
Open Source Versus Proprietary Software in
Service-Orientation: The Case of BPEL Engines

Simon Harrer, Jörg Lenhard, and Guido Wirtz

Distributed Systems Group, University of Bamberg, Germany
{simon.harrer,joerg.lenhard,guido.wirtz}@uni-bamberg.de

Abstract. It is a long-standing debate, whether software that is de-
veloped as open source is generally of higher quality than proprietary
software. Although the open source community has grown immensely
during the last decade, there is still no clear answer. Service-oriented
software and middleware tends to rely on highly complex and interre-
lated standards and frameworks. Thus, it is questionable if small and
loosely coupled teams, as typical in open source software development,
can compete with major vendors. Here, we focus on a central part of
service-oriented software systems, i.e., process engines for service orches-
tration, and compare open source and proprietary solutions. We use the
Web Services Business Process Execution Language (BPEL) and com-
pare standard conformance and its impact on language expressiveness
in terms of workflow pattern support of eight engines. The results show
that, although the top open source engines are on par with their propri-
etary counterparts, in general proprietary engines perform better.

Keywords: open source, SOA, BPEL, patterns, conformance testing

1 Introduction

The comparison of open source and proprietary software is a topic that, de-
pending on the audience, can quickly turn from a moderate discussion to a
heated debate. Although it has been investigated a number of times, see for in-
stance [10, 15, 26, 27], a definite answer is seldom found. Studies often focus on
software such as operating systems [26] and despite the wide academic interest in
such comparisons, little work on comparing open source and proprietary service-
oriented software can be found. In the services ecosystem, highly specialized and
inherently complex software that differs from operating systems in nature and
level of abstraction prevails. Especially when it comes to middleware, vendors
established large projects and created highly priced products and it is unclear
whether open source alternatives can compete. This makes the comparison of
open and proprietary service-oriented software especially interesting. What is
more, direct comparisons of open source and proprietary software are typically
impeded by the fact that truly comparable software is hard to find [26, p.260].
In the area of service-oriented computing, however, there exists a large set of
detailed international standards that describe required functionality for Web



Services. Hence, a meaningful and precise comparison becomes feasible in this
area. Here, we compare service-oriented middleware for service orchestration [23],
in particular BPEL engines.

The BPEL 2.0 specification [20] defines a language to implement executable
processes as interactions of Web Services in XML. A series of control- and data-
flow activities are used to specify the order of the interactions, thereby orches-
trating invoked Web Services [23]. A typical example for a BPEL process is
that of a travel agency service which books accommodation, flight and trans-
portation in a single transaction by reusing multiple external services. BPEL is
tightly integrated into the Web Services ecosystem and relies heavily on other
standards, e.g., the Web Service Description Language (WSDL), XPath, and
SOAP. As such, BPEL is a natural choice for implementing processes within
a Web Services-based service-oriented architecture (SOA) [22]. It is frequently
used in scenarios such as business-to-business integration where multiple part-
ners participate in cross-organizational business processes. Within such scenar-
ios, service choreographies define the global perspective of a shared process by
specifying the public collaboration protocol, whereas orchestrations implement
the local perspective of a single partner [23]. BPEL particularly fits to implement
these orchestrations due to its inherent usage of vendor-independent technolo-
gies such as Web Services and XML, and has been used in industry standards,
for example [24], and various studies, e.g., [9, 11].

These approaches rely, among other criteria, on the existence of fully con-
formant BPEL engines, which provide two of the key selling points of BPEL,
namely platform independence and portability of process definitions. Therefore,
standard conformance is a highly relevant selection criterion for projects in in-
dustry or academia that leverage BPEL. For this reason, we use standard confor-
mance as the central comparison factor in this study. A comparison of additional
quality factors, such as performance, is also valuable, but we defer this to future
work. Directly related to standard conformance and potentially more insight-
ful is the factor of expressive power. Expressive power refers to the ease with
which concepts typically needed in a language or system can be expressed in that
system. The more concepts supported and the easier they can be expressed, the
more suitable the system is. For process languages such as BPEL, expressiveness
is typically measured in terms of workflow pattern support [30]. Such patterns
are derived from real world systems and usage scenarios, describing features
of processes that are repeatably used. Thereby, patterns can provide meaning-
ful insights into the capabilities of engines. If an engine is not fully standard
conformant and lacks several features, it may also suffer from a reduction of
expressiveness. Hence, we consider expressiveness of engines as the second com-
parison factor. In previous work [8], we evaluated the standard conformance of
five open source engines and could show that it varies strongly among them.
Here, we complement this evaluation by extending the comparison to a) pro-
prietary engines and b) workflow pattern support. These proprietary engines
often claim to excel in terms of performance and are part of large and optimized
middleware solutions. We evaluate three proprietary engines and contrast the



results to [8]. Furthermore, we present a test suite for automatically evaluating
workflow patterns [30] support to determine the effects of standard conformance
of engines on their expressiveness. In summary, we pose two research questions:

RQ1: Do proprietary BPEL engines outperform open source engines in terms
of standard conformance?

RQ2: How do variances in standard conformance influence the expressiveness
of the language subsets supported by the engines?

