
On the Measurement of Design-Time Adaptability
for Process-Based Systems

Jörg Lenhard, Matthias Geiger, and Guido Wirtz
Distributed Systems Group

University of Bamberg
Bamberg, Germany

{joerg.lenhard, matthias.geiger, guido.wirtz}@uni-bamberg.de

Abstract—Today, process languages are frequently used for
implementing service-oriented systems and a variety of speci-
fications for this task exist. These specifications strive for the
portability of processes among different runtime environments,
i.e., process engines. However, direct portability, especially of
executable processes, is seldom achieved. If processes cannot
be ported directly among engines, an option is to adapt
them. Such an adaptation is nontrivial and hence automated
support is desirable. A first step in this direction is the
quantification of the design-time adaptability of a process. This
quantification is the goal of this paper. We formally define
software metrics for measuring the design-time adaptability
of processes and validate them theoretically with respect to
measurement theory and construct validity using two validation
frameworks. Moreover, we implement the metrics computation
for Business Process Model and Notation (BPMN) processes and
demonstrate their practical applicability with an evaluation of
a large set of open source processes.

Keywords-Adaptability; Metrics; BPMN

I. INTRODUCTION

The implementation of service-oriented systems with the
help of process-aware information systems [1] is increasingly
accepted in practice, not only when it comes to the modeling
of business processes, but also in terms of the direct execution
of process definitions on dedicated process engines [2]. In
a service-oriented context, processes-aware technologies are
often used for implementing higher-level and value-added
services on the basis of other services. This is achieved
by defining the control- and data-flow structure between
the invocations of services in a process-based manner,
i.e., by their orchestration [3]. Such process-based service
orchestrations form an integral part of a service-oriented
architecture [4].

Several competing languages and specifications for build-
ing executable process-based systems exist, such as BPMN
2.0.2 [5] or the Web Services Business Process Execution
Language 2.0 (BPEL) [6]. BPMN has recently been accepted
as an ISO standard and is facing rising adoption in practice.
In a BPMN process, dedicated tasks for service invocation
or message sending and reception exist, thereby enabling the
construction of service orchestrations. Tasks in BPMN are not
strictly tied to a specific service implementation technology,

as is the case for BPEL and Web Services. This allows
for a higher technological flexibility when implementing
process-based and service-oriented systems.

A commonality of the different process specifications is
that multiple implementations supporting process execution
are available and evolve with varying speed. In such a
situation, a lot of benefits for the users of an engine in
terms of execution performance, license cost, or scalability
can be gained by using the most advanced and suitable
runtime engine available. To leverage these benefits, existing
processes have to be ported from one engine to another.
Despite the fact that portability is a central goal of process
standards [7], this task is often quite complicated. Frequently,
direct porting is not possible, even if a process fully complies
to a standard, due to differences in the implementations
of that standard. This can happen despite the fact that
the implementations claim to support the same standard.
For instance, high deviations in standard conformance have
been demonstrated for implementations of BPEL [8]. As a
consequence, instead of direct porting, processes have to be
manually adapted at design-time to enable their execution
on another engine.

Our intention is to support the task of adapting processes
through techniques of software measurement. We propose
several software quality metrics that can be used to quantify
the degree of adaptability inherent to a process. This provides
benefits, such as:

1) Metrics can be used to inform developers about issues in,
and the quality of, the processes they implement. When
integrated into the development through techniques such
as continuous inspection [9], developers become aware
of problems in the process code. This awareness can
increase the quality of the code in the long term. Put into
the context of this paper, we try to inform developers
about the adaptability of the processes they build.

2) Metrics are a basis for comparing different processes
and the prerequisite for quality ranking. They can be
used as mechanism for decision support, for instance if
it is worth to invest time in adapting a given process.

In [10], we put forward a first idea for evaluating the design-
time adaptability of processes, in particular processes written

in BPMN. We proposed to capture an adaptability score
for every language element and to aggregate this score to
an adaptability metric. Here, we build upon this proposal
by fully implementing the approach from [10] and testing
several mechanisms of metrics computation, complemented
with a thorough and comprehensive validation and evaluation.
The research question we are trying to answer is:

What kind of metric performs best for quantifying the
design-time adaptability of process-based systems?

We provide a theoretical validation of proposed metrics
with two validation frameworks and conduct a large size
experiment with real-world processes that allows us to
separate useful metrics from less useful ones. That way,
we can answer the research question.

The next section discusses work related to this paper,
followed by the formal definition of our proposed metrics.
Thereafter, we theoretically validate the metrics in Section IV
and practically in Section V, including the final decision
on which metrics are most appropriate. Finally, Section VI
concludes the paper with a summary and remarks on future
work.

II. RELATED WORK

Work related to our approach separates in two areas which
we discuss in the following sections: On the one hand, this
is work on specifications and languages for modeling and
implementing processes. On the other hand, it is work on
software quality models in general and on the measurement
of adaptability and metrics for process-based and service-
oriented systems in particular.

A. Process Languages and Specifications

Major international standards for implementing process-
based systems are the XML Process Definition Language 2.2
(XPDL) [11], and, as mentioned in the introduction, the Web
Services Business Process Execution Language 2.0 [6] and
the Business Process Model and Notation 2.0.2 [5].

XPDL [11] is promoted by the Workflow Management
Coalition and addresses the storage and interchange of
processes among different tools, especially editors and
modeling environments. Runtimes for this language do exist,
but are not very common and the language is mainly relevant
to the modeling of processes.

