy assertions were successfully tested (interoper-
ability level 12, cf. section 3) in at least one of the homogeneous environments
(A-A or B-B), only 47 test cases could successfully be performed in at least
one of the heterogeneous environments (A-B or B-A). Most strikingly, no test
case applying SOAP message encryption could successfully be executed for both
heterogeneous environments. More interoperability issues for other basic func-
tionalities resulted in a single combined test case, i.e., the combination of signed
message headers with SSL-encryption. Consistently, the practicability test case
(the Secure Reliable Messaging Scenario) was only performed in the two homo-
geneous environments and could be implemented almost as specified in [1,3].
These results clearly show that more thorough interoperability testing is needed
to be done by WS-stack implementers. Interoperability projects like Tango9 are
helpful, but interoperability tests actually are necessary between all major WS-
stack providers. Moreover, while the orthogonality of many WS-* features fos-
ters flexibility, it hinders the efficient identification of interoperability test cases.
Therefore, standardization organizations should complement WS-* standards
with test plans that cover the most important/widely needed feature combina-
tions. Also, those test plans should be linked to communication qualities like
privacy, integrity or authentication so that application developers do not have
to create the relationship between those qualities and implementation primi-
tives like header/body signatures/encryptions themselves. On this account, the
WS-Policy definitions shipped within the so-called delivery package of WS-I’s10

Reliable Secure Profile 1.0 [26] are a step into the right direction. However, for
straightforward interoperability testing more than just three WS-Policy defini-
tions are needed.

6 Related Work

In practice, the WS-I organization is dedicated to foster interoperability of Web
services by creating so-called profiles which provide rules for creating and pro-
cessing WSDL files and SOAP messages. In particular, the Basic Security Profile
1.1 [25] and the Reliable Secure Profile 1.0 [26] cover the use of security and reli-
ability related WS-* standards. That work is different from ours in several ways.
Most notably, the rules of these two WS-I profiles are tied to SOAP messages
and SOAP message elements. Conversely, the test cases of our approach are tied
to WS-* functionalities that are assertable via WS-Policy. WS-Policy assertions,
however, may translate into several SOAP message elements or even several
SOAP messages. Consistently, the WS-I profiles do not contain WS-Policy as-
sertions for having a Web services stack produce SOAP message that may or may
not comply with the WS-I rules (except for just three WS-Policy definitions in
the ‘Reliable Secure Profile 1.0 Test Scenarios’ document). Without those as-
sertions, testing interoperability between two WS-* implementations is far from

9 http://java.sun.com/developer/technicalArticles/glassfish/ProjectTango/
10 http://ws-i.org/

http://java.sun.com/developer/technicalArticles/glassfish/ProjectTango/
http://ws-i.org/

straightforward because it is not clear how a test engineer would make the cor-
responding WS-* implementations produce the relevant SOAP messages. As the
WS-I rules are not tied to WS-Policy assertable functionalities, it is also not
clear how a sensible coverage of WS-* standards in interoperability testing can
be achieved. Finally, application goals like authentication, integrity or confiden-
tiality are not translated into detailed message protocols in a way comparable
to [1] or [3]. Put short, the WS-I resources constitute clarifications on how to
process WSDL files and SOAP messages but fall short on providing an approach
for deriving easy-to-use test cases of increasing complexity for interoperability
testing. In so far, the WS-I resources are very valuable in finding out why two
WS-* implementations are not interoperable but they do not streamline the pro-
cess of detecting that two WS-* implementations are not interoperable.
Apart from WS-I, interoperability or compatibility of Web services is discussed in
various ways in academia. An abundance of work concentrates on analyzing the
compatibility of Web services based workflows or business processes and tries
to verify/test protocol properties like deadlock-freeness or termination. Other
researchers are investigating interoperability of the actual Web services stack
implementations (without considering QoS) [16].
In contrast, the work presented here concentrates on interoperability testing of
WS-* implementations. In the area of testing Web services/SOAs with regard
to the WS-* based notion of QoS, the amount of scientific work is limited. [4]
and [5] discuss challenges of SOA testing, but the QoS aspects concentrate on
quantifiable factors, such as latency. Although both publications also consider
building trust between service and client to be a “challenge”, they do not re-
fer to WS-Trust or WS-Security. [2] proposes a QoS Test-Bed Generator for
Web Services, but only defines latency and reliability as QoS features. Although
[17] provides an evaluation of the WS-Security implementation of the Axis2 WS
stack, the paper only considers the processing time and message size when us-
ing different WS-Security features. In contrast to these publications, this work
discusses QoS as advanced communication qualities (security, reliability etc.)
provided by WS-* standards and tests the compatibility of these features using
different implementations.