The rest of the paper is structured as follows: First, we discuss related work
and, thereafter, outline our testing approach with a focus on the testing of ex-
pressiveness. In section 4, we evaluate, analyze, and discuss the test results and
their implications, and answer both research questions. Last, a summary and an
outlook on future work is given in section 5.

2 Related Work

Related work is subdivided into four different areas: i) alternative process and
workflow languages and systems, ii) testing and verification of BPEL, iii) eval-
uations of the expressiveness of process languages using patterns, and iv) ap-
proaches for comparing the quality of open versus proprietary software.

i) Process languages: Although BPEL has received immense attention in
the last decade, there are a variety of other process or workflow languages and
engines. Yet Another Workflow Language (YAWL) [29] is a formally defined
workflow language based on Petri nets with direct support for workflow pat-
terns [30]. At this time, only one implementation, namely, the YAWL workflow
engine exists. Another notable competitor to BPEL is the Windows Workflow
Foundation [4]. For this language, there is also only a single implementation,
but it is closed source and does not ship with an accompanied specification. In
recent years, the Business Process Model and Notation (BPMN) 2.0 [21] has
gained rising attention. Although the focus of BPMN resides on its visual nota-
tion for business processes, it ships with a mapping to BPEL 2.0 [21, pp. 445–
474]. Today, several implementations of BPMN have arrived. However, nearly
all of them only provide modeling conformance [21, p.1], meaning they can be
used for visualization, but not execution conformance, required for constructing
executable processes. What is more, the BPMN specification offers a lot of room
for interpretation concerning executable processes models. This makes it more
easily adaptable to a different technological context, as opposed to BPEL which
is tailored to Web Service orchestration, but complicates the construction of
processes that can be executed on more than a single engine [6]. Last, the XML
Process Definition Language (XPDL) 2.2 [31] from the Workflow Management
Coalition (WfMC) is a serializable meta model to exchange process definitions
between different products. As opposed to BPEL, XPDL includes and serializes
visual information and is well suited for exchanging BPMN models but does not
provide execution semantics. In summary, we focus on BPEL here, as it provides,
in contrast to other process languages, precisely defined execution semantics, as



well as a variety of open source and proprietary implementations, which are
directly comparable.

ii) Testing of BPEL: Testing and verification of SOAs and Web Services has
been extensively studied. See for instance [3] for a comprehensive overview. When
it comes to conformance testing, a distinction has to be made between approaches
that assert the conformance of concrete services, possibly implemented in BPEL,
to a communication protocol, such as [5, 14], and the testing of an engine to a
language specification, which we do here. Concerning BPEL, research primarily
focuses on unit testing, performance testing, or formal verification of BPEL
processes, and not engines. When it comes to unit testing, BPELUnit is of most
importance [17]. Performance testing approaches for services, such as SOABench
[1], which also benchmarks BPEL engines, and GENESIS2 [13], are based on
generating testbeds from an extensible domain model which can then be used
to gather performance metrics. Here, we conduct standard conformance testing,
thus, instead of testing the correctness of a BPEL process, we test the correctness
of a BPEL engine, and focus on different kinds of metrics. We build upon the
tool betsy1, which we also use in [8], but extend it with capabilities for testing
several proprietary engines and a test suite for the evaluation of workflow pattern
support.

iii) Expressiveness and patterns: Workflow patterns aim to “provide
the basis for an in-depth comparison of a number of commercially available
workflow management systems” [30, p.5]. Patterns capture a distinct feature
or piece of functionality that is frequently needed in workflows and processes
and which should therefore be supported as directly as possible in process lan-
guages. The more patterns a language or system supports, the more expressive
it is. The original pattern catalog [30] consists of 20 workflow control-flow pat-
terns (WCPs) which are subdivided into basic control-flow, advanced branch-
ing and synchronization, structural, state-based, cancellation, and multi-instance
patterns. Although the appropriateness of these patterns is not undisputed [2],
they have been extensively used for benchmarking, designing and developing
languages and systems, as demonstrated by a large array of additional pattern
catalogs and studies, for instance [16, 19, 28]. For this reason, the usage of the
workflow patterns here facilitates the comparison of this study to related work.
The Workflow Patterns Initiative2 already provides evaluations of the expres-
siveness of BPEL 1.1 and two proprietary BPEL 1.1 engines. Here, we focus on
BPEL 2.0 only, as it is the latest published version of the standard for six years.
In [19], multiple pattern catalogs, including the workflow patterns, have been
implemented for WF, BPEL 2.0 and the BPEL 2.0 engine OpenESB. We base
our work on [19] by adapting these BPEL 2.0 implementations of the original 20
workflow patterns to allow for an automatic and repeatable benchmark of eight
BPEL engines and thereby evaluate the effects of BPEL standard conformance
on language expressiveness.

1 This tool can be found at https://github.com/uniba-dsg/betsy.
2 See the project page at http://www.workflowpatterns.com/.



iv) Comparing quality: Software quality comparisons typically focus on
internal quality [26, 27], for instance by computing and comparing source code
metrics for different pieces of software, or external quality [15], by investigating
the usefulness of the software for its end users. Here, we do not look at source
code, which in case of proprietary engines is not available. Instead, we focus
on conformance as an external quality attribute. Conformance determines the
degree to which prescribed functionality is available to the users of an engine.
This has a direct effect on the kinds of patterns that can be implemented on an
engine, and thereby its expressiveness. The more standard-conformant an engine
is, and the more patterns it directly supports, the higher its external quality is.