BPEL [6] is a language built for the Web Services ecosys-
tem and has received a lot of attention since its conception. Its
primary purpose is the task of service orchestration and today
a large variety of BPEL runtimes do exist. Being tailored to
Web Services technology, the importance of this language is
declining in recent years. Owing to its wide practical adoption,
it is, nevertheless, a good example of the dichotomy of a
specification and its implementations. In previous work [8],
[12], we could show that the standard conformance of BPEL

runtimes and consequently the portability of BPEL processes
varies strongly.

Implementations of BPMN [5] are increasingly adopted
today and more and more vendors try to implement the
specification. The language was initially intended for the
visualization of processes to ease the communication among
different stakeholders, but has broadened its scope with the
addition of different types of processes, such as process
choreographies and also executable processes. For these
reasons, we assess the approach in this paper with BPMN,
but emphasize that the metrics are independent of it and,
hence, applicable to any process language in general.

B. Software Quality, Adaptability, and Metrics for Process-
Based Systems

Adaptability has long been recognized as a quality char-
acteristic of software and is part of many software quality
models, e.g., [13]–[15]. It is often related to the quality
characteristic of portability. In this paper, we build on the
SQuaRE method [13], the new ISO/IEC 25010 series of
standards for software quality evaluation. This series revises
the well-known ISO/IEC 9126 [16] standard for software
quality and is intended as its replacement. The revision is
currently underway and although the quality model [13] is
already published, standards that describe concrete software
metrics [17] are not yet publicly available. The quality model
defines adaptability as a subcharacteristic of portability, next
to characteristics such as replaceability or installability. Our
long-term goal is to allow for the quantification of each of
these characteristics for process-based systems and we have
dealt with portability [18] and installability [19] in prior
work.

In [13, p.15], adaptability is defined as the “degree to
which a product or system can effectively and efficiently
be adapted for different or evolving hardware, software or
other operational or usage environments”. Our focus here
are adaptions to the software environment (i.e., to the code of
a process to enable its execution on a different platform). In
other words, we focus on design-time changes to a process.
This opposes other common definitions of adaptability. For
example, in adapter synthesis [20], adaptability refers to
whether an adapter for a given pair of processes or services
can be created. In autonomous systems [21], adaptability
refers to whether a system can change its structure to cope
with changing requirements, such as a different system load,
at runtime.

Adaptability metrics defined in ISO/IEC 9126 [16] focus
predominantly on the observation of user behavior, for
instance, to see if users can adapt easily to a new software
environment. Here, we try to determine how easily a process
written in a specification language can be changed, in a way
that still complies to the specification, to enable it to run
on a different implementation of the specification. Related
studies that measure design-time adaptability [22], [23] try

to do so by providing an adaptability score at the level of
atomic system elements and to aggregate this score to a
global degree of adaptability. This is also the path we take
here, although our focus is not the adaptability of software
architectures as in [22], [23], but of process-based systems.

Lastly, change patterns [24] and the ADEPT project [25]
aim to improve the flexibility and robustness of processes.
Both primarily address runtime changes of process instances,
whereas we concentrate on design-time changes, there
denoted as process schema evolution. Change patterns on the
one hand define editor operations that should be available for
adapting processes and on the other hand specify constructs
that make the runtime adaption of processes easier. Here,
we do not define such operations or structures, but try to
quantify the design-time adaptability of a process.

III. ON THE MEASUREMENT OF ADAPTABILITY

A common conceptual approach for measuring adaptability
explained in [10] and used in similar studies [22], [23], is to
start at the level of an atomic system element, for instance
by tagging every element with an adaptability score. Then,
these atomic scores are aggregated at one or more levels to
indices or degrees of adaptability, until the complete system
is considered as a whole. This approach is outlined in Fig. 1.

atomic system
elements

adaptability
scores AS AS AS AS

adaptability
metric

AM

aggregation

Figure 1. Mechanism for Computing Adaptability

The focus here is on process-based systems, hence, we
need to consider the adaptability of atomic process elements
and to aggregate their adaptability to a global value for a
complete process. The atomic elements of a process are its
activities and similar language constructs, such as gateways or
events [26]. So, when evaluating the adaptability of processes
written in a particular language, it is first necessary to assign
an adaptability score to each type of element in that language.
The idea we put forward in [10] and expand upon here is to
consider the amount of alternative representations a process
language offers for a certain element. The more of such
alternative representations exist, the easier and more likely
it is that one can find a semantically equivalent alternative
when modifying the process for porting. In other words, the
more alternatives exist, the more adaptable the element is. A
practical example for BPMN are receive tasks, atomic tasks
that consume a message. One straight-forward alternative for

such a task, among others, is an intermediate message catch
event which provides semantically identical behavior.

We define the adaptability score AS(e) as follows:
Definition 1 (Adaptability Score): AS(e) is the cardinality

of the set of alternatives {alte
1, . . . ,alte

n} available for an
element e.

AS(e) = | {alte
1, . . . ,alte

n} |,where (1)

• e is an element (an activity, event, or gateway) of the
process language.

• alte is a semantically equivalent alternative to language
element e.

This score needs to be determined for every language element.
The next step towards computing an adaptability metric as
depicted in Fig.1 is the normalization and aggregation of the
scores for all elements of a complete process.

A. Definition of the Metrics

For the definition of an adaptability metric based on
adaptability scores, two crucial problems are to be solved:

1) How to turn the scores into a meaningful relative value?
Absolute values are common for software metrics, but
often hard to interpret. This is much easier with relative
values, which range in a certain interval, as for instance
percentage values. That way, values close to the upper
bound of the interval can be identified as referring to
high quality and vice versa.

2) How to normalize this value with respect to process
size? Different real-world processes can be expected to
have different sizes. Metric values should be normalized
with respect to process size, because otherwise they
cannot meaningfully be used to compare processes of
different sizes.

