
A Pattern Taxonomy for Business Process Integration Oriented Application
Integration

Helge Hofmeister∗ and Guido Wirtz
Otto-Friedrich-University Bamberg, Distributed and Mobile Systems Group

Feldkirchenstr. 21, 96052 Bamberg, Germany
hofmeister@ecoware.de, guido.wirtz@wiai.uni-bamberg.de

Abstract

Application Integration is a work and cost intensive part of
both, software development projects and ongoing software
maintenance. Thus, software vendors as well as applica-
tion owners need mechanisms to cope with the complex-
ity of this task. Due to its inherent feature of decoupling
applications in a robust manner, message-oriented integra-
tion techniques have gained much attention among differ-
ent integration styles for a long time. Message oriented
integration patterns have been analyzed in much detail as
well. Recently, higher-level styles that provide an abstrac-
tion closer to application issues are under discussion. Be-
cause of its high abstraction level providing a global view,
business-process-integration based application integration
is a promising candidate to start with.
This paper presents a refined approach of Business Process
Integration Oriented Application Orientation (BPIOAI). It
facilitates the task of application integration by means of
defining standard integration processes based on a taxon-
omy of integration patterns and a set of integration services.
The identified taxonomy takes the structure induced by the
integration processes into account. It provides a standard-
ization that is especially suitable for centralizing the appli-
cation integration development in central development cen-
ters of large organizations. Besides these benefits, this work
provides an approach toward a domain-specific language
for the domain of application integration.
Keywords: application integration, business processes,

integration pattern, standards

1. Introduction

As application orientation has been a crucial part of every-
day work in almost all application areas of IT for some time,
there is a bunch of proposed techniques and approaches to
cope with its complexity in a manner that accelerates new

∗Helge Hofmeister is an external PhD student with the Distributed and
Mobile Systems Group at Bamberg University.

developments and lowers maintenance costs. Whereas soft-
ware development in general has seen different maturity
levels and paradigms, the task of system integration has
faced a lot of paradigms itself. In an overview given by
Linthicum [1], different integration styles that describe how
integration is managed are distinguished, i.e., information-
oriented, business process integration-oriented, service-
oriented and portal-oriented application integration. For
real-life application integration, the paradigm of message-
based integration, has been considered most useful due
to it’s characteristics of decoupling systems in a manner
that make compound systems more tolerant against failures
and, hence, more reliable. Even if message-based applica-
tion integration is applied as an information-oriented ap-
plication integration (IOAI) approach, the messaging basi-
cally provides the technical infrastructure, i.e., the means
for reliable and asynchronous communication. The most
promising recent paradigm of application integration, Busi-
ness Process Integration Oriented Application Integration
(BPIOAI), provides a more abstract as well as global view
to integration. This is achieved by introducing a business
process controlling the order of how participating applica-
tion systems are invoked. The process layer of BPIOAI does
not solely make direct use of application systems. Further-
more, conventional IOAI based systems can be used as long
as they expose a well-defined interface to the business pro-
cess. Since BPIOAI works on-top of IOAI, the basic ex-
change of information is handled with messages, too.
A crucial part of supporting integration in everyday work,
is the identification of situations, problems and lessons
learned from experience and best-practice knowledge that
occur and apply frequently despite the different specifics of
the problem at hand. Pattern as introduced by Alexander
[2] and applied to the domain of software engineering by
the Gang of Four [3], are a well-known means to capture
and re-use such kind of knowledge. Because re-use requires
knowledge about existing patterns, guiding effective work
with patterns and their proper combination by classifying,
grouping and naming patterns with the help of a pattern lan-

1



guage is even more desirable. However, a pattern language
may be strictly tuned to a restricted application area. Hence,
for more complete application domains, a domain specific
language (DSL) should be used [4].

In order to apply patterns to the domain of message ori-
ented application integration, Hohpe and Woolf propose 65
standard Enterprise Integration Patterns [5] grouped ac-
cording to 6 different root pattern and describe how these
patterns can be applied to build message-based integration
systems in a standardized way. Additionally, guidelines in
terms of descriptions that allow to compose a solution for
a given integration problem by sequencing several patterns
around a message-based communication channel are pro-
vided. Since most of Hohpe’s message-oriented patterns
provide additional functionality on-top of a messaging-
system and more abstract integration styles are usually
based on a messaging layer, most of these patterns should
be as well useful in the context of other integration styles.