3 Testing Approach

To be able to compare different engines and answer the research questions, we
need a mechanism for an in-depth and isolated analysis of each engine. The ap-
proach for achieving this kind of analysis is described in this section. Thereafter,
the results are aggregated for the comparison in the following section.

The testing approach consists of the testing setup in general and the expres-
siveness test suite in particular. Within the testing setup, we list the engines
under test, elaborate on the standard conformance test suite, and the steps of a
typical test run.

3.1 Testing Setup

Our testing setup is an adapted and extended version of the setup proposed in [8]
which relies on the publicly available testing tool betsy. The tool can be used
to automatically manage (download, install, start and stop) several open source
engines. Moreover, it provides a conformance test suite which comprises more
than 130 manually created test cases, in the form of standard-conformant BPEL
processes. Since the publication of [8], three open source engines received major
or minor updates. Here, we updated betsy to use the latest versions of these
engines, namely, Apache ODE 1.3.5, bpel-g 5.3, OpenESB v2.3, Orchestra 4.9.0
and Petals ESB 4.13. Furthermore, we added support for testing the conformance
of three proprietary BPEL engines. These engines come from major global SOA
middleware vendors that also participated in crafting the BPEL specification.
Due to licensing reasons, we cannot disclose the names of the proprietary engines,
and, therefore, refer to them as P1, P2 and P3.

The tests are derived manually from the normative parts of the BPEL spec-
ification which are indicated with the keywords MUST and MUST NOT, as
defined in [12]. The test suite is subdivided into three groups resembling the
structure of the BPEL specification, namely, basic activities [20, pp. 84–97] (e.g.,
assign, empty, exit, invoke, and receive), scopes [20, pp. 115–147] (e.g., fault-,
compensation-, and termination handlers) and structured activities [20, pp. 98–
114] (e.g., if, while, flow, and forEach). The various configurations of the BPEL

3 Download links available at https://github.com/uniba-dsg/betsy#downloads



activities of each group form the basis of the test cases, including all BPEL
faults. Hence, every test case of the standard conformance test suite asserts
the support of a specific BPEL feature. Every test case consists of a test defini-
tion, the BPEL process and its dependencies (WSDL definitions, XML Schemas,
etc.), and a test case configuration, specifying the input data and assertions on
the result. All processes are based upon the same process stub, which is shown
in Listing 1, and implement the same WSDL interface containing a one-way
and two request-response operations for exchanging basic data types via the
document/literal binding over HTTP4. To assert the correctness of the process
execution, each test must provide observable output, which is implemented via
a receive-reply pair.

1 <process>

2 <partnerLinks/>

3 <variables/>

4 <sequence>

5 <receive createInstance="true" />

6 <!-- feature under test -->

7 <assign /> <!-- prepare reply message -->

8 <reply />

9 </sequence>

10 </process>

Listing 1. Process stub for conformance tests adapted from [8, p.4]

The tests aim at checking the conformance of a feature in isolation. This is not
completely possible, as the basic structure depicted in Listing 1 and basic input
and output is always required, otherwise the correctness of a test cannot be
asserted. However, all features in the stub could be verified to work in a basic
configuration on all engines and therefore have no impact on the test results.

During a full test run, our tool automatically converts the engine independent
test specifications to engine specific test cases and creates required deployment
descriptors as well as deployment archives. Next, these archives are deployed
to the corresponding engines and the test case configurations are executed. At
first, every test case configuration asserts successful deployment by determin-
ing whether the WSDL definition of the process has been published. Next, the
different test steps are executed, sending messages and asserting the responses
by means of correct return values or expected SOAP faults. When all test cases
have been tested, an HTML report is created from the test results.

The quality and correctness of the conformance test cases were ensured by
validating them against the XML Schema files of their specifications, e.g., BPEL
2.0, WSDL 1.1 and XML Schema 1.1, and by reviewing them within our group.
In addition, all test cases are publicly available and, as a result, already have
been improved by the developers of two of the engines, Apache ODE and bpel-g.
Finally, only 4 of the test cases fail on all engines, hence, approx. 97% of all test
cases succeed on at least one engine, indicating their correctness.

4 This is the preferred binding for achieving interoperability, as defined by the WS-I
Basic Profile 2.0.



3.2 Pattern Test Suite

Table 1 shows the test case implementations for the automatic testing of work-
flow patterns support of the original 20 workflow patterns from [30]. According
to [30] and related studies, a pattern is directly supported (denoted as +) in
a language or system, if at least one direct solution using a single language
construct (activity in BPEL) for the pattern can be found. If the solution in-
volves a combination of two constructs, it is counted as partial support (denoted
as +/−) for the pattern, otherwise, there is no direct support (denoted as −).
The BPEL 2.0 column in Table 1 shows the workflow patterns support by the
specification [19]5.