The first problem can be solved by introducing an adaptability
degree AD(e) that turns an adaptability score as defined in
the previous section into a relative value:

Definition 2 (Adaptability Degree): The adaptability de-
gree AD of an element e is a function that maps an element
e to a value in the interval of zero and one, i.e., a percentage
scale.

AD(e)→ [0,1] (2)

It is a design choice of our approach to map degree values to
the interval of [0,1]. Strictly speaking, we could choose
any interval, but the reason we choose [0,1] is one of
understandability. This interval resembles a percentage scale
and this scale is easily understood by most people. This
eases the interpretation of the metric to some degree and
thus lowers the barrier for its adoption. The question of what
values in this scale refer to high or low depends on how the
mapping is achieved. This is the central difference between
the different metrics we introduce below. Hence, we redefine
the adaptability degree for each adaptability metric in the
following sections.

The second problem can be solved by following the
approach taken by previous studies [22], [23] and computing
the arithmetic mean of all adaptability degrees of the different
elements of a process. Hence, an adaptability metric AM(p)
of a process p is defined as follows:

Definition 3 (Adaptability Metric):

AM(p) =

0 if p = /0

AD(e1), . . . ,AD(en) otherwise
(3)

• p is a process that consists of the elements e1, . . . ,en,
i.e., it corresponds to the set of elements, which make
up the process p = {e1, . . . ,en}

• For an empty process, i.e., p = /0, AM(p) is defined as
zero, i.e., AM(p) = 0

• For an nonempty process, i.e. p = {e1, . . . ,en}, AM(p)
is defined as the arithmetic mean of adaptability degrees
of the elements of the process: AD(e1), . . . ,AD(en)

In the following sections, we propose different ways of
computing an adaptability degree for a given process element,
and hence different adaptability metrics.

B. Binary Adaptability Degree

The first way for computing adaptability degrees is a binary
mapping. Here, AD(e)→{0,1} applies, i.e., every element
is mapped to a degree of zero or one. Such a mapping is,
for instance, used in [22].

This mapping is achieved by applying a threshold on the
adaptability score for an element. The score, as specified
in Def. 1, is an absolute representation of the adaptability
of an element, the higher the better. When comparing the
elements of one language, it is possible to distinguish high
adaptability scores with respect to all scores of the language
from low ones. In the binary mapping, we assign a degree
value of one to elements with high scores and a value of
zero to elements with low scores. To achieve this, a suitable
threshold value needs to be found. For instance, the threshold
can be defined at 50%. This means that elements that have
lower adaptability scores than 50% of all language elements
are mapped to zero and elements that have higher or equal
scores to 50% of all language elements are mapped to one.
Put formally:

Definition 4 (Binary Adaptability Degree):

ADbinary(e) =

{
1, if AS(e)≥ (t ∗R)
0, otherwise

,where (4)

• R∈N0; R is a reference value, the maximum adaptability
score achieved by any element in the language under
consideration, i.e., ∀e,AS(e)≤ R

• t ∈]0,1[; t marks a threshold that is used to discriminate
between high and low adaptability values

As a consequence, a binary adaptability metric AMbinary(p)
is based on the binary adaptability degree: AMbinary(p) =
ADbinary(e1), . . . ,ADbinary(en). An appropriate threshold

value t that results in meaningful metric values can only
be fixed based on practical experiments. In Section V, we
evaluate several different thresholds and select the most
appropriate one.

C. Weighted Adaptability Degree

The binary degree maps the score values to the boundaries
of the interval of [0,1]. The purpose of a weighted mapping
is to utilize the full scale of this interval. That way, the
resulting metric might provide a more fine-grained and
precise quantification of adaptability. We define the weighted
aggregation as follows:

Definition 5 (Weighted Adaptability Degree):

ADweighted(e) = AS(e)/R,where (5)

• R refers to the maximum adaptability score as defined
in Def. 4

• ∀e,AS(e)≤ R; implies that ADweighted(e)→ [0,1]
As a result, the adaptability degree of every language element
is relative to the most adaptable element of the language.
This leads to the desired normalization to the interval
of [0,1]. A weighted adaptability metric AMweighted(p) =
ADweighted(e1), . . . ,ADweighted(en) is based on the weighted
adaptability degree.

IV. THEORETICAL VALIDATION

Validation of software metrics is a crucial task [27]. A
theoretical validation clarifies the properties of the metrics
and is the basis for the selection of the proper statistical
methods for an interpretation. Here, we use two theoretical
validation frameworks for validating our metrics [28], [29].
Both of these frameworks are frequently used in studies
similar to this one, e.g. [18], [19], [30], and address
measurement theory and construct validity.

A. Measurement Theory

The first validation framework [28] specifies different
categories of code metrics. Its aim is to “make the measure
definition process more rigorous and less exploratory” [28,
p. 71]. It summarizes the work of previous approaches that
define desirable metric properties and has been conceived
primarily for object-oriented systems. Nevertheless, it is
applicable for process-based systems as well and has been
used for this purpose in similar studies, e.g. [18], [19]. The
framework takes the generic view of a system S that consists
of a set of elements E and a set of relations R among
them, i.e., S =< E,R >, R ⊆ E × E. This metaphor can
directly be applied to process-based systems, where a system
S corresponds to a process, the set of elements E to the set
of activities, gateways, and events of the process, and the set
of relations R among elements to the control-flow relations
of the process graph.