This paper presents a refined approach of Business Pro-
cess Integration Oriented Application Integration (BPIOAI)
that defines a set of standard integration processes and ser-
vices and uses this setting to categorize the messaging pat-
terns more strict as it is done by Hohpe and Woolf [5]. By
adding two context specific modelling languages on-top of
Hohpe’s basic patterns, categories are built that empower
the basic patterns to describe a complete Application Inte-
gration Language (AIL).

Besides discussing related work in section 2, the rest
of this paper outlines our approach by defining standard-
ized integration processes (section 3), discussing so-called
idioms for the most important integration pattern (section
4) and illustrating the approach by means of a simple case
study (section 5). Section 6 discusses issues of future work.

2. Related Work

The Enterprise Integration Patterns of Hohpe and Woolf
[5] define the starting point and setting of our work. Van
der Aalst discusses different patterns in the area of work-
flows [6] by distinguishing data [7] and resource [8] pat-
terns. These patterns are designed independently of appli-
cation domains and are not specific to application integra-
tion. Nevertheless, in the case of BPIOAI, generic workflow
patterns support the analysis and even more the implemen-
tation of integration specific patterns because they provide
help in implementing workflow systems that are in turn a
building block of BPIOAI based integration systems [1].

Jayaweera et al. focus at the functional level of process
models in order to facilitate the generation of e-commerce
systems out of business models [9]. In doing so, they de-
scribe how existent business models are transformed into
process models. The abstraction level of this business-
centric work is being located one conceptual level above

our work. This is because we aim to guide the implemen-
tation of the integration systems automating the processes
as they are generated by the approach of Jayaweera or other
business process methodologies.

3. Standardized Integration Processes

We add a behavioural layer on top of the pattern language
of Hohpe that basically deals with data aspects. This layer
can be understood as a replacement of the pipe-architecture
that is used by Hohpe [5] to categorize patterns for message
based application integration. Because our scope of integra-
tion toranges up to cross-system service orchestration, the
behavioral layer defines generic and configurable integra-
tion processes instead of a simple pipe. These integration
processes allow to describe the logic of cross-system com-
posite applications on a business logic centric process layer
on top that handles the detailed tasks due to distributed and
heterogeneous systems. These single steps of the standard
integration processes were surveyed among integration spe-
cialists within a large German IT services company and are
understood as loosely coupled functionality that is coarse
grained in terms of integration functionality. This kind of
tasks is handled by so-called pre-defined integration ser-
vices (IS). Based on the taxonomy that is provided by the
disjoint functionalities of the IS (cf. section 4), Hohpe’s in-
tegration patterns are used to support the implementation of
these services. Hence, BPIOAI focused integration tools
such as IBM Websphere [10], SeeBeyond’s ICAN Suite
[11] or SAP’s Exchange Infrastructure [12] can easily re-
use the functionality that is provided by the basic patterns
and the integration services as well.

We introduce two integration processes that orchestrate
the IS: the so-called Integration In-Flow (IIF) reads data
from and the so-called Integration Out-Flow (IOF) stores
data to connected legacy systems. The IIF and IOF steps
are described in the activity diagrams of Fig.1 and Fig.2,
respectively. Since the integration processes need to be
generic, they should be capable to handle different com-
munication semantics. For the same reason, the Integration
Process needs to expose a generic interface to the business
application on top of it. Thus, the IIF starts with the re-
ception of either a synchronous or the reception of an asyn-
chronous call or intrinsically. Subsequently, an Event is cre-
ated by an IS. This Event is used as a ticket that is passed
to subsequent IS as well as to a possible composite appli-
cation on top of the integration processes. The data that
should be transferred by the IIF is read by an IS called Re-
ceiver Service. This service has information about how to
connect to the legacy systems as well as how data should be
filtered, collected or reassembled. Optional steps of the pro-
cesses are depicted as having a decision block as their pre-
decessors. Thus, the subsequent step of acknowledging the

2



Figure 1. Generic Integration-In Flow

request is optional. For synchronous calls, this acknowledg-
ment would be the answer to the request. For asynchronous
calls, this would be a subsequent message that is sent back
to the originator of the request. If configured accordingly,
the received data could be validated. Whether this solely
involves syntactic schema checking or additional semantic
checks as well depends on the implementation of the Valid-
ity Checker. Based on the validity the process may either
continue, the request could be refused or a more sophisti-
cated error handling process may be triggered. If the data
is valid it is transformed into a canonical data model ([13]).
This intermediary data format is used to decrease the need
for different implementations of the Transformator Service.
Finally, the canonical data is stored in a data store and the
ticket identifying this data is either directly passed to the
IOF or to the composite application. Subsequently, com-
ponents may solely deal with this ticket. For that sake the
Event Service may attach certain information to the Event.
This is a similar mechanism to the slip [5]. But in contrast
to the message slip, not all information has to be included
because the data store is accessible with the Event as the
key. Thus, components could look up data as needed.