Table 1. List of workflow patterns from [30] along with number of test cases and
degree of support

Basic Control Flow Patterns BPEL 2.0 Tests
WCP01 Sequence + 1
WCP02 Parallel Split + 1
WCP03 Synchronization + 1
WCP04 Exclusive Choice + 1
WCP05 Simple Merge + 1

Advanced Branching and Synchronization Patterns BPEL 2.0 Tests
WCP06 Multi-Choice + 2
WCP07 Synchronizing Merge + 2
WCP08 Multi-Merge - 0
WCP09 Discriminator - 0

Structural Patterns BPEL 2.0 Tests
WCP10 Arbitrary Cycles - 0
WCP11 Implicit Termination + 1

Patterns with Multiple Instances BPEL 2.0 Tests
WCP12 Multiple Instances Without Synchronization + 3
WCP13 Multiple Instances With a Priori Design Time Knowledge + 2
WCP14 Multiple Instances With a Priori Runtime Knowledge + 1
WCP15 Multiple Instances Without a Priori Runtime Knowledge - 0

State-based Patterns BPEL 2.0 Tests
WCP16 Deferred Choice + 1
WCP17 Interleaved Parallel Routing +/- 1
WCP18 Milestone +/- 1

Cancellation Patterns BPEL 2.0 Tests
WCP19 Cancel Activity +/- 1
WCP20 Cancel Case + 1

The BPEL implementations used here are adopted from [18, 19] and mod-
ified to be automatically testable with betsy, that is, to use the same WSDL
definition and partner service as the conformance test suite. The pattern imple-
mentations work similar to the other test cases and are based on the process
stub presented in Listing 1. Each pattern test case contains an implementation

5 The pattern support evaluation from [19] differs from [25] which evaluates BPEL 1.1.
Please refer to [19] or the technical report [18] for explanatory details.



of a workflow pattern in BPEL. Given an engine successfully deploys the process
and returns the asserted result on invocation, it demonstrates that it supports
the related workflow pattern. Four of the patterns, Multi-Merge, Discriminator,
Arbitrary Cycles and Multiple Instances Without a Priori Runtime Knowledge,
are left untested. These patterns cannot be implemented directly in BPEL (i.e.,
they would require the usage of too many constructs), due to the structuredness
of its control-flow definition and the inability to create cycles using links [19].
Moreover, the tests for three patterns, Interleaved Parallel Routing, Milestone,
and Cancel Activity provide at most partial support, as there is no single ac-
tivity in BPEL that directly implements these patterns. Four of the patterns,
Multi-Choice, Synchronizing Merge, Multiple Instances Without Synchronization
and Multiple Instances With a Priori Design Time Knowledge are implemented
in more than one test case. The reason for this is that multiple alternative im-
plementations of the pattern, with a differing degree of support, are available in
BPEL. For instance, the Multi-Choice pattern is typically implemented in BPEL
using links in a flow activity to activate different parallel control-flow paths at
the same time. However, links are not supported by all engines under test and
these engines would consequently fail to support that pattern. An alternative
implementation of the Multi-Choice pattern that grants partial support can be
achieved by nesting multiple if activities in a flow activity. By including such
alternative tests, we can provide a precise classification of all engines under test.

In summary, if an engine passes a test case, it provides either direct or partial
support depending on the type of the test case. If there are multiple test cases,
the engine is granted the degree of support of the most direct test case.

4 Results and Implications

In this section, we present the test results of a full test run evaluating the stan-
dard conformance and the expressiveness test suite on both, proprietary and
open source engines6. The results are subdivided into standard conformance re-
sults in Table 2 and expressiveness evaluations in Table 3. In the following, we
first discuss the conformance results of the three proprietary engines. Next, we
compare these to the results of the five open source engines and discuss the
implications of this comparison. Last, based on workflow pattern support, the
effects of standard conformance on expressiveness are evaluated and presented
for both engine types.

4.1 Commercial Engines

The conformance results in Table 2 consist of the aggregated number of successful
tests per BPEL activity for each engine as well as the percentage and average
values per engine, engine type, and activity group. In addition, the deployment

6 We executed this test run on a Windows 7 64 bit system with 16 GB of RAM and
an i7-2600 processor.



rate, the percentage of successfully deployed test cases, is given at the bottom
of the table.

Engine P1: Engine P1 ranks first place when compared to the other pro-
prietary products and conforms to the BPEL specification to a degree of 92%,
failing only in eleven of 131 test cases. Nine of these failed tests concern basic
and two concern structured activities, respectively. Language features related to
scopes are fully supported. The major shortcomings of this engine lie in fault
handling and detection. Faults that are expected to be thrown under certain
circumstances are not thrown. For example, the engine does not throw the ex-
pected invalidExpressionValue fault when the startCounter of the forEach

activity is too high or its completionCondition is negative. In addition, XSL
transformations and the invocation of Web Service operations that do not expect
input are not implemented in a standard-conformant fashion.