The framework defines several metric categories, being
size, length, complexity, cohesion, and coupling. Furthermore,

it lists the formal properties that metrics of each category
should fulfill. The metrics we define here fit best into the
category of complexity metrics, although we take a slightly
different view on the nature of complexity. According to [28],
the complexity of a system originates from the relationships
among system elements only, whereas atomic elements have
no inherent complexity. In our point of view, complexity
originates from the relationships among system elements
and their inherent complexity (in terms of this paper, their
inherent adaptability) in combination. Notwithstanding, the
framework is still applicable here. A second difference of our
metrics to the complexity metrics of [28] results from the
fact that we normalize our metrics with respect to the size
of the system. For [28], complexity metrics yield absolute
values. The purpose of the normalization here is to enable the
direct comparison of systems of different size, as discussed
in Section III-A. Hence, we deal with normalized complexity
metrics similar to the metrics presented in [18].

According to [28], complexity metrics should fulfill the
properties of nonnegativity, null value, symmetry, monotonic-
ity, and additivity.

1) Nonnegativity: Complexity metrics should yield non-
negative values. Since the adaptability score is defined as
the cardinality of a set, it is always nonnegative. Moreover,
adaptability degrees are mapped to the interval of [0,1].
The arithmetic mean of a set of values in this interval,
i.e., an adaptability metric as defined in Def. 3, is always
nonnegative.

2) Null value: The complexity of an empty system should
be zero. In our case, an empty system corresponds to a
process p with no elements, i.e., p = /0. For this case, AM(p)
is defined as zero in Def. 3.

3) Symmetry: The labeling for representing the relation-
ships among system elements should not affect the metric
value. Here, the labeling refers to the ordering of elements in
the process graph. The reordering of elements in the process
graph, without altering control-flow semantics, is possible for
a variety of elements, for instance in the case of parallelism.
Symmetry means that two processes p =< E,R > and p′ =<
E,R′ > with identical elements E and control-flow semantics
but different element ordering R and R′ should have the
same metric value. We compute adaptability on a per-element
basis through the adaptability degree. This degree is fixed
independently of an elements position in the process graph,
so symmetry holds: AM(p) = AM({e1, . . . ,en}) = AM(p′)

4) Monotonicity and Additivity: When two unrelated parts
of a system are taken together, the resulting complexity
should at least be equal to the sum of the combined parts.
This means that complexity metrics should be additive and
monotonous. Additivity holds for adaptability degrees, but
not for the metrics, due to normalization. We apply the
arithmetic mean to achieve a normalization with respect to
the size of a process and adding up the mean values of two
process fragments is not meaningful. Hence, additivity in

the sense of [28] does not hold for reasons of normalization.
Nevertheless, adaptability metrics are still monotonous. For
instance, let p1 = {e1, . . . ,ei} and p2 = {e j, . . . ,en} be two
unrelated parts of process p:

AM(p) = AM(p1∪ p2) = AM({e1, . . . ,en}) =
AD(e1,)+ . . .+AD(ei)+AD(e j)+ . . .+AD(en)

N|p1∪p2|

≥ min(AM(p1),AM(p2))

The metric value of two process fragments taken together
cannot be lower than the metric value of the less adaptable of
the two fragments and therefore the metrics are monotonous.
This differs slightly from the definition in [28] which requires
that metric values should be at least as high as the sum
of the values of the fragments, but does not conflict with
monotonicity, as they still are always higher than the lower
of the two values.

To summarize the above discussion, adaptability metrics
are normalized complexity metrics which fulfill the properties
of nonnegativity, null value, symmetry, and monotonicity.

B. Construct Validity

The second validation framework [29] addresses construct
validity. It helps to clarify whether the metrics actually
measure what they are intended to measure. The framework
takes a qualitative approach and specifies ten questions that
have to be answered for a proposed metric. By attribute, [29]
refers to the quality characteristic to be measured and by
measurement instrument the authors refer to the tool with
which metric values are computed. In the following, we
answer the questions for our metrics:

1) What is the purpose of the metrics? The purpose is
the facilitation of private self-assessment and improvement,
and the information of developers and system administrators
about the adaptability characteristics of a process. When
having to port a process, the metrics can help to make the
decision whether it is worth to invest in its adaptation.

2) What is the scope of the metrics? The scope of the
metrics is a single project of one workgroup. The metrics
are applicable during and after development.

3) What attribute are the metrics trying to measure? The
metrics try to measure the adaptability of a process, the ease
with which the elements of a given process can be modified
at design-time without changing the execution semantics of
the process.

4) What is the natural scale we are trying to measure?
The scale of the attribute is intrinsic to the attribute itself and
independent of the way in which we try to quantify it. At the
current time, we cannot tell what the scale of adaptability
is, but it can reasonably be assumed that processes differ
in their adaptability in a way that allows us to construct a
natural ordering. Hence, the attribute of adaptability at least
has an ordinal scale.

5) What is the natural variability of the attribute? We do
not know in which ranges adaptability typically varies. Being
a technical attribute inherent to a process, we know that it is
not subject to variation common for human attributes, such
as developer productivity depending on the time of the day.

6) What are the metrics and measurement instrument? All
the metrics, the functions that assign values to the attribute,
are formally defined in Section III-A. Adaptability scores
of elements are fixed values and obtained through counting.
Adaptability degrees and metrics are computed based on this.
The measurement instrument is a static analyzer in which
we implemented the metrics computation, explained in the
practical evaluation in Section V.

7) What is the natural scale of the metrics? The metrics
are defined in Def. 3 on an interval scale of [0,1].

8) What is the natural variability of the instrument? This
question refers to the measurement error of the instrument,
in our case a static analyzer. Since we compute the metrics
through static analysis, there is no variability of the instru-
ment for subsequent analyses of the same process. There is no
way in which we can guarantee the absence of errors in our
software. For instance, programming errors that impact the
metric values the tool produces might exist. We try to limit
the amount of errors by open sourcing the tool and making all
of the code available to public scrutiny, and by providing an
excessive set of unit tests for the tool itself. Another source
of measurement error are the adaptability scores encoded in
the tool. These are based on human judgement and, naturally,
we can err in our understanding of the semantics of BPMN
elements. We tried to minimize these errors through in-group
peer review.