The IOF process for updating application systems (cf.
Fig. 2) is generic as well. Note that a synchronous call
to the coupling system may still be active. Thus, the IOF
either continues the execution of a synchronous or an
asynchronous call. If a synchronous call is continued, the
termination of the request is handled by the final acknowl-
edgment step of the IIF. Subsequently, a service is used to
fetch the actual data based on the Event from the data store

Figure 2. Generic Integration-Out Flow

that keeps the canonical data. Depending on the configu-
ration, it may be required to pre-transform the canonical
data. If so, a Transformator Service may be invoked.
Subsequently, a dedicated IS attaches routing information
to the Event. Based on this information the data could be
transformed into the partner specific format by another
Transformator Service. Afterwards the data is written to
the target system by the Updater Service. In case of a
failure that may occur while updating the target system, the
request may be refused and error handling may be triggered.

4. Idioms for the Integration Services

In order to standardize the implementation of the coarse-
grained integration services, we use Hohpe’s [5] integration
patterns to distinguish different IS by integration idioms. In
the following, we introduce and discuss the Integration Ser-
vices for the In-Flow and Out-Flow as well as the idioms
that may be used to implement them if required.

The Event Creator Service incorporates the concept of
triggering the coupling-system. This may happen intrinsi-
cally or extrinsically. In case of intrinsic event generation,
the coupling-system itself generates an Event independently
of the connected application system’s state. Extrinsic event
generation describes that the connected application system
triggers the coupling-system by an internal state-transition.
In either case the output of this service is always an unique
event. The following integration patterns are useful to the
Event Creator Service1:

1All the pattern and pattern names used here are due to Hohpe [5]

3



Pattern/Service Communication Semantics Actual Data Format Canonical Data Format Sender Receiver
Selective Consumer ≈ ./ ≈ ≈ ≈
Polling Consumer only applicable for async. processing ./ ≈ ./ ≈

Splitter ./ ./ ≈ ≈ ≈
Message Sequence ./ ./ ≈ ≈ ./

Aggregator ./ ./ ≈ ≈ ≈
Resequencer only applicable for async. processing ./ ≈ ./ ./

Validity Check ≈ ./ ≈ ≈ ≈
Message Transformator ≈ ./ ./ ≈ ≈

Store Canonical Data Format ≈ ≈ ./ ≈ ≈
Fetch Canonical Data Format ≈ ≈ ./ ≈ ≈

Content Based Router ≈ ≈ ./ ≈ ./
Dynamic Router ≈ ≈ ./ ≈ ./
Recipient List ≈ ≈ ./ ≈ ≈
Event Message ./ ./ ≈ ≈ ./

Document Message ./ ./ ≈ ≈ ./
Command Message ./ ./ ≈ ≈ ./

Independent = ≈ Dependent = ./

Table 1. Implementation Dependencies

• In the case of extrinsic triggering, the Selective
Consumer may act as a filter and block events that are
not relevant for the coupling-system. This minimizes
the complexity within the application system since it
does not need to filter itself.

• The Polling Consumer that is able to detect state
transitions by itself, is used whenever the sending
application system should not be aware of being
coupled with another application system, but should
act as the initiator of interactions.

The Receiver Service de-couples the functionality of read-
ing data from the functionality of triggering the system in
order to decrease the complexity of the single IS and to
increase their re-usability. The implementation of the Re-
ceiver Service heavily concerns the connectivity to the con-
nected application systems. Anyway, in our description we
rely on the integration middleware and solely focus on the
functional creation of messages. The Message Sequence
pattern may be used here as well as the Splitter, Aggre-
gator and Resequencer pattern. Message Sequence is dis-
tinguished from the Splitter pattern, since the purpose of
splitting a message is different. However, the real imple-
mentation may be identical.