Table 2. Number of successfully passed conformance tests, aggregated by activity,
group, and engine

Prop. E. Open Source Engines
Activity P1 P2 P3 Ø bpel-g ODE OpenESB Ø Orch. Petals Ø Σ

Basic Activities
Assign 15 7 15 15 10 13 11 8 19
Empty 1 1 1 1 1 1 1 1 1
Exit 1 1 1 1 1 1 1 1 1
Invoke 11 6 7 11 7 3 8 5 12
Receive 4 3 3 4 3 1 1 1 5
ReceiveReply 8 6 6 8 5 6 5 1 11
Rethrow 3 0 1 3 2 1 0 0 3
Throw 5 0 4 5 5 4 0 0 5
Validate 2 0 2 2 0 2 0 0 2
Variables 3 1 1 3 2 2 1 1 3
Wait 3 2 3 3 3 3 2 1 3
Σ 56 27 44 56 39 37 30 19 65

86% 41% 68% 65% 86% 60% 57% 68% 46% 29% 56%
Scopes
Compensation 5 5 5 5 4 5 2 0 5
CorrelationSets 2 0 2 2 2 1 0 0 2
EventHandlers 8 5 7 8 6 6 6 0 8
FaultHandlers 6 5 6 6 6 6 2 5 6
MessageExchanges 3 1 1 3 1 1 1 0 3
PartnerLinks 1 0 1 1 1 1 1 0 1
Scope-Attributes 3 2 3 3 2 3 1 1 3
TerminationHandlers 2 0 0 2 0 2 2 0 2
Variables 2 2 2 2 2 2 2 0 2
Σ 32 20 27 32 24 27 17 6 32

100% 63% 84% 82% 100% 75% 84% 86% 53% 19% 66%
Structured Activities
Flow 9 6 7 9 9 2 7 0 9
ForEach 9 4 6 9 3 9 0 2 11
If 5 4 4 5 4 4 4 4 5
Pick 5 5 5 5 5 4 4 1 5
RepeatUntil 2 2 2 2 1 2 2 0 2
Sequence 1 1 1 1 1 1 1 1 1
While 1 1 1 1 1 1 1 1 1
Σ 32 23 26 32 24 23 19 9 34

94% 68% 76% 79% 94% 71% 68% 77% 56% 26% 62%

Σ of Σ 120 70 97 120 87 87 66 49 131
92% 53% 74% 73% 92% 66% 66% 75% 50% 26% 62%

Deployment Rate 98% 88% 100% 98% 92% 100% 95% 57%



Engine P2: The second engine is the lowest-ranking proprietary product,
as it only supports roughly half of the test cases. Although it supports approx-
imately two third of the scope and structured activity test cases, less then half
of the basic activities are implemented correctly. This is mostly due to the way
faults are propagated in engine P2. If a fault is not handled at root level, the
process fails silently and does not propagate the fault to external callers that are
still waiting for a response. Thus, an external caller gets no hint on the cause
of the error. This contradicts common fault handling principles known in higher
level programming languages and hampers distributed fault handling [7]. As a
consequence, P2 fails all fault related tests, e.g., for the throw, rethrow, and
validate activities, the handling of incoming faults from invoked services, and
tests for standard BPEL faults. This amounts to ten tests for structured activi-
ties, two for scopes and 30 for basic activities, and adds up to 32% of all tests in
total. Another factor that impacts its standard conformance rating is its deploy-
ment rate. Twelve percent of the standard-conformant test cases are rejected by
P2 during deployment resulting in an upper bound of 88% for its conformance
rating. Furthermore, multiple features of the assign activity seem to be unim-
plemented: the XPath extension functions for BPEL, getVariableProperty and
doXslTransform, the assignment of a partnerLink or a property, as well as the
keepSrcElementName attribute of a copy element. Invoke activities cannot be
used with correlationSets or empty messages, and the same applies to embed-
ded fault handlers. Engine P2 does not implement terminationHandlers and
the definition of correlationSets or partnerLinks at the level of a scope is un-
supported, although both constructs work when used on the process level. Event
handling is supported in a basic fashion. However, the onEvent activity does not
support the fromParts syntax and the onAlarm activity does not support the
until element. The initiation of a correlationSet with an asynchronous oper-
ation leads to a failure to correlate on this set in an onEvent message handler.
If used within a scope or at root level, faultHandlers work in most cases.
The only exception to this is the failure to catch a fault that carries additional
fault data using a faultElement. The forEach activity is implemented but
lacks support for configuration related to the completionCondition. In a simi-
lar fashion, the flow activity supports links, but no conditional activation with
joinConditions.

Engine P3: The proprietary engine with the second highest degree of stan-
dard conformance, successfully completing 74% of the tests, is engine P3. It
supports all structured activities in their basic configuration but fails to support
several special cases, such as links in a flow activity that use joinConditions,
and forEach activities that use a completionCondition with successful-

BranchesOnly. In addition, the forEach activity is always executed sequentially
even if the parallel attribute is set. P3 does not support terminationHandlers,
throwing or re-throwing faultData, the keepSrcElementName option of the
copy element and the specification of toParts for messaging activities. More-
over, embedded fault- or compensation handlers for the invoke activity are not



supported. Finally, the remaining tests fail, because certain standard faults, such
as correlationViolation or missingReply, are not thrown as required.