9) What is the relationship of attribute and metric value?
Our metrics are directly [27] related to process elements.
Given elements with a higher degree of adaptability are
introduced into the process, this will be detected by our
measurement instrument and the resulting metric value
will increase accordingly. As discussed in Section III, the
adaptability of an element is related to the number of
alternatives available to that element.

10) What are side effects of the measurement instrument?
Humans are good at modifying their behavior when being
measured to produce more desirable metric values without
changing the underlying attribute. Since we measure process
code, no such influence is possible.

V. PRACTICAL EVALUATION

The purpose of the practical evaluation is to see how the
different metrics perform in practice and is an important part
of their validation [27]. It allows to accomplish a meaningful
selection of useful metrics and thresholds and allows to see
which practical properties hold for the different metrics. In the
next section, we first describe the design and instrumentation
of the evaluation, followed by the discussion of the results.

A. Design and Instrumentation

Experiments in software engineering typically follow a
certain scheme [31, pp. 85ff.]. The goal of this evaluation is to
analyze real-world processes for the purpose of assessing the
metrics and selecting the most appropriate ones. To meet this
goal, we evaluate software that is finished and available, i.e.,
we perform an off-line experiment. Using the evaluation, we
can validate several quality factors for the different metrics,
addressed by the following hypotheses:

1) The weighted adaptability computation improves dis-
criminative power in comparison to a binary computa-
tion: The ability to distinguish between different pieces
of software, the discriminative power, is an important
quality factor of a software metric. We expect that the
weighted computation, due to more fine-grained scoring,
outperforms the binary computation with respect to this
quality factor.

2) The metrics can be used for comparing processes of
different size: Another important quality factor of a
software metric is the ability to allow for a comparison
of programs of very different size. This is often
problematic, especially with complexity metrics [32].

3) The metric values are resilient to minor changes in the
underlying data: Minor modifications to process code
should not result in significant changes to the metric
value, since this would imply that the mechanism of
computation is unstable.

A practical evaluation needs to be based on real-world process
models and, therefore, on a particular process language. We
use the BPMN 2.0.2 specification [5] for this evaluation,
but any of the languages discussed in the related work
section would have been suitable. BPMN currently is the most
dynamic in terms of new and evolving runtime environments
and for this reason, we base our evaluation on BPMN.

To implement the approach, it is necessary to set adaptabil-
ity scores, as defined in Def. 1, for every relevant element of
BPMN. This language offers a variety of different process
diagrams, but since our software metrics are specially directed
at executable artifacts, we limit the evaluation to BPMN
processes [5, pp. 145–314]. We reviewed the specification
and set scores for all elements of processes, that is activities,
including tasks and subProcesses, gateways, and events. Thus,
we cover all control-flow aspects of BPMN, but abstract from
data-flow in this evaluation. Moreover, we omit language
elements that are relevant to the visualization of the process
only, such as lanes. The result is a total of 94 language
elements for which we set a score. Thereafter, we extended
our metrics suite for computing portability metrics, the prope
tool1, with a static analyzer that detects the occurrence
of the BPMN elements important here and performs the

1The project page of prope is located at http://uniba-dsg.github.io/prope/.
This page also contains information on how to execute the metrics suite
and analyze BPMN processes.

computation of the defined adaptability metrics. This tool is
publicly available and all adaptability scores can be examined.

As the basis for a practical evaluation, we need concrete
data in the form of BPMN processes. We gathered this data
from numerous open source projects with the help of the
Openhub Open Source network2. This network currently
indexes more than 650 thousand open source projects and
allows to search their code. To obtain our primary data set,
we queried the network on May 15th 2014 for files that:

1) have the file extension bpmn, bpmn2, or xml,
2) contain the keyword definitions, the top-level element

of a BPMN-compliant file, and
3) contain the BPMN 2.0 namespace.

We downloaded and analyzed the resulting files using the
static analyzer. We tried to parse every file downloaded from
Openhub and if we could find a valid definitions element
and at least one process element beneath it, we computed
the adaptability metrics for it. In total, this resulted in 2997
BPMN processes. We re-performed the query on October
10th 2014, to obtain the same data set at a later point in time.
This is necessary for evaluating hypothesis 3.

In the following sections, we first describe the nature
and construct usage of the gathered processes. Thereafter,
we present and discuss descriptive metric data and evaluate
several hypotheses to determine the most useful metrics.

B. BPMN Processes and Usage of Elements

The processes we obtained can be seen as representative
of the open source usage of BPMN, since they are all
gathered from freely accessible projects. We performed
several correctness checks, such as the correct usage of
namespaces and the validation of element references, on
the processes and excluded them from the analysis if they
did not pass these checks. For instance, despite the fact
that a file contains the correct BPMN 2.0 namespace, a
process defined in it might use a different one. The amount
of such processes in our data set is negligible and more than
99% of the analyzed processes are using the correct BPMN
namespace. Moreover, we validated element references in the
processes using the BPMN-Reference-Validator3, and could
detect issues, such as an EventDefinition referenced in an
event but not found in the process, in 8% of the processes.
This step reduced the initial set of processes from 2995
to 2745. Finally, 12% of the processes, a total of 327, are
explicitly marked as executable, i.e., the isExecutable flag
of the process element is set to true.