The additional integration services to be used in our
inflow process, i.e., the Validity Service and the Message
Transformator cannot be supported by the integration
patterns according to [5]. The same holds for the Data
Fetcher and the Message Transformer services that are
used in the outflow processes. Implementation support can
be found here for the
• Router Service through the Content Based Router,

Dynamic Router and Recipient List pattern as well as
for the

• Updater Service that is supported by a wide range
of patterns including Message Sequence, Aggregator,
Resequencer, Event Message, Document Message,
and Command Message.

Implementation Dependencies

Patterns and idioms describe best practices and solution
descriptions in a standardized form. Nevertheless, the
description is not formal and the actual implementation of
the idioms is still to be performed case by case. But the im-
plementation itself is under some circumstances reusable.
In order to provide support for a central design center,
we analyzed the idioms in terms of their dependence to
certain factors. With this information, the implementation
effort estimation can be improved since the identification
of the required integration services, idioms and dependency
factors are already known at design time. This information
can be used to determine which elements could be re-used
and which need to be re-implemented. The dependency
information is shown in Table 1. The single rows show
the idioms that may be required for a specific service. The
columns show the different dependency factors:
• Communication semantics: Most IS are called by a

service orchestration layer and usually the result of a
service needs to be returned synchronously. In some
cases, asynchronous processing may be appropriate, if
the communication between the connected application
systems is asynchronous as well.

4



• Effective data format: Although one of the motiva-
tions for the integration processes is the standardized
data-format independent way of connecting to ap-
plication systems, some integration services are
nevertheless dependent to the data format that is used
by a connected system. Thus, some of the idioms need
to be implemented for every single data format of a
connected system. Note that this dependency factor
solely describes the dependency from the format.

• Canonical data format: Usually, a canonical data
format is desirable because it reduces the amount of
required data mappings. If a certain idiom does not
have the purpose of data transformation, it still may be
dependent on a canonical data format as well.

• Sender and Receiver: Integration processes are
designed to be executed in some sort of integration
server middleware that provides adapters to handle
the effective communication with application systems.
In other scenarios the integration server as well as
the application systems may be able to deal with
Web Services or other ways of communication like,
e.g., CORBA [14]. Anyway, certain aspects of the
implementation may be dependent on the connected
system. The Sender (Receiver) factor indicate that
an idiom’s implementation may be dependent on the
sending (receiving) application system, respectively.

5 Business Case

To demonstrate the benefit of our categorization, we give
a real-life scenario that is used to integrate multiple ERP
systems of an industry company I with a portal application
as well as external suppliers of that company. In doing
so we focus on the value that comes with the approach
in terms of standardization and re-usability. We present
our example as the governance of a company may pro-
ceed in alignment with the integration processes we defined.

Multiple divisions of company I, possibly working with
different ERP systems, order certain goods and services
within their ERP systems. These orders are sent to a com-
posite application within a common portal. Additionally,
suppliers are being notified about new orders. Afterwards,
suppliers may log-on to the portal, check changes and ac-
cept/decline orders. Relevant actions of the supplier, such
as accepting an order, are then posted to the according ERP
system. This logic is described as an event-driven busi-
ness process that controls the integration (cf. Fig.3) and
is carried out by an integration middleware that is capa-
ble of executing processes. Note that the business logic
is implemented within the portal application and the pro-
cesses within the integration middleware are solely integra-
tion workflows.

Figure 3. Business Process of the Example

Keeping the standard processes, services and patterns
in mind, the central governance of I can easily design the
coupling-system by analyzing the requirements of the busi-
ness process. Afterwards, the design can easily be imple-
mented by an IT supplier.

The ERP system of the purchasing unit and the por-
tal application need to exchange purchase orders and order
changes. In addition, the supplier has to be informed about
new orders. As a result of a questionnaire presented to the
process owner, the governance identifies that this is to be
done via email. Additionally, only the ERP system is capa-
ble of writing orders to a relational database and for receiv-
ing order changes by retrieving them from the database. In
turn, the portal computes purchase orders that are specified
in the XML-schema of I’s industry 2. The same applies for
generated order changes.
Following the IIF, it is identified first that the ERP system
does not trigger the coupling-system actively and that not

2This format is used as the canonical data format within the company.