4.2 Comparison of Proprietary and Open Source Engines

This section compares the standard conformance and its effects on expressiveness
of open source engines with that of proprietary engines and answers the two
research questions posed in the introduction. The results of the five open source
engines presented in Table 2 vary slightly from previous analyses [8], because
the engines under test as well as the conformance test suite were updated.

Proprietary engines successfully pass between 53% and 92% of the confor-
mance tests. For open source engines, these numbers vary from 26% to 92%. On
average, proprietary engines pass 73% of the conformance test suite, whereas the
open source engines only achieve 62%. We used a binomial test to verify if this
difference is significant. We tested if the number of successfully passed tests for
open source engines is equal to the corresponding value for proprietary engines at
a significance level of 5%. With a p-value of 2.5e−9, this hypothesis can be safely
rejected in favour of the alternative: Open source engines pass significantly less
tests than their counterparts. A reason for this observation may be that our test
set of open source engines includes engines that could be considered experimen-
tal or premature. This is supported by the fact that the lowest ranking engine
only deploys 57% of the tests and passes 26%. But because we lack market data
on engine usage, we are unable to make a clear distinction on this issue. The
overall situation changes, however, when looking at the top three open source
engines which, to our experience, also are the ones most widely used in practice.
Considering the top three open source engines, standard conformance ranges
at 75%, two percentage points above the corresponding value for proprietary
engines. Using binomial tests as before, we could confirm that there is no signif-
icant difference between the proprietary and the top three open source engines.
The number of successful tests is clearly not lower (p-value of 0.81), but also
not significantly higher (p-value of 0.23) for open source engines. In summary,
based on this data, the answer to RQ1, whether proprietary engines outperform
open source ones, has to be confirmed. In total, proprietary engines provide a
higher degree of support, although the difference balances when only considering
mature open source engines.

Table 3 details the results for workflow pattern support based on the expres-
siveness test suite using the trivalent rating described in section 3.2. Insights on
pattern support can be gained by comparing the engines with the workflow pat-
tern support of BPEL 2.0 shown in the BPEL column. We consider the number
of times an engine is compliant to BPEL (i.e., the engine has the same degree
of pattern support as BPEL), the engine deviates (i.e., the engine only provides
partial support while BPEL directly supports the pattern) and the engine fails
to directly support the pattern, in relation to the total number of patterns. We
exclude the four patterns that cannot be implemented directly in BPEL from
these calculations, as we cannot diagnose support for them in the first place. The
results show that compliance to BPEL in pattern support ranges from 56% to



Table 3. Workflow patterns support per engine, aggregated by pattern, pattern group
and engine

Comm. Eng. Open Source Engines
Pattern BPEL P1 P2 P3 bpel-g ODE OpenESB Orch. Petals

Basic Control-Flow Patterns 100%
WCP01 Sequence + + + + + + + + + 100%
WCP02 Parallel Split + + + + + + + + + 100%
WCP03 Synchronization + + + + + + + + + 100%
WCP04 Exlusive Choice + + + + + + + + + 100%
WCP05 Simple Merge + + + + + + + + + 100%
Advanced Branching and Synchronization Patterns 88%
WCP06 Multi-Choice + + + + + + +/- + +/- 75%
WCP07 Synchronizing Merge + + + + + + +/- + +/- 75%
Structural Patterns 100%
WCP11 Implicit Termination + + + + + + + + + 100%
Patterns with Multiple Instances 50%
WCP12 MI Without Sync. + + + +/- + + +/- +/- +/- 50%
WCP13 MI W. Design T. Know. + + + - + + +/- +/- +/- 50%
WCP14 MI W. Runtime Know. + + + - + + - - - 50%
State-based Patterns 90%
WCP16 Deferred Choice + + + + + + + + + 100%
WCP17 Interl. Parallel Routing +/- +/- +/- +/- +/- +/- - - - 63%
WCP18 Milestone +/- +/- +/- +/- +/- +/- +/- - - 75%
Cancellation Patterns 100%
WCP19 Cancel Activity +/- +/- +/- +/- +/- +/- +/- +/- +/- 100%
WCP20 Cancel Case + + + + + + + + + 100%

compliance 100% 100% 81% 100% 100% 63% 69% 56% 84%
deviation 6% 25% 13% 25% 9%
no direct support 13% 13% 19% 19% 8%

Ø of compliance per engine group 94% 88% 72%

100% for open source engines, wheras proprietary engines excel their competitors
with support ranging from 81% up to 100%. Two open source engines, Apache
ODE and bpel-g, and two proprietary engines, P1 and P2, are completely com-
pliant to BPEL in terms of support. P3 ranks second, whereas the remaining
open source engines Orchestra, OpenESB, and PetalsESB come last.