In an influential paper [33], which also had impact on
the current version of BPMN [34], zur Muehlen and Recker
analyzed the usage of BPMN elements in process models

2More information on the network can be found on the network page
located at http://www.openhub.net/.

3This is a validation tool for BPMN 2.0 files. Please see the project
page located at http://www.uni-bamberg.de/pi/bpmn-constraints for more
information.

and found that only a very small subset of the existing
elements were actually used in practice. As this also has
implications on our metrics, we reproduced this analysis
for the processes at hand. The plot in Fig. 2 depicts the
occurrence frequency of selected BPMN elements, i.e., the
percentage of processes in which the elements occur. We
limit the figure to the ten most frequent elements found in the
processes. Although the evaluation from [33] uses an older

Figure 2. Occurence Frequency of BPMN Elements

revision of BPMN, our results largely reinstate theirs. By far
the most common elements in BPMN processes that occur
in almost all processes are sequence flows and ordinary start-
and end events. The next most frequent elements are two
specific types of tasks. This is similar to [33] where tasks are
not separated by a specific type. The occurrence frequency
of elements is important to the metrics computation for the
following reason: The most frequent elements will need to
be present in every process and adapting them is simply not
an option. If included in the adaptability computation, these
elements would introduce noise into the metric value. For
instance, sequence flows are very common in any process
and including them in the computation would introduce a
strong weighting towards the adaptability of sequence flows
in general. Since they cannot be adapted, this weighting
would be noise. Based on the data depicted in Fig. 2, we
can exclude the most common elements from the metrics
computation, being the elements that occur in more than
two thirds of all processes. These are sequence flows and
ordinary start- and end events.

C. Comparison of the Metrics
Table I lists descriptive statistics4 for the processes, sorted

into executable and nonexecutable processes, i.e., processes

4All statistical computations in this paper were performed using the
R software [35]. The scripts that produce the data presented here are
also publicly available as part of the static analyzer. That way, the results
presented here can be reproduced.

Table I
STATISTICS DATA FOR PROCESS LIBRARIES (ROUNDED TO TWO DECIMAL PLACES)

Process Group N Statistics AMbin., AMbin., AMbin., AMbin., AMweightedt = 0.2 t = 0.4 t = 0.6 t = 0.8

Mean 0.91 0.88 0.60 0.09 0.56
Std. Dev. 0.14 0.16 0.15 0.16 0.14executable 327
Disc. Pow. 0.08 0.09 0.12 0.09 0.21

nonexecutable 2418
Mean 0.96 0.93 0.59 0.09 0.59
Std. Dev. 0.12 0.14 0.19 0.16 0.12
Disc. Pow. 0.02 0.02 0.02 0.01 0.05

that have the isExecutable flag set to true or false respectively.
We computed the binary metric as defined in Section III-B
with the thresholds set at 20%, 40%, 60%, and 80% of
the most adaptable element of the language to see which
threshold performs best, and the weighted metric as defined
in Section III-C. The setting of these thresholds is a design
choice and it might be valuable to test their sensitivity at
a more granular level in future work. The metric values
are very similar for the two process groups, but there are
strong differences among the different metrics. A first step
is to examine if there are significant differences between
the adaptability of executable and nonexecutable processes.
To determine this, we first performed the Shapiro-Wilk test
to see if the metric values are normally distributed. Since
this is clearly not the case5, we chose a nonparametric
test, the Mann-Whitney U test [36] to find out if there
are differences in the distributions of the metric values for
the two process groups. The null hypothesis here is that
there are no significant differences in the distributions of the
metric values for the two process groups. Here, p-values do
not reach a significant level for any of the metrics, so the
null hypothesis cannot be rejected and there seem to be no
significant differences between executable and nonexecutable
processes in the data at hand. The reason for this might be
that most processes we obtained are in fact used for execution,
but not marked with the respective flag. In the following,
we evaluate the previously stated hypotheses regarding the
quality of the metrics.

1) Hypothesis 1 – Discriminative Power: We can show
that our metrics perform better when analyzing processes
marked for execution and we can filter for the metrics that
are particularly good. This can be achieved by looking at
the discriminative power of the metrics, their ability to
differentiate between different processes. The better a metric
differentiates between different processes, the better it can
be used for quality comparison and ranking of processes. To
determine the discriminative power, we removed all duplicate
metric values from the different data sets, resulting in a
list of unique metric values for each metric and process
group. By comparing the amount of unique values to the
total amount of values, we obtained the percentage of unique

5Due to space limitations, we omit the presentation of the results of the
Shapiro-Wilk normality test here.

Table II
DESCRIPTIVE STATISTICS AND MANN-WHITNEY U TEST FOR

DIFFERENCES IN PROCESS SIZE

Process Nsmall Nlarge Statistics AMbin., AMweighted
Group t : 60%

x̃small 0.67 0.62
x̃large 0.58 0.53

p 0.004 0.09exec. 62 80

U 2559 2803

nonexec. 573 564

x̃small 0.67 0.62
x̃large 0.43 0.54

p 2.2e−16 2.2e−16

U 220285 213544

values for the processes in the different sets. These percentage
values are listed in the third row of each process group
in table I. It can be seen that the discriminative power is
much higher for executable processes and in particular the
weighted adaptability degree performs best. Looking at the
binary degrees, a threshold set at 60% yields best results.
This narrows the scope of the useful metrics to the weighted
degree and the binary degree with a threshold set at 60%.