5



all orders need to be transferred to the portal since inter-
nal orders are handled differently. Thus, the Event Cre-
ator Service applies the Polling Consumer as well as the
Selective Consumer idiom. As these idioms are solely de-
pendent on the data format of the sender and on the type
of sending system, the implementation can be re-used for
similar scenarios involving the same type of ERP system.
Required functionality for the Receiver Service is checked
next. Here, only a database adapter with basic read opera-
tions is used and, hence, no idioms are applied. Due to the
data-constraints applicable for the relational database used,
invalid messages are not considered a problem by the gov-
ernance and the validity check is not used. In order to avoid
double computation of orders, the acknowledge request op-
tion is used. 3

For transforming the in-memory representation of database
entries into the canonical data format, the governance dic-
tates the use of the Transformator Service for purchase or-
ders. The according service is generic and it’s reuse is
recommended. Afterwards, the business process requires
an email to be sent to the supplier. Therefore, the IOF is
called asynchronously with the Event as the single param-
eter. The questionnaire to the process owner identifies that
multiple mailboxes need to be informed via email, i.e. the
customer as well as the purchasing unit that wants to mon-
itor all emails that are sent to external suppliers. The de-
tailed design of the IOF is as follows: The Router Service
applies the Recipient List pattern. From an outside point
of view, the Router Service splits the message in two and
sends them to the Transformator Service in order to trans-
form them into email-messages according to a given XML
schema. For the update step, the design only recommends
the usage of an SMTP-mail adapter that deals with the spe-
cific XML-message.
The next step is checking the order by the supplier by log-
ging into the portal and reviewing the order. Since this is
not an integration task, it is not described by the patterns
and processes here.
However, it is an important point to stress that the portal
application uses the data that are stored into the coupling-
system’s data store and, hence, has to be able to compute
the data format of the coupling system 4.
As the final part, the design should include the propagation
of the order change back to the ERP system. Therefore,
the design is aligned with the integration process again. We
ommit the details since the IOF for the update of the ERP
system does not introduce the need for additional idioms.

3This acknowledgement is realized by writing an additional entry in the
table of the ERP system using the IOF that connects to the ERP system.

4This is the line we draw between a legacy application and a composite
application. In the case of a legacy system, the IOF would be used to write
the data to the application system.

6 Conclusions

Our work standardizes the design of coupling systems
by using a pattern taxonomy within the central governance
of a customer for systems that are implemented using the
BPIOAI middleware from SAP - the Exchange Infrastruc-
ture. This way of designing coupling systems also brings
value to the implementation of composite applications.

Currently, we are collecting requirement classes from
different real-life case studies. In doing so, we aim to de-
fine a formal language that transforms the requirements of
a business process in conjunction with a dynamically cre-
ated questionnaire into the implementation of a BPIOAI
coupling system using the taxonomy presented here.

References

[1] D. S. Linthicum, Next Generation Application In-
tegration. Boston, MA USA: Addison-Wesley, 2004.

[2] C. Alexander, A Pattern Language. Oxford Univer-
sity Press, 1977.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns. Addison Wesley, 1996.

[4] J. Greenfield and K. Short, Software Factories.
Indianapolis, USA: Wiley Publishing, Inc., 2004.

[5] G. Hohpe and B. Woolf, Enterprise Integration
Patterns, ser. The Addison Wesley Signature Series.
Pearson Education Inc., 2004.

[6] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kie-
puszewski, and A. P. Barros, “Workflow patterns.”
Distrib. and Parallel Databases, vol. 14, no. 1, 2003.

[7] N. Russell, A. H. M. ter Hofstede, D. Edmond, and
W. M. P. van der Aalst, “Workflow data patterns:
Identification, representation and tool support.” 2005.

[8] N. Russell, D. E. ter Hofstede, Arthur H.M., and
W. M. van der Aalst, “Workflow resource patterns,”
BETA Working Paper Series, vol. WP 127, 2004.

[9] P. Jayaweera, P. Johannesson, and P. Wohed, “Process
patterns to generate e-commerce systems.” in ER
(Workshops), ser. LNCS, H. Arisawa et al., Eds., vol.
2465. Springer, 2001, pp. 417–431.

[10] [Online]. www-306.ibm.com/software/info1/
websphere/index.jsp?tab=solutions/process

[11] [Online]. www.seebeyond.com/software/ican.asp
[12] [Online]. ”help.sap.com/saphelp nw04/ help-

data/en/14/80243b4a66ae0ce10000000a11402f/frameset.htm”
[13] G. Kaufman, “Pragmatic ecad data integration,” New

York, NY, USA, Tech. Rep. 1, 1990.
[14] “Corba specification, v3.0.3.” [Online]. Available:

http://www.omg.org/cgi-bin/doc?formal/04-03-12

6