All engines share the degree of support with BPEL for nine patterns (WCP01-
WCP05, WCP11, WCP16, WCP19-20). For three patterns, several engines devi-
ate from BPEL, whereas five patterns are not directly supported by at least one
engine. As shown in the right-most column in Table 3, engines comply with BPEL
for the basic control-flow patterns, the structural patterns, and the cancellation
patterns. Patterns with multiple instances show most deviations and only in 50%
of the cases, the engines achieve the same rating as BPEL. For advanced branch-
ing and synchronization and state-based patterns, engines provide 88% and 90%
of compliance, respectively. What is more, support for advanced branching and
synchronization patterns is in place for all engines, although two open source
engines only support the patterns using a workaround solution. A similar situa-
tion applies to the the Multiple Instances patterns, where two patterns, WCP12
and WCP13, can be implemented by workaround solutions by three engines.
One proprietary engine fails to support two of the Multiple Instances patterns
(WCP13 and WCP14), and deviates from BPEL for the third Multiple Instance
pattern (WCP12). Several open source engines also fail to support three pat-



terns, namely, the Multiple Instances With a Priori Runtime Knowledge pattern
(WCP14), the Interleaved Parallel Routing pattern (WCP17) and the Milestone
pattern (WCP18). Interestingly, the patterns for which open source and propri-
etary engines deviate from BPEL are almost disjunctive, only WCP14 is not
directly supported in both groups on at least one engine. Moreover, WCP14 is
the least supported pattern as the corresponding test case fails on four engines.
In total, the proprietary engines implement more workflow patterns (94%) than
their open source counter parts (72%). As before, when comparing the three pro-
prietary engines with the top three open source engines, this difference shrinks
to an insignificant level (94% vs. 88%). The proprietary engines provide no di-
rect support in two cases and deviate from BPEL in one case, whereas the top
three open source engines provide no direct support in two cases and deviate
from BPEL in four cases. These results reinforce the answer to RQ1.

The 21 cases of deviation from BPEL are caused by a lack of support for the
flow activity in combination with links (six times), the forEach activity (three
times) in combination with parallel execution (nine times), message correlation
(twice) and isolated scopes (once). These results let us answer RQ2, concerning
the impact of standard conformance on workflow pattern support. All in all, 18
cases of deviation (or 86% of the deviations) are a result of the lack of a standard
conformant implementation of the flow and the forEach activity. Put differently,
the lack of truly parallel execution in an engine is the biggest obstacle to pattern
support. Nevertheless, the impact of standard conformance on pattern support
seems little. Apache ODE, with 66% of successful conformance tests, supports
all workflow patterns that can be directly implemented in BPEL. Even the worst
engine in terms of standard conformance, PetalsESB with only 26% of successful
conformance tests, provides direct or partial support for 13 out of 16 workflow
patterns (81%). To frame an answer to RQ2: Workflow patterns can be directly
implemented with only a moderate degree of standard conformance, but support
for truly parallel execution of activities is a decisive factor.

5 Conclusion and Future Work

In this paper, we presented a comparison of open source and proprietary BPEL
engines in terms of standard conformance and language expressiveness. The re-
sults demonstrate, that proprietary engines provide a slightly higher degree of
standard conformance and language expressiveness than their open source coun-
terparts, and thus are of higher quality. This observation changes when con-
sidering the top three open source engines which are equal to their proprietary
counterparts. The effect of standard conformance on language expressiveness
turned out to be moderate, although parallel execution is a crucial factor.

Future work comprises two aspects: i) adding additional conformance and
expressiveness test suites to get a more precise picture and ii) enhancing the test
suite for testing other criteria, to provide a more comprehensive comparison of
open source and proprietary products. Firstly, the BPEL specification [20, ap-
pendix B] contains a list of 94 static analysis rules specifying which BPEL pro-



cesses must be rejected by a standard conformant engine. A test suite based
on these rules that helps to verify if erroneous processes are correctly rejected
would be desirable. Concerning language expressiveness, as outlined in section 2,
many additional pattern catalogs do exist for which automatic testing would be
beneficial. Secondly, in addition to standard conformance and expressiveness,
performance is also a very important selection criteria for a process engine and a
major quality criterion. The existing infrastructure could be used to provide valu-
able insights on the performance of certain activities and combinations thereof,
as well as of workflow pattern implementations.

References

1. D. Bianculli, W. Binder, and M. L. Drago. Automated Performance Assessment
for Service-Oriented Middleware: a Case Study on BPEL Engines. In Proceedings
of the 19th International World Wide Web Conference (WWW), pages 141–150,
Raleigh, North Carolina, USA, April 2010.

2. E. Börger. Approaches to modeling business processes: a critical analysis of BPMN,
workflow patterns and YAWL. Software & Systems Modeling, 11(3):305–318, 2012.

3. M. Bozkurt, M. Harman, and Y. Hassoun. Testing & Verification In Service-
Oriented Architecture: A Survey. Software Testing, Verificaton and Reliability,
00:1–7, May 2012.

4. B. Bukovics. Pro WF: Windows Workflow in .NET 4. Apress, June 2010. ISBN-13:
978-1-4302-2721-2.

5. M. Geiger, A. Schönberger, and G. Wirtz. Towards Automated Conformance
Checking of ebBP-ST Choreographies and Corresponding WS-BPEL Based Or-
chestrations. In 23rd International Conference on Software Engineering and
Knowledge Engineering, Miami, Florida, USA. KSI, 7.-9. July 2011.

6. M. Geiger and G. Wirtz. BPMN 2.0 Serialization - Standard Compliance Issues and
Evaluation of Modeling Tools. In 5th International Workshop on Enterprise Mod-
elling and Information Systems Architectures, St. Gallen, Switzerland, September
2013.