2) Hypothesis 2 – Process Size: A further quality charac-
teristic of software metrics is the ability to compare systems
of different size. Typically, metrics tend to produce very
different values when the system size differs a lot [32], thus
rendering them insufficient for comparing systems of a very
different size. To investigate how well our metrics perform in
the face of processes of different size, we extracted two sets
of processes. These are small and large processes separated
into executable and nonexecutable groups. The set of small
processes refers to the first quartile with respect to the number
of elements in the process, i.e., the 25% smallest processes.
In the same fashion, the set of large processes corresponds
to the fourth quartile with respect to the elements in the
process. We use the Mann-Whitney U test [36] as above
to see if the metrics for small and large processes differ in
their distribution. The null hypothesis here is that there are
no significant differences in the distributions of the metric
values for the two process groups. We limit this comparison
to AMweighted and AMbinary with a threshold set at 60%.

Table II depicts the results of this test separated by process
groups. Because we are doing four tests, we have to adjust
the significance level to 0.05/4 = 0.0125. In all but one case,

Table III
DESCRIPTIVE STATISTICS AND ACCURACY FOR REPEATED

MEASUREMENTS

Process N1 N2 Statistics AMbin., AMweighted
Group t : 60%

x̃1 0.63 0.59
x̃2 0.63 0.57exec. 327 565

Acc. 0 0.04

nonexec. 2418 1921
x̃1 0.67 0.62
x̃2 0.67 0.62

Acc. 0 0

p-values become significant, meaning that the distributions
of the process groups for the metrics really are different.
Consequently, these metrics should be treated with care
when comparing processes of very different size. The only
exception to this is AMweighted for executable processes. Here,
no significant differences of the metric values for small and
large processes could be detected. This means that the metric
really can be used for comparing processes of different size.

3) Hypothesis 3 – Stability: A third quality factor for
the metrics addresses their resilience to variances over time.
Repeated measurements should produce similar results to
demonstrate the stability of the mechanism of computation,
i.e., the predictability of the metric value. [27, p. 12]
recommends to evaluate this aspect by checking if metric
values of repeated measurements differ only up to a certain
accuracy threshold. This can be evaluated with the following
formula: ∣∣∣∣AM(p2)−AM(p1)

AM(p2)

∣∣∣∣< Acc.T hreshold (6)

By comparing the metric values of different snapshots of our
data set over time, we can evaluate this aspect. For this reason,
we repeated the data gathering described in Section V-A
five months later and obtained a second snapshot of the
data. This data set is slightly smaller, with 2719 instead of
2997 processes, but contains a larger amount of executable
processes with 565 instead of 327 processes. Since we do
not compare single processes, but different sets of processes,
we replace the metric values in equation 6 with the median
values of the different sets. As [27] leaves no hint for a
suitable accuracy threshold, we set it to 0.05, meaning that the
difference in metric values of repeated measurement should
be no higher. The median values and results are depicted
in table III. In nearly all cases, median values are identical.
In case of the weighted metric for executable processes, the
result is 0.04 which is still below the threshold.

Summarizing the previous paragraphs, we can frame an
answer to the research question posed in the introduction. The
weighted adaptability metric AMweighted performs best with
respect to discriminative power, allows for the comparison
of processes of different size, and produces stable results.
Hence, it is the metric we recommend for quantifying the
adaptability of executable processes.

VI. SUMMARY AND CONCLUSION

In this paper, we proposed and formally defined a set
of metrics for measuring the design-time adaptability of
process-based systems. We validated the proposed metrics
theoretically with respect to measurement theory and con-
struct validity. We implemented the metrics computation
for BPMN processes and gathered a large set of real-world
processes for a practical evaluation. Based on this evaluation,
we could select one metric which performed best.

Various directions of future work follow from this. First,
threshold values of the binary adaptability metric could be
tested at a more granular level to determine the sensitivity
of the threshold value. Second, adaptability is just one part
of a measurement framework for evaluating the portability
of processes. The construction of this framework is our long
term goal. Other quality characteristics, such as replaceability,
still remain open for quantification. Third, the testing of
the metrics computation for process languages other than
BPMN would also be desirable. Fourth, enabling effort
prediction based on the metrics would be valuable. Most
effort prediction models estimate effort based on lines-of-
code. Since we quantify adaptability based on atomic process
elements, which correspond to a higher-level notion of lines-
of-code, it can be expected that there is a relation between
effort and our metrics.

REFERENCES

[1] M. Dumas, W. M. P. van der Aalst, and A. H. M. ter Hofstede,
Process-Aware Information Systems: Bridging People and
Software Through Process Technology. Wiley, 2005.

[2] W. M. P. van der Aalst, “Business Process Management: A
Comprehensive Survey,” ISRN Software Engineering, pp. 1–37,
2013.

[3] C. Peltz, “Web Services Orchestration and Choreography,”
IEEE Computer, vol. 36, no. 10, pp. 46–52, October 2003.

[4] M. P. Papazoglou and D. Georgakopoulos, “Service-oriented
Computing,” Communications of the ACM, vol. 46, no. 10,
pp. 24–28, October 2003.

[5] ISO/IEC, ISO/IEC 19510:2013 – Information technology
- Object Management Group Business Process Model and
Notation, November 2013, v2.0.2.

[6] OASIS, Web Services Business Process Execution Language,
April 2007, v2.0.

[7] R. Khalaf, A. Keller, and F. Leymann, “Business processes
for Web Services: Principles and applications,” IBM Systems
Journal, vol. 45, no. 2, pp. 425–446, 2006.

[8] S. Harrer, J. Lenhard, and G. Wirtz, “Open Source versus
Proprietary Software in Service-Orientation: The Case of
BPEL Engines,” in International Conference on Service
Oriented Computing. Berlin, Germany: Springer Berlin
Heidelberg, 2013.

[9] P. Merson, A. Aguiar, E. Guerra, and J. Yoder, “Continuous
Inspection: A Pattern for Keeping your Code Healthy and
Aligned to the Architecture,” in 3rd Asian Conference on
Pattern Languages of Programs, Tokyo, Japan, March 2014.