7 Conclusion and Future Work

We have presented an approach for interoperability testing of WS-* standards
that leverages the structure definitions of WS-Policy assertions for deriving a
manageable amount of test cases. Our test results for two major WS stacks
show that more effort needs to be put into interoperability testing by WS stack
providers. Further, standardization organizations are called upon defining fre-
quent application scenarios together with detailed WS-Policy definitions for fos-
tering interoperability testing and ensuring relevance for practice.
Future work includes a refined approach for deriving combined test cases that
takes the application scenario of WS-* usage into account. Moreover, a frame-
work that enhances automation of WS-* interoperability testing is needed.

References

1. Backes, M., Moedersheim, S., Pfitzmann, B., Vigano, L.: Symbolic and crypto-
graphic analysis of the secure WS-ReliableMessaging scenario. In: FOSSACS 2006.
LNCS, vol. 3921, pp. 428–445. Springer

2. Bertolino, A., Angelis, G.D., Polini, A.: A QoS Test-Bed Generator for Web Ser-
vices. In: ICWE 2007, Como, Italy, July 2007

3. Bhargavan, K., Corin, R., Fournet, C., Gordon, A.D.: Secure sessions for web
services. ACM Trans. Inf. Syst. Secur. 10(2), 8 (2007)

4. Canfora, G., Penta, M.D.: Testing Services and Service-Centric Systems: Chal-
lenges and Opportunities. IEEE IT Pro (2), 10–17 (March/April 2006)

5. Gerardo Canfora and Massimiliano Di Penta: Service-Oriented Architecture Test-
ing: A Survey. In: ISSSE 2006 - 2008, Salerno, Italy

6. Lowe, G.: An attack on the needham-schroeder public-key authentication protocol.
Inf. Process. Lett. 56(3), 131–133 (1995)

7. OASIS: Web Services Security: SOAP Message Security 1.1 (WS-Security 2004).
OASIS (February 2006)

8. OASIS: Web Services Reliable Messaging Policy Assertion (WS-RM Policy) Version
1.2. OASIS (February 2009)

9. OASIS: Web Services Reliable Messaging (WS-ReliableMessaging) Version 1.2.
OASIS (February 2009)

10. OASIS: WS-SecureConversation 1.4. OASIS (February 2009)
11. OASIS: WS-SecurityPolicy 1.3. OASIS (February 2009)
12. OASIS: WS-Trust 1.4. OASIS (February 2009)
13. RosettaNet: Multiple Messaging Services (MMS) Profile for Web Services (WS)

V11.00.01. RosettaNet (August 2009)
14. RosettaNet: Message Control and Choreography (MCC) - Profile-Web Services

(WS), Release 11.00.00A. RosettaNet (June 2010)
15. Schwalb, J., Schönberger, A.: Analyzing the Interoperability of WS-Security and

WS-ReliableMessaging Implementations. Tech. Report: Bamberger Beiträge zur
Wirtschaftsinf./Angewandten Inf. 87, Universität Bamberg (09 2010)

16. Shetty, S., Vadivel, S.: Interoperability issues seen in Web Services. International
Journal of Computer Science and Network Security (IJCSNS) 9(8), Seoul, Republic
of Korea, pp. 160–169 (August 2009)

17. Shopov, M., Kakanakov, N.: Evaluation of a single WS-Security implementation.
In: Proceedings International Conference on Automatics and Informatics, Sofia,
Bulgaria. pp. 39–42 (October 2007)

18. W3C: Web Services Description Language (WSDL) 1.1. W3C (March 2001)
19. W3C: XML Encryption Syntax and Processing. W3C (December 2002)
20. W3C: Web Services Addressing 1.0 - Core. W3C (May 2006)
21. W3C: SOAP Version 1.2 Part 1: Messaging Framework (Second Edition). W3C

(April 2007)
22. W3C: Web Services Policy 1.5 - Framework. W3C (September 2007)
23. W3C: XML Signature Syntax and Processing (Second Edition). W3C (June 2008)
24. Wegner, P.: Interoperability. ACM Comput. Surv. 28(1), 285–287 (1996)
25. WS-I: Basic Security Profile Version 1.1. WS-I (January 2010)
26. WS-I: Reliable Secure Profile Version 1.0. WS-I (November 2010)
27. Zhu, H., Hall, P.A.V., May, J.H.R.: Software Unit Test Coverage and Adequacy.

ACM Computing Surveys (CSUR) 29(4), pp. 366–427 (December 1997)

	Approaching Interoperability Testing of WS-* Standards
	1 Introduction
	2 WS-* Standards
	3 Interoperability
	4 Test Method
	4.1 Derivation of Test Cases
	Isolated Test Cases
	Combined Test Cases
	Practicability Test Cases

	4.2 Test Case Execution

	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work