7. C. Guidi, I. Lanese, F. Montesi, and G. Zavattaro. On the Interplay Between
Fault Handling and Request-Response Service Interactions. In 8th International
Conference on Application of Concurrency to System Design (ACSD), pages 190–
198, Xi’an, China, June 2008.

8. S. Harrer, J. Lenhard, and G. Wirtz. BPEL Conformance in Open Source Engines.
In Proceedings of the 5th IEEE International Conference on Service-Oriented Com-
puting and Applications (SOCA’12), Taipei, Taiwan, December 17-19 2012. IEEE.

9. S. Harrer, A. Schönberger, and G. Wirtz. A Model-Driven Approach for Monitoring
ebBP BusinessTransactions. In Proceedings of the 7th World Congress on Services
2011 (SERVICES2011), Washington, D.C., USA. IEEE, July 2011.

10. J. Hoepman and B. Jacobs. Increased Security Through Open Source. Communi-
cations of the ACM, 50(1):79–83, January 2007.

11. B. Hofreiter and C. Huemer. A model-driven top-down approach to inter-
organizational systems: From global choreography models to executable BPEL.
In Join Conf CEC, EEE, Hong Kong, China, 2008.

12. IETF. Key words for use in RFCs to Indicate Requirement Levels, March 1997.
RFC 2119.



13. L. Juszczyk and S. Dustdar. Programmable Fault Injection Testbeds for Complex
SOA. In P. Maglio, M. Weske, J. Yang, and M. Fantinato, editors, Service-Oriented
Computing, volume 6470 of Lecture Notes in Computer Science, pages 411–425.
Springer Berlin Heidelberg, 2010.

14. K. Kaschner. Conformance Testing for Asynchronously Communicating Services.
In G. Kappel, Z. Maamar, and H. Motahari-Nezhad, editors, Service-Oriented
Computing, volume 7084 of Lecture Notes in Computer Science, pages 108–124.
Springer Berlin Heidelberg, 2011.

15. J. Kuan. Open Source Software as Lead User’s Make or Buy Decision: A Study
of Open and Closed Source Quality. In Proceedings of the 2nd Conference on
The Economics of the Software and Internet Industries, Toulouse, France, January
2003.

16. A. Lanz, B. Weber, and M. Reichert. Workflow Time Patterns for Process-Aware
Information Systems. In Enterprise, Business-Process, and Information Systems
Modelling: 11th International Workshop BPMDS and 15th International Confer-
ence EMMSAD in conjunction with CAiSE, pages 94–107, Hammamet, Tunisia,
June 2010.

17. D. Lübke. Unit Testing BPEL Compositions. In L. Baresi and E. D. Nitto,
editors, Test and Analysis of Service-oriented Systems, pages 149–171. Springer,
2007. ISBN 978-3-540-72911-2.

18. J. Lenhard. A Pattern-based Analysis of WS-BPEL and Windows Workflow. Bam-
berger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik, no. 88,
Otto-Friedrich Universität Bamberg, March 2011.

19. J. Lenhard, A. Schönberger, and G. Wirtz. Edit Distance-Based Pattern Sup-
port Assessment of Orchestration Languages. In On the Move 2011 Confederated
International Conferences: CoopIS, IS, DOA and ODBASE,, Hersonissos, 2011.

20. OASIS. Web Services Business Process Execution Language, April 2007. v2.0.
21. OMG. Business Process Model and Notation, January 2011. v2.0.
22. M. P. Papazoglou and D. Georgakopoulos. Service-oriented Computing. Commu-

nications of the ACM, 46(10):24–28, October 2003.
23. C. Peltz. Web Services Orchestration and Choreography. IEEE Computer,

36(10):46–52, October 2003.
24. RosettaNet. MCC Web Services Profile, June 2010. R11.00.00A.
25. N. Russell, A. H. M. ter Hofstede, W. M. P. van der Aalst, and N. Mulyar. Workflow

Control-Flow Patterns: A Revised View. Technical report, BPM Group, Queens-
land University of Technology; Department of Technology Management, Eindhoven
University of Technology, 2006.

26. D. Spinellis. Quality Wars: Open Source Versus Proprietary Software. O’Reilly
Media, Inc., 2011. Making Software, ISBN: 978-0-596-80832-7.

27. I. Stamelos, L. Angelis, A. Okionomou, and G. L. Bleris. Code quality analysis
in open source software development. Information Systems Journal, 12(1):43–60,
April 2002.

28. L. H. Thom, M. Reichert, and C. Iochpe. Activity Patterns in Process-aware Infor-
mation Systems: Basic Concepts and Empirical Evidence. International Journal
of Business Process Integration and Management (IJBPIM), 4(2):93–110, 2009.

29. W. van der Aalst and A. ter Hofstede. YAWL: yet another workflow language.
Information Systems, 30(4):245 – 275, 2005.

30. W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow Patterns. Distributed and Parallel Databases, Springer, 14(1):5–51, July
2003.

31. WfMC. XML Process Definition Language, August 2012. v2.2.