[10] J. Lenhard, “Towards Quantifying the Adaptability of Exe-
cutable BPMN Processes,” in Proceedings of the 6th Central-
European Workshop on Services and their Composition,
Potsdam, Germany, February 2014.

[11] WfMC, Process Definition Interface – XML Process Definition
Language, August 2012, v2.2.

[12] S. Harrer, J. Lenhard, and G. Wirtz, “BPEL Conformance
in Open Source Engines,” in IEEE SOCA International
Conference on Service-Oriented Computing and Applications.
Taipei, Taiwan: IEEE, December 17-19 2012.

[13] ISO/IEC, Systems and software engineering – System and
software Quality Requirements and Evaluation (SQuaRE) –
System and software quality models, 2011, 25010:2011.

[14] T. Gilb, Principles of Software Engineering Management.
Addison Wesley, 1988, ISBN-13: 978-0201192469.

[15] J. McCall, P. Richards, and G. Walters, “Factors in Software
Quality – Concept and Definitions of Software Quality,”
General Electric Company, Sunnyvale, California, USA, Tech.
Rep., 1977.

[16] ISO/IEC, Software engineering – Product quality – Part 1:
Quality model, 2001, 9126-1:2001.

[17] ——, Systems and software engineering – Systems and
software Quality Requirements and Evaluation (SQuaRE) –
Measurement of system and software product quality, 2013,
25023.

[18] J. Lenhard and G. Wirtz, “Measuring the Portability of Service-
Oriented Processes,” in 17th IEEE International Enterprise
Distributed Object Computing Conference (EDOC2013), Van-
couver, Canada, September 2013.

[19] J. Lenhard, S. Harrer, and G. Wirtz, “Measuring the Installabil-
ity of Service Orchestrations Using the SQuaRE Method,” in
IEEE International Conference on Service-Oriented Comput-
ing and Applications. Kauai, Hawaii, USA: IEEE, December
16-18 2013.

[20] Z. Zhou, S. Bhiri, H. Zhuge, and M. Hauswirth, “Assessing
Service Protocol Adaptability Based on Protocol Reduction
and Graph Search,” Concurrency and Computation: Practice
and Experience, vol. 23, no. 9, pp. 880–904, 2011.

[21] M. Salehie and L. Tahvildari, “Self-Adaptive Software:
Landscape and Research Challanges,” ACM Transactions on
Autonomous and Adaptive Systems, vol. 4, no. 2, 2009.

[22] N. Subramanian and L. Chung, “Metrics for Software
Adaptability,” in Software Quality Management Conference,
Loughborough, UK, April 2001.

[23] D. Perez-Palacin, R. Mirandola, and J. Merseguer, “On the
Relationships between QoS and Software Adaptability at the
Architectural Level,” Journal of Systems and Software, vol. 87,
no. 1, pp. 1–17, 2014.

[24] B. Weber, S. Rinderle, and M. Reichert, “Change Patterns
and Change Support Features - Enhancing Flexibility in
Process-Aware Information Systems,” Data and Knowledge
Engineering, Elsevier, vol. 66, no. 3, pp. 438–466, July 2008.

[25] P. Dadam and M. Reichert, “The ADEPT project: a decade
of research and development for robust and flexible process
support,” Computer Science – Research and Development,
vol. 23, no. 2, pp. 81–97, 2009.

[26] M. Weske, Business Process Management: Concepts, Lan-
guages, Architectures (Second Edition). Springer-Verlag,
Berlin, Heidelberg, 2012, ISBN: 978-3642286155.

[27] IEEE, IEEE Std 1061-1998 (R2009), IEEE Standard for a
Software Quality Metrics Methodology, 1998, revision of IEEE
Std 1061-1992.

[28] L. Briand, S. Morasca, and V. Basily, “Property-based software
engineering measurement,” IEEE Transactions on Software
Engineering, vol. 22, no. 1, pp. 68–86, 1996.

[29] C. Kaner and W. Bond, “Software Engineering Metrics:
What Do They Measure and How Do We Know?” in 10th
International Software Metrics Symposium, Chicago, USA,
September 2004.

[30] D. Basci and S. Misra, “Measuring and Evaluating a Design
Complexity Metric for XML Schema Documents,” Journal
of Information Science and Engineering, vol. 25, no. 5, pp.
1405–1425, 2009.

[31] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell,
and A. Wesslén, Experimentation in Software Engineering.
Springer, Berlin, Heidelberg, 2012, ISBN: 978-3642290435.

[32] K. E. Emam, S. Benlarbi, N. Goel, and S. Rai, “The Confound-
ing Effect of Class Size on the Validity of Object-Oriented
Metrics,” IEEE Transactions on Software Engineering, vol. 27,
no. 7, pp. 630–650, 2001.

[33] M. zur Muehlen and J. Recker, “How Much Language
is Enough? Theoretical and Practical Use of the Business
Process Modeling Notation,” in Advanced Information Systems
Engineering (CAiSE), Montpellier, France, June 2008.

[34] ——, “We Still Don’t Know How Much BPMN is Enough,
But We Are Getting Closer,” in Seminal Contributions to
Informations Systems Engineering: 25 Years of CAiSE, 2013,
pp. 445–451.

[35] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna,
Austria, 2013. [Online]. Available: http://www.R-project.org

[36] H. B. Mann and D. R. Whitney, “On a Test of Whether one
of Two Random Variables is Stochastically Larger than the
Other,” Annals of Mathematical Statistics, vol. 18, no. 1, pp.
50–60, 1947.

